NORTHWESTERN UNIVERSITY

Optimization Services (OS)

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Sciences

Jun Ma

EVANSTON, ILLINOIS

June, 2005

© Copyright by Jun Ma 2005
All Rights Reserved

il

ABSTRACT
Optimization Services (OS)
Jun Ma

This doctoral thesis presents a general optimization system design introduced under our
new concept of Optimization Services (OS) along with its Optimization Services Protocol
(OSP). Optimization Services is intended to be a unified framework for the next generation
distributed optimization systems, mainly optimization over the Internet. Thus Optimization
Services can be regarded as the Operations Research Internet. The corresponding Optimization
Services Protocol is intended to be a set of industrial standards.

Optimization Services framework is an XML-based, service-oriented, optimization-
centered, distributed and decentralized architecture. The Optimization Services Protocol is an
application level networking protocol that includes over 20 sub-protocols of Optimization
Services x Languages (OSxL). Optimization within a local environment is treated as a special
case; issues within a local environment are mostly addressed under the distributed case.

Although large-scale optimization has been under research for over half a century now, the
challenge of making it useful in practice has continued to the present day. Initially, the greatest
difficulties were posed by solution computation and model building, but the primary
impediment to broader use of optimization models and methods today is now more of
communication. Currently there exists an abundance of optimization solvers and other
supporting tools, various formats to represent optimization problems, and heterogeneous
mechanisms to communicate with optimization components. Moreover different optimization
components are implemented in different programming and modeling languages and located on
different platforms locally or over the network. Even if a prospective user is not puzzled by
such a plethora of combinations, the trouble of obtaining, installing, and configuring the
software does not justify the benefits from using it.

Through standardization of representation, communication, discovery and registration, the
framework provides an open infrastructure for all optimization system components including
modeling language environments, servers, registries, communication agents, interfaces,
analyzers, solvers and simulations. The goal is that all the algorithmic codes are implemented
as services under this framework and customers use these computational services similar to
daily utility services. Optimization Services also facilitates a healthier development
environment for research and development in the general area of Operations Research and

Management Sciences.
il

ACKNOWLEDGEMENT

I thank Professor Robert Fourer, my advisor from the Industrial Engineering and
Management Sciences department at Northwestern University, for bringing me into this
wonderful and significant project and providing the vital vision and direction. I thank Professor
Kipp Martin, my co-advisor from Graduate School of Business at University of Chicago for his
enthusiasm and constant support of Optimization Services. I thank the whole Optimization
Technology Center team at Argonne National Lab for bring NEOS into the world. I thank Tom
Tirpak, my manager at Motorola’s Advanced Technology Center, for providing the perfect
environment, opportunity and motivation. Tom and my fellow researchers at the Motorola lab
have sparked my interests in a lot of other fields, notably Virtual Prototyping in Electrical
Engineering and Machine Learning. I thank my other committee members, Professor John
Birge from Graduate School of Business of University of Chicago, Professor Wei Chen from
the Mechanical Engineering Department at Northwestern University and Professor Sanjay
Methrotra from the Industrial Engineering and Management Sciences Department at
Northwestern University for sharing their precious time and providing valuable suggestions.
Professor Methrotra and his students Wayne Sheng and Michael Chen make me feel like doing
research in a big and warm family.

I also want to thank my wife, Haiyan Xu-— staying up the nights with me, just not to let me
feel working there alone and sleepy. I joked with her that in “OSxL”, one of the 4-letter
acronyms that we coined in this project, the letter “x” is reserved for her. By now, as a non-
operations researcher, she is all too familiar with my babbles of the acronyms. I thank my
parents Shiming Ma and Hao Li. Without their support, I would not have completed my Ph.D.
degree. This thesis is also for my little daughter Angela, who brings me happiness and

enlightenment throughout my doctoral work.

v

Table of Contents

ACKNOWIEAZEMENTecuviieiieiieiieeie ettt ettt e esebeesbeessaestaessbeesseesseessaesssensseessensseans v
LISt OF FIGUIES...c.enieiieiieiieieeteetece sttt bbbttt st st ebe e X
LISt OF TADIES ... cnveneieiieiieie ettt ettt et eaeene s xvii
53T (a1 10107 () o USROS 1
Chapter 1 Introduction to OptimiZation SETVICES........ccvervierieeriieeiieeieesieenieeseeseeeeeeeeeeeas 4
1.1 Future of Computing — A General Background.............ccoocviiiiiiiiiiniiniieieee 4
1.2 Optimization SErvices (OS) ...oo.iiiiiiiiiiee e e 6
1.2.1 OS as a framework for optimization SYStEMSccceerveecrrerrierierienreereeseeeseeeens 8

1.2.2 OS as a computational infrastructure for Operations Research (OR)................... 10

1.2.3 OS as the next generation Network Enabled Optimization System (NEOS)........ 11

1.2.4 OS as the Operations Research (OR) Internetcccoecevvvevinieninienenieieieenn 12

1.3 Optimization Services Protocol (OSP)......c.ccccveviiiiiiciieiieie et 15
1.3.1 OSP as an application level protocol in protocol layering............cccceveevuererrennene 15

1.3.2 OSP as an interdisciplinary protocol between CS and ORcccceevireiiieirennn. 16

1.3.3 OSP SUD-PIOTOCOISeeutiiieiieiietieie sttt ettt sttt et st saeeneenee 18
Chapter 2 Optimization Systems and COMPONENLS..........ceerveerrierrierirersieerreesieeriresereeeneanns 22
2.1 IMOGEL ..ottt et e 25
2.2 Modeling Language Environment (MLE)...........ccccooiiiiiiniiniieieieeeeeeeeeee 28
2.3 Instance RePresentationcecieiieiiiiie ettt 31
2.4 Interface/Communication AGENt..........c.eecuieiierieiireieeiierte et eee et eee e eeeens 35
2.5 Optimization Server and ReGISIIYccceeiiiiiiiiiiieiieiee e 37
2.6 ANALYZET ..ottt 40
2.7 SOLVET .ttt ettt ettt ettt tb e e tb e e ate e e teeetbeetbeesba e taestbeeebeesbaestaeetbeeaneenns 42

2.8 Simulation (Function Evaluator)...........ccceeviiiiiiiieniieiie ettt 43

Chapter 3 Optimization System Implementationsceccevereerereeienenieneseeeeseeseens 48
3.1 AMPL and Network Enabled Optimization System (NEOS).........ccccccceveverreenrenen. 48
3.1.1 Standalone AMPL architecture........cccccocervuemirirneniniinineceneecee e 48
3.1.2 AMPL-NEOS architeCture.ccccerueeiirieniiienieetee sttt 50
3.1.3 AMPL-NEOS optimization problem representation iSSUEScccceeveereerreeneene 51
3.1.4 AMPL-NEOS optimization cCOMMmMUNICAtiON ISSUESeerueerueerueerreereerieeneeeneeenns 54
3.2 Motorola Labs Multidisciplinary Intelligent Optimization Systemcc.ccccceeueeee 57
3.2.1 Dataflow and knowledge flow..........ccverieriieiieniieieiecee e 57
3.2.2 Initial modeling of computational complication in test bedccooceeeeerereennnne. 59
3.2.3 A robust implementation of distributed optimization in the real VP system........ 61
3.2.4 Design and archit@CUTIEceciveriiieiieriieriierie e ereereereestesresereseseesseesseesenenens 62
3.2.5 OPtiMIZAtION PIOCESS ...eeuvieeieruieriieateertiertiesiteeteesteesteesteeateenseesteesseeaseeanseeseesseene 65

3.2.6 System implementation issues and lessons learned for Optimization Services.... 71

3.2.7 Simulated bencChmarks...........coccoviriirenieiereeee e e 74
Chapter 4 OS Computing and Distributed Technologies...........ccccvevevereireveeriieniiecie e, 79
4.1 Basic Computing Technologies and Terminologiescccccveveirrieecienieneennenennnn 80
4.1.1 Java and OS design philoSOPhIes........cccceevierierierieiieierie et 81
4.1.2 Object-Oriented Programming (OOP)........cccoeviiriiiiiiiierieeieeeeeeeee e 82
4.1.3 Networking background and terminologies.c..eccuervrrrrercrreriierierienreereeeens 86
4.2 KIML oottt ettt ettt ettt et ettt b e he et e beeteesb e beere e b e ereeneenbenneenaenns 88
421 WRY XIML..oiiiiiiiieeeeeee ettt sttt sttt sbe s te et beesaenbesseenaensens 89
4.2.2 XML basics and MathML...........cccooiuiiiiiiniiiieeie ettt 90
43 XML SCREMA ...ttt sttt ettt sae et en 95
4.4 Other XML TeChNOIOZIEScecueeiuiiiiiieiieiieeie ettt 103
4.5 Web Services and Simple Object Access Protocol (SOAP)cceceeiiiniiiiiennne. 111
4.6 Service Oriented Architecture (SOA)oiivviiiiiiicie et 117
4.7 Web Services Description (WSDL)cooeiiiiiieiiniieieiiciieieeeeeeeeeee e 119
4.8 Web Services Registration and Discovery (UDDI and WSIL)........ccccceecvervennnnen. 120

Vi

4.9 Open Grid Services Architecture (OGSA)......ceevveriirieriiriieieiieeeeeee et 123

Chapter 5 Optimization Services (OS)....ccvuririeririeierieeieie ettt 125
5.1 Standardization, OSP and OSXLccooouiiiiiiiiiiiiieeee e 125
5.2 ATChItECtUIE DESIZN ..vieviiiiiieiiieiieiieiie ettt te e e b e essaestaesseesseesseesseenseenes 129
53 Optimization SErviCes PrOCESScccviiiiieiiieiieiieeie ettt ere ettt 132

Chapter 6 Optimization Services Representationccecceevvevieriieeiieeneeniesie e 143
6.1 Optimization Services general Language (OSgL) ..cccvoovieniiiiiiiiiienieeeeeeee 145
6.2 Optimization Services instance Language (OSiL).......cccoeevevienieniiniieiieeeeeee. 149

6.2.1 Base Program datacceceereerieeerieiriesiieniesieeteereesbeetesaessaeeseeseensaessaennsens 152

6.2.2 EXtension ClEMENTSc..ccceceriririiriinieieieinienesteneteteteeeie sttt nereebeenens 157
6.3 Optimization Services nonlinear Language (OSNL)c.coocvevivieiinieiienieieieeneen 166
6.4 Optimization Services result Language (OSTL)ccoccvvevieviivieeieeieieeie e 188
6.5 Optimization Services option Language (OSoL)......c.ccccceviivieecienienieeieeie e 193
6.6 Optimization Services analysis Language (OSaLl)........cccoocevieieiievienieniecreeieenne, 197
6.7 Optimization Services simulation Language (OSSL)......ccccveviieiiinienieiieeieeeee 201
6.8 Optimization Services transformation Language (OStL).......ccccceevievieniencireinnne. 203

Chapter 7 Optimization Services COMMmMUNICALION.........cccereieeiieriieriierieesee e eie e 207
7.1 Optimization Services hookup Language (OShL)ccccooiiiiiiiiiiiiieeeee 209
7.2 Optimization Services call Language (OSCL).......cccoiiiiiiniiiiienieienie e 221
7.3 Optimization Services flow Language (OSfL)......cccevvveviivieiiinieieieiecieeiesieeen 228

Chapter 8 Optimization Services RegIStIYccoccvieviierierieeieeieeie e 235
8.1 Optimization Services entity Language (OSeL, representation)...........ccceceeeveuennen. 237
8.2 Optimization Services process Language (OSpL, representation)..............c.c......... 241
8.3 Optimization Services benchmark Language (OSbL, representation).................... 242
8.4 Optimization Services yellow-page Language (OSyL, representation).................. 245

vil

8.5 Optimization Services join Language (OSjL, communication)cccceevveruenen. 247
8.6 Optimization Services knock Language (OSKL, communication).............ccccu...... 249
8.7 Optimization Services query Language (OSqL, representation).............cccccveeneenee. 251
8.8 Optimization Services uri Language (OSuL, representation)cccecverveeeennee. 254
8.9 Optimization Services discover Language (OSdL, communication)...................... 256
8.10 Optimization Services validate Language (OSvL, communication)....................... 257
Chapter 9 Optimization Services modeling Language (OSmL)ccooeeiieniiiienieennen. 260
9.1 Introduction and MOtIVALIONc.cevieeiieiiieiie ettt 260
9.2 Four Paradigms of Combining XML with Optimizationccccceeveeiienieneenee. 261
9.2.1 Use XML to represent the instance of a mathematical program......................... 262
9.2.2 Develop an XML modeling language dialect...........cccoecvererienieneeienenieieenenne 262
9.2.3 Enhance modeling languages with XML features such as XPath 264
9.2.4 Use XML technologies to transform XML data into a problem instance........... 267
9.3 OSmL Features and EXampPles.........c.cccuveeierierieiieciiciieieeeesee e 268
9.3.1 Sets, INAICES ANA AALAcooouiiiiiiiiiiii e 268
9.3.2 OSmL examples and comparison with other modeling languages..................... 269
9.3.3 Model compilation, instance generation and auxiliary softwarecc.......... 273
0.3.4 GEttiNg data.....cocuiiieiiiiiei et et et e b e 275
Chapter 10 Future Work and Derived Research from Optimization Services.................. 277
10.1 The Optimization Services ProjeCt.........ccovvierieririeniiiieierieieieeeee e 277
10.2 StandardiZation............cceeeirierieieieiiieeeetee ettt et e 277
10.3 Problem Repository Building...........cccecveevierierieiiieiieieie e ere e 278
10.4 Library BUilding.........cccoeeieiiiiiieiieiieeie ettt esse s seaesereenneennas 278
10.5 Derived Research in Distributed SyStems.........c.cccueevierieriieiiieieiie e 278
10.6 Derived Research in Decentralization............c.cceeeeeieeiieenieenienie e 279
10.7 Derived Research in Local SyStems..........cceecueeiieiiierienieeie et 279
10.8 Derived Research in Optimization SETVETSc.ceereerierieiieeieesieesee e ees 280

viil

10.9 Derived Research in Computational SOftwareccceceevierirrienieiienienieeeenn 281

10.10 Derived Research in Computational Algorithms..........cccecevveriereeienenienieneene, 281
10.11 Commercialization and Derived Business Modelsc.ccccocvenenenicreccncnnenne. 282
REIEICIICES ...ttt ettt ettt s b e s ae s eaeeneeuenaens 283
Appendix A Optimization Services Representation EXtensions.........cccceeeveeverieneeeneennenne. 290
Al <cones> for CONe PrOGraAMIMINGcccverereerreerererresreereeseessresreaseesseesseesssensens 290
A2 <stages> for math programs using stage informationcccocceeeeineennennnen. 292
A3 <stochastic> for stochastic programming............cc.ecverververreeereerreesseesnennens 293
A4 <networkAndGraph> for network and graph problems...........ccccceeveniennnnnn. 298
A.S Special nonlinear nodes iN OSNL........ccccciiiiiiieiieiie et 300
A.5.1 <complements> for complementarity problems........c..cccooconiiiniineanennne 300
A.5.2 <nodeRef>and <arcRef> for network and graph problems.................. 302
Appendix B Optimization Services Librarycccocceeviiriiniieiienieerieieeeeeee e 303
B.1 LDIary DESIZI .eu.eeuiiiiieiieetie ettt ettt ettt et et ettt et e es 305
B.2 OSCOMMON LIDTATYeiiiiiiiiieiiecieeie ettt ettt sttt aae e eneenees 307
B3 OSAZENE LADTAIY ..ttt ettt et ettt e 310
B4 OSSOIVET LADIATY ...ttt ettt ettt e nneseean 311
B.5 OSMOdELEr LIDIATY ...cuvevieiiieiieeieie ettt b et sneenees 313
B.6 OSANALYZET LIDTATY ..o.eviiiiiiiieciecie ettt ettt seveeeve et e ssaessaessneenneennes 314
B.7 OSSIMUIAtION LIDIATY ..c.veeviiiiieieiecieeiecieeieies ettt enees 314
B.8 OSREZISIIY LIDIATY ...cueiiiiiiiiieiiecie ettt sttt sve e esb e s e e saessaeesneennes 315
B.9 OptiMiZation SEIVICES SEIVET.....cciiiiieiieitieriesieeteeteeteesetesaeeeseesseesseesnaesnseeseenees 316
B.10 www.optimizationservices.org and www.optimizationservices.net 316

X

LIST OF FIGURES

Figure 1-1: Future of COMPULING. ...cc.eoiiiiiiiiiiieeeeee ettt e 4
Figure 1-2: Home page of GAMS, the first major modeling language (http://www.gams.com). 7

Figure 1-3: Difference between an OR library and the Optimization Services framework. 9
Figure 1-4: Positioning of OS in the hierarchy of Operations Research (OR).c.ccccceeeeee. 10
Figure 1-5: NEOS Server for Optimization at http://www-neos.mcs.anl.gov..........cccceeevueenene. 11
Figure 1-6: A simplified sketch of Internet for purpose of illustration.cccccevvererencnennene. 13
Figure 1-7: Analogy between Optimization Services and the Internet..............cccccoooeniiniinncnn. 14
Figure 1-8: Layering of Internet protocols.ccoeereririeneriiienieeieiesieei e e 16
Figure 1-9: OSP inside SOAP, which, in turn, is usually inside HTTP.ccccocvrvvirininnnnne. 17
Figure 2-1: A typical optimization system and component interaction.cecceeveereerereeenne 22
Figure 2-2: A daunting task of optimization categorization.ceeeererereveveeeerrencnenene 27
Figure 2-3: NEOS Optimization Tree to help users manually choose connected solvers........... 27

Figure 2-4: The AMPL model and data on the classic diet problem (http://www.ampl.com). ..29
Figure 2-5: AIMMS Modeling Environment with model explorer and property windows

(NEEP://WWW.AIITINS.COM) . ..evieitieiietieetieeie et esteeetee et e enteenseeseesaeesnseenseenseenseesnseenseenseeseesseesnseenns 31
Figure 2-6: A generic process of instance generation and parsing.ccceeeeveereerveeeerueneeneenne 32
Figure 2-7: MPS representation of the quadratic math program in 2-2..........ccceeeevvevereneennnnn. 34
Figure 2-8: Interface between AMPL and CPLEX SOIVeTr........cccooviiiiieiiienieiiceieeiceeee e 35
Figure 2-9: MPL Modeling Language's component library for embedding in larger applications
(http://WWW.MaXimMal-USA.COM).c.eiiuiiiiieiieit ettt ettt ettt et et et eeateebe et e e saeesaee e 36
Figure 2-10: A generic process of instance generation and parsing.ccceceeveeereerveeneeeneenns 37
Figure 2-11: A typical optimization server with a “thin” client.c.ccccocervenenenerinrnicnenenn 38
Figure 2-12: An optimization server with a “thick” client.c.cccooeviiieiiiinii e 38
Figure 2-13: The optimization registry architeCture.ccuevevvecrierienienieeeriereeseesee e s ens 39
Figure 2-14: MProbe Analyzer’s basic analysis T€POIT.ccceerereiieriierienieeieeieesiie e 41
Figure 2-15: A generic input and output process of an Optimization Services compatible solver.
.. 42
Figure 2-16: Three requirements of a simulation: input, output and address.cccceeeeureneene 44
Figure 2-17: The schema of a simulation called “mySimulation,” which hides its internal
CALCUIALION. ...ttt ettt ettt bttt ettt b bbbt ebe bt b e e e eseenes 45

Figure 3-1: Standalone AMPL-Solver architecture (Iocal).cccceevieririeninienieneeiee e 49
Figure 3-2: AMPL-NEOS Architecture through Kestrel............c.cooconiiiiiiiiiiiieeee 51
Figure 3-3: M x N drivers needed by M modeling languages (or GUIs) and N solvers (or

ANALYZEIS). .ttt ettt et ettt b et ettt s h et a e n e e s e b e e st et bt et e bt eneenteeneeneene 52

Figure 3-4: M + N drivers needed by M modeling languages (or GUIs) and N solvers (or

analyzers) with a standard XML INStANCE.cceeririiiiiiieiieiie ettt 53
Figure 3-5: Part of the NEOS Server’s list of solvers and problems formats............c.cccecvrenenne 54
Figure 3-6: The Optimization Services (OS) — Open Solver Interface (OSI) connection.......... 56
Figure 3-7: Dataflow of optimization with metrics calculated from distributed services. 58

Figure 3-8: Initial modeling of optimization with metrics calculated from distributed model
SCTVICES. c.veuvintentemteueeitetentent et ettebt et ettt st bt et e eb e b et a et e st eb e et e e bt sbe st e st eueebeeb et et et eseebe ettt e sb et enneneas 60
Figure 3-9: Architecture of VP Multidisciplinary Intelligent Optimization System. 63

Figure 3-10: Flowchart of the intelligent optimization process; thicker lines mean more

frequent data flow in the OptiMiZAtion PrOCESS.ccvietirrtieriieiie ettt ettt 67
Figure 4-1: Inheritance hierarchy for Mmatrices.ccooceroiiiiiieiieiieie e 83
Figure 4-2: An OS expression tree for the Rosenbrock nonlinear function.c..coccovevvevenene. 84
Figure 4-3: Sample code for parsing a nonlinear instance without polymorphism. 84
Figure 4-4: Calculating a function value in an OSnLNodeP1lus class......cccceeeveerveienieneeneenn 85
Figure 4-5: Expression (2X, +3X,)” in Presentation MathML.ccoooverrrverrverrriennnnns 91
Figure 4-6: Expression (2.X, +3X,)” in Content MathML.ccoovverrveerrrrresrreerrrennenns 92

Figure 4-7: Expression (2.X, +3X,)” in Optimization Services nonlinear Language (OSnL).

.. 94
Figure 4-8: The OSiL <variables> element for the modified Rosenbrock problem in (4-2).

.. 95
Figure 4-9: The <variables> element in OSiL Schema both graphically and in text.......... 96
Figure 4-10: The <var> element in OSiL Schema.cccccoeeviiiiinieiiiece e 96
Figure 4-11: Text view of an XML file (OSiL) in XML Spy. ..cceecieiiiiiieieeieeeieeee e 105
Figure 4-12: Graphical view of an XML file (OSiL) in XML Spy. ...ccccecevvenerimereninicnenennens 106
Figure 4-13: An illustration of how the combination of XML and XSL style sheet can serve as

the same purpose Of HTML.......coooiiiiiiie ettt e e e 107
Figure 4-14: SOAP illustration from high to low level.coocoiiiiiiiinii 113

X1

Figure 4-15: Serviced-oriented ATChItECTUIE.ccvevireieiiriieieiieieieetee e 117
Figure 4-16: A typical optimization system and component interaction and the Service-oriented
architecture view by OptimizZation SETVICES.ccuverierieriiieirieriierierreeereesseesseessaesveeseesseenses 118

Figure 4-17: An abbreviated WSDL document of SimpleSolver, which specifies one operation:

AV O T L L S0 LV ittt sttt ettt st st et e b e bbb 120
Figure 4-18: Service data information in @ UDDI re@iStry.........ccoevvieriercreeciieniieniesreere e 121
Figure 4-19: Business entity information in a UDDI re@istry.cccccevervenerieeenenieieneenens 121
Figure 4-20: An abbreviated WSIL document.cocceeiiiiiiiiieiieiie et 123
Figure 5-1: A tree view of Optimization Services x Languages (OSXL). ...c.ccovevverveecreennenne. 126

Figure 5-2: Optimization Services’ simplified architecture view of a centralized optimization
4] 1) 14 RS PSPPIR 129
Figure 5-3: Optimization Services’ simplified architecture view of Motorola Lab’s
Optimization System (Chapter 3).cooiiiiiiiieieee e 130
Figure 5-4: Optimization Services’ simplified architecture approach of a decentralized
optimization system; compare with Figure 5-3.ccccooiiiiiiiiiniiieeeee e 131

Figure 5-5: Optimization Services’ simplified next-generation architecture approach of AMPL-

NEOS SyStem (Chapter 3).eecciieeiieiieriieeieeieereesieeseeeiteereeseesseesaessseasseesseesseesssessseassessseees 132
Figure 5-6: A modeler starts with a model and some data and wants the model solved. 133
Figure 5-7: There is no direct connection between the model and the solver. 133

Figure 5-8: The modeler has to formulate his model in an MLE (or GUI, spreadsheet etc.) and
the model gets translated into an OSIL INStANCE.cevieriiririiiiiiieie e 134
Figure 5-9: The model can be formulated in the OSmL modeling language.cceenee.e. 134
Figure 5-10: After the model is translated into the OSiL instance, an agent is delegated to send
the instance to a solver. The agent hooks up the solver using the OShL communication

protocol. All OS solvers expose themselves with a standard OS API and return the output in
OSrL. An OS server is needed to host the solver and all other Optimization Services. We
provide the OS Server SOtWATE.c.cociiriiiiieiierieeeee ettt es 135
Figure 5-11: The agent returns the OSrL and possibly with the standard OStL style sheet to the
MLE (or GUI, spreadsheet, etc.) and the result gets nicely presented to the modeler. 136
Figure 5-12: The OSmL modeling environment presents the result (without the OStL style
SIEEL). 1eitiiiiii ittt ettt e ettt et a e e tb e e bt e bt et e e etbeerbeerbeeabe e b e e st e erbeerbeeabeetaeatbeeabens 136

Xil

Figure 5-13: The agent can talk to any solver on the Optimization Services network. This is
possible because all the solver services are standardized; they can be invoked with an operation
specified by OShL, they all take OSiL as input, and they all return OSrL as output. 137
Figure 5-14: The agent knows how to hook up any solver, but first it needs to know where the
solvers are. So the agent discovers the solver in the OS registry with an OSdL operation, which
passes OSqL as an input. The OS registry returns the matched locations in OSuL. 138
Figure 5-15: The OS registry has all the solver information because all the OS solvers have to
join the registry by publishing their OSeL information with an OSjL operation beforehand. The
OS registry in return sends back the OStL style sheet with which the solver providers publish
their OSeL information on their own Web site. The “triangle” between the agent, the solver and
the registry is called a Service-oriented Architecture (SOA).ccoocvvveivevierierie e 139
Figure 5-16: Before sending a query to the OS Registry, the agent may first send the OSiL
problem instance to an analyzer using OShL. The analyzer sends back OSaL as an output. On
the other hand, the solver may need to call a simulation service to get function values. The
solver calls using an OScL operation. Both the input and output of calling the simulation are
specified in OSsL. Some of the standard process flows are predefined in OSfL. 140
Figure 5-17: The OS registry is in fact also an Optimization Service hosted in an OS server and
has a standard OS API exposed. For example any service on the OS network can send an OSxL
instance representation to the registry for validation (OSvL) and the OS registry will return an
error message if there is any. Otherwise it returns a null or empty string. On the other hand, the

OS registry can “knock” on all the services with an OSkL operation and all the services are

required to send the current process information in OSpL............ccceciiviieiiiieciieciecie e 141
Figure 5-18: A close analogy between Optimization Services and Internet..............cccceeueeee.. 142
Figure 6-1: LPFML Schema at the 100t IeVel........c.cocieviiiiiiiiiiicee e 144
Figure 6-2: <intVector> data type in OSgL.ccccoiiiiiiiiii e 145
Figure 6-3: <listMatrix> data type in OSgL. ..ot 146
Figure 6-4: <discreteDistributionGroup> group in OSgLl......cccoovvieiienienieenenee. 148
Figure 6-5: <distributionGroup> group in OSgL.....ccoiiiiiiiiiiiiet e 149
Figure 6-6: OSiL Schema at the root level <OSIL>...coiiiiiiiiiiiiiiiieee e 150
Figure 6-7: <programDescription> element in OSiL........cccooooniiiiiiiniiniinniiiiecee 150
Figure 6-8: <programData> element in OSiL.cccccoioiiiiiiiiiiiiie e 152
Figure 6-9: <constraints> element in OSiL.cccccoiiiiiiiiiiiiiiienie e 153

xiii

Figure 6-10: <variables> element in OSiL.cccocooiiiiiiiiiiiiiiiee e 153
Figure 6-11: <coefMatrix> element in OSiL.......ccccooiiiiiiiiiiiiiiiie e 154
Figure 6-12: <multiObjectives> elementin OSiL.......ccccooiiiiiiiiiiiiniiiiinieeeeee 156
Figure 6-13: <n1> element in OSiL.ccooiiiiiiiiiiiiiieee et 158
Figure 6-14: Objective function nonlinear part 100(x, — xg Y +(1- X,) represented in <nl>
and the corresponding vertical tree view of the eXpression.ccveeeeveerierieeceeriesieeie e 159
Figure 6-15: <userFunctions> elementin OSil........cccoomiriniininininineneieenenennens 161
Figure 6-16: <userVariables> element in OSiL........cccccooiiiiiniiniininieninieeneeieneen 162
Figure 6-17: <simulations> element in OSiL.cccooooviiiiiiiniinieiinecce e 164
Figure 6-18: simpleSimulation with two inputs (a, b), two outputs (f1, f2) and an address at
http://www.optimizationservices.org/os/ossimulation/SimpleSimulationService jws. 164
Figure 6-19: <xm1Data> element in OSiL.cccccoieiiiiiiiiiiiiiiieieie e 165
Figure 6-20: stockSimulation with two inputs (ticker, amount), three outputs (minlnv, price,
day) and an address
(http://www.optimizationservices.org/os/ossimulation/StockSimulationService.jws)............. 183
Figure 6-21: OSrL Schema at the oot level KOSTL>. t.ivoiiiiiiiriiiiiieieeeeeeee e 189
Figure 6-22: <result> element in OSTL.ccccooiiiimiininiiiiieeee e 190
Figure 6-23: <objective> element in OSrL.ccccooooviiiiiiniiiiieee e 190
Figure 6-24: <multiObjectives> elementin OSrL........cccooniiiininiininiiiininieeene 191
Figure 6-25: <variables> element in OSrL.ccooviiiiiiiiiiiiiiiiceeeen 192
Figure 6-26: <constraints> element in OStrL.cccooiiiiiiiiniiiee 193
Figure 6-27: OSoL Schema at the root level KOSOL>....uiiiiiciiiciieieie e 194
Figure 6-28: <standard> element in OSOL......c..ccccoeoieiiriiiinininiieienceececee s 194
Figure 6-29: <objective> element in OSOL.ccociviiiiiiiniiniieeeeeee e 195
Figure 6-30: <multiObjectives> element in OSOL........cccocmimiinimiiniinieiineeieneeen 195
Figure 6-31: <variables> element in OSOL.cccccviiiiiiiiininieieeeeee e 196
Figure 6-32: <constraints> element in OSOL.ccccociviriiiinieninieeceee e 196
Figure 6-33: OSaL Schema at the root level <OSaL>. ...coceviiiriiriiriieiieeeeee e 198
Figure 6-34: <programDescription> elementin OSal........c.cccocoeriiiiinnieniiencreeneenne. 198
Figure 6-35: <numberObjectives>, <numberVariables>, and
<numberConstraints> elements in OSal.c..cccccecviininininiiininincercceeeeeene 199

X1V

Figure 6-36: <programDataAnalysis> elementin OSal.........cccccoiiiiniiniiiniiniiannene. 199
Figure 6-37: <constraints> elementin OSal........cccccoiiiiiiiiiiiiiiiei e 200
Figure 6-38: simpleSimulation with two inputs (a, b), two outputs (f1, f2) and an address at

http://www.optimizationservices.org/os/ossimulation/SimpleSimulationService jws. 201
Figure 6-39: <OSSL> 00t ElEMENL. ...c..ccueriiieiiiiriirinienteiceeieecnestet ettt eeeeneereenens 202

Figure 7-1: Relationship between OS Communication and local interface standardization. ...209

Figure 7-2: Illustration of a simplified OShL (interface part).cccceeeeeiienienieniceceeee 210
Figure 7-3: Illustration of a simplified OShL (protocol and address part).cccecverveennennee. 212
Figure 7-4: Illustration of OScL (interface part); other parts are the same as OShL in Figure

T3 e bbbt h bt h et st b bt b ekt h et et b e bbbt e be st e st ebeeteebenaen 221
Figure 7-5: sampleSimulation with two inputs (a, b), one output (y) and an address
(http://www.ziena.com/os/SampleSimulationService.Jws).ccccveeveerieireeneeiienie e 222
Figure 7-6: Traditional process iNtEGration.ccecceerieeiueeiureriieriesieereesieeseeeseaeeeeeeeeneeenees 229
Figure 7-7: Oracle’s BPEL Process EN@INe.ccoecveruierierernireeiriesiiesresnesseesseesssessnessesnnes 230
Figure 7-8: A typical Optimization Services process flow chart............ccccooceeviiiiiiniiiiieneene. 231
Figure 7-9: Calling BPEL process engine as a Web service, which in turn calls various
Optimization services according to the OSfL BPEL document in Figure 7-8.ccccuenenee. 232
Figure 7-10: Anatomy of the OSfL BPEL document.ccocueeiieiiiiieiiieieceeeeee e 233
Figure 8-1: The optimization registry archite€Cture.ccevevreereerierieereeie e e sre e 235
Figure 8-2: Optimization Services registration fOrm.ccocveveriirieniinieienireeeeeeeeseeeen 237
Figure 8-3: <OSeL> root element in OSeL and it 6 main category elements..........c...c........... 240
Figure 8-4: <OSpL> root element in OSPL.cc.ooiiiiiiiiiiii e 242
Figure 8-5: <OSbL> root element in OSDL.ccoeiiiiiiiiiiiiiciieiee e 244
Figure 8-6: <OSyL> root element in OSYL.c.cccveiiiiiiiiiiiiieiieiee e 246

Figure 8-7: Illustration of OSjL (interface part); other parts are the same as OShL in Figure 7-3.

T3 ettt h e e a et h e et a e a e a e s a et eae et sresaens 250
Figure 8-9: <OSgL> root element in OSqL and descriptions of its immediate children. 252
Figure 8-10: <OSuL> root element in OSPL.cocuiiiiiiiiiiiiie e 255

Figure 8-11: Illustration of OSdL (interface part); other parts are the same as OShL in Figure

Figure 8-12: Illustration of OSvL (interface part); other parts are the same as OShL in Figure

T3 bbbttt bt h ekt b bt bt b e ekt b e et et b e e bbbt e bt e st ebeeteebenaent 258
Figure 9-1: OSmL GUI with an OSmL model of the modified Rosenbrock problem. 261
Figure 9-2: Using XML to represent the instance of a mathematical program (1* approach). 262
Figure 9-3: The sketch of a math programming model written in AML [34].cccceeveneennee. 264
Figure 9-4: Multiproduct dynamic 1ot sizing problem.cceceverieninienenieiereeeeieseeen 265
Figure 9-5: Dynamic lot sizing data (lotsizedata.Xxml)c.ccoocuiiiieiiiniiiiii e 265

Figure 9-6: Graphic illustration of the lot sizing data in Figure 9-5; two highlighted circles
INdicate the PrOQUCE SEL.ccveveiiiririiretetcte ettt ebe b b saens 266
Figure 9-7: Dynamic lot sizing model in AMPL (nonworking with the dynamic lot size XML

141 7) T USROS 270
Figure 9-8: Dynamic lot sizing model in OSmL (working with the dynamic lot size XML data).

.. 271
Figure 9-9: The OSML PIOCESS.ccvreririiriinieieiieiinienestetetettettsie sttt eeseete st saesaeneenesnens 274
Figure 10-1: Relationship between OS Communication and local interface standardization. . 280
Figure A-1: <cones> element in OSiL.......cccocoiininiiiiiiiiniiniiniceeeeeeeereeee e 291
Figure A-2: <stages> element in OSIiL.cccccooiiiiiiiiiniiiicceee e 292
Figure A-3: <stochastic> element in OSiL......c.ccocooeiiriiniininineiiininneneeieceeeeeene 293
Figure A-4: <explicitScenario> elementin OSil........ccoooiriniinininiiininiiniiieeene 294
Figure A-5: stochasticNumbers type in OSiL......cccooiieiiriiiieniinieieeeeeie e 295
Figure A-6: <implicitScenario> elementin OSil........ccoooiriiiiiinniininiiniiieen. 296
Figure A-7: <penalties> element in OSiL.coccooiiiiiiiiiiniiiiinieeeeeeeee e 297
Figure A-8: <riskMeasures> element in OSiL.cccocriimininiinininiinineneeceenenns 297
Figure A-9: <networkAndGraph> data type in OSgL..........ccccvvviinieniieniieeeeeeee e, 298
Figure A-10: <networkAndGraphHeuristicsGroup> group in OSgL.......ccceevveneennen. 299
Figure B-1: OS Java library document (Javadoc) at http://www.optimizationservices.org. 305

Figure B-2: The subfolder structure of the OSCommon project folder; other folders have

SIMilar SUDTOLAET SLIUCTUTES.ovviruiiiiriiiie ittt sttt 306
Figure B-3: The Eclipse Java IDE (Integrated Development Environment)............c.cccceuenee. 307
Figure B-4: The OS Web site at http://www.optimizationservices.org (or

http://WwWW.OptiIMIZAtIONSETVICES.TICE) ...c.eerieuietiriieieriteie ettt ettt sbe e b 317

Xvi

LIST OF TABLES

Table 2-1: Major optimization types and corresponding input formats; Optimization Services
instance Language (OSiL) supports all the listed optimization types.ccoceeveereerieniennenne 34
Table 3-1: Benchmark results from normal optimization without function learners (time in
TIUTIUEES). cvviivvierieetieeeteeteeeteeeteeetseesbeesseesteesseeesseeaseesseessaessseesseasseasseesssesssesssessseesseessesssanssenssessseans 76
Table 3-2: Benchmark results from intelligent optimization with a simple 3-layer neural
network learner (time iN MINULES). ...c.veciercveriireireeriieriesiesteereeseessaesaessresseesseessaesssesssesssesssenns 76
Table 3-3: Benchmark results from intelligent optimization with a gene expression
programming learner (time in MINULES).eeveerueeriereeeieeieesteesteeeeeeeeeseeseeseessesnseeseesseesnnas 77

Table 3-4: Benchmark results from intelligent optimization with an advanced generalized

neural network learning (time N MINULES). ...occueerieririiiieieie ettt e ens 77
Table 4-1: Major SOAP discover and register operations provided by a UDDI registry......... 122
Table 6-1: Common data types defined in OSgL.ccccceeieiirieiiiieieeeeeeeeee e 147
Table 6-2: Common function related types defined in OSgL..........ccocceiiiiiiiiiiiieniecee, 148
Table 6-3: Arithmetic operators in OSNL.cccveiieriiiiiieiieie e 169
Table 6-4: elementary functions in OSNL.cociiiuiiiiiiiii e 170
Table 6-5: Trigonometric functions in OSNL.ccccoiiiiiiiiiiiiie e 170
Table 6-6: Statistical functions that take a list of data in OSnL (indefinite types)................... 171
Table 6-7: Statistical functions that take two lists of data in OSnL (indefinite types). 171
Table 6-8: Probability functions (density, cumulative, inverse) in OSnL.ccccooeieennen. 172
Table 6-9: Terminals in OSNL.ccooiiiiiiriniiiiicee ettt 172
Table 6-10: Constants in OSNL.c..cooiiiiiiiiiii e 174
Table 6-11: Optimization related elements in OSNL.ccccovieiiiiinieninieiereeeeeeeen 174
Table 6-12: Standard logic and relational operators in OSnL.cccocceveieriiieriineeieneseenen. 176
Table 6-13: Extended logic and relational operators in OSnL.ccccevivieiinieiineniienenen. 177
Table 6-14: Special elements in OSNL.cccoovviiiiiiiiiiie et 178
Table 6-15: Typical data analyses on different optimization parts in OSaL.cccccceeeee. 201
Table 7-1: Operations in OShL.c.cooiiiiiiiie ettt 211
Table 7-2: Operations in OScL (currently only one)..........ccccoeeeviiririeninieienieeeeeeeeieeen 222
Table 8-1: Operations in OSjL (currently only one).ccoecuveviieiieiiiniiee e 249
Table 8-2: Operations in OSKL (currently only One).........ccceevveriercieicieenienie e e 250

Xvii

Table 8-3: Operations in OSdL (currently only One).........cccceeveveriieieniinienienieeeeeeeeeseeeeen 257

Table 8-4: Operations in OSVL (currently only 0Nne)..........ccoecuieiierieniiiie et 258
Table 9-1: Comparison between AMPL and OSmL.ccccveviiiviiniiiiiieieeeeeeee e 272
Table B-1: OSComMmON PaCKAZES.ccueriieiiaiieiiie ettt ettt ettt ettt 308
Table B-2: Sample classes in org.optimizationservices.oscommon.communicationinterface. 308
Table B-3: Sample classes in org.optimizationservices.oscommon.representationparser........ 308
Table B-4: Sample classes in org.optimizationservices.oscommon.nonlinear.c......... 309
Table B-5: Sample classes in org.optimizationservices.oscommon.algebra.c.ccccevuennee. 309
Table B-6: Sample classes in org.optimizationservices.osScommon.Util............ceceevveveeriennennen. 310
Table B-7: OSAZENt PACKAZES. ..o.veevieriieiiieiieeieeeie ettt eteestteete et et e seteeaaeeseesseesteesnneenseenees 310
Table B-8: Sample classes in org.optimizationservices.osagent.agent...........cccoevevvereeevereenneen 311
Table B-9: Sample classes in org.optimizationservices.0Sagent. Parser..........ccvveeververveervereeenes 311
Table B-10: OSS0IVEr PACKAZES.ccveiveeiieeiieiieeieeieerie sttt sreebeeraessaessaessseenseenns 311
Table B-11: Sample classes in org.optimizationservices.0SSOIVer.api.ocevevvevereeeeenuennens 312
Table B-12: Sample classes in org.optimizationservices.ossolver.locallnterface. 312
Table B-13: Sample classes in org.optimizationservices.osSOIVer.parser.c..ccceveerveneennee. 312
Table B-14: Sample classes in org.optimizationservices.ossolver.solver.ccocevcueeeenee. 312
Table B-15: Sample classes in org.optimizationservices.ossolver.problem.............cccccccuee.e.. 312
Table B-16: OSMOdeEIer PACKAZES.eccvierieiieriierieeie et et eite e sre et essaesebeseseesseessaessaenens 313
Table B-17: Sample classes in org.optimizationservices.osmodeler.api.cceecuereeeereeeneeenne. 313
Table B-18: Sample classes in org.optimizationservices.osmodeler.gui.cccceeveeecueennennee. 313
Table B-19: Sample classes in org.optimizationservices.osmodeler.modeler.......................... 313
Table B-20: Sample classes in org.optimizationservices.osmodeler.parser.cccceeueeene.. 313
Table B-21: OSANALYZer PACKAZES.cveervieriieiieeieeie et et siee et ee e e e seesenessbeesseesseeneas 314
Table B-22: Sample classes in org.optimizationservices.osanalyZzer.api...........ceceevereervenuenneen 314
Table B-23: Sample classes in org.optimizationservices.osanalyzer.analyzer.......................... 314
Table B-24: Sample classes in org.optimizationservices.osanalyZzer.parser.cceeeevervennen. 314
Table B-25: OSSimulation packages.ceeieriiriieiienie ittt 315
Table B-26: Sample classes in org.optimizationservices.ossimulation.api.cceceeeveeueennee. 315
Table B-27: Sample classes in org.optimizationservices.ossimulation.simulation. 315
Table B-28: Sample classes in org.optimizationservices.ossimulation.parser. 315
Table B-29: OSREZISIIY PACKAZES.eevveeeeieieiieiieiieiieiieereeveereerseessresreesseesaessaesssesssessseesses 315
Table B-30: Sample classes in org.optimizationservices.oSregistry.api.ooververeeeverrervenuennenn 316

xviii

Table B-31: Sample classes in org.optimizationservices.osregistry.parser.coceceeerverrennene 316

Table B-32: Sample classes in org.optimizationservices.osregistry.registry.........cccereeeueennee. 316
Table B-33: Sample classes in org.optimizationservices.osregistry.util.ccocceeeverreennennne. 316
Table B-34: Sample classes in org.optimizationservices.osregistry.web.cccceceereernenee. 316

X1X

INTRODUCTION

This doctoral thesis presents a general optimization system design introduced under our
new concept of Optimization Services (OS) along with its Optimization Services Protocol
(OSP). Optimization Services is a pioneering effort in building a unified framework for the next
generation of distributed optimization systems, mainly involving optimization over the Internet.
The phrase “next generation” emphasizes the fact that Optimization Services is a state-of-the-
art design and is not adapted from any existing system. Thus Optimization Services can be
regarded as a new Operations Research Internet. The corresponding Optimization Services
Protocol is intended to be a set of industrial standards. We are also developing our own system

according to this standard OS framework (see http://www.optimizationservices.org [92] or

http://www.optimizationservices.net [93]). Optimization Services is the first systematic

approach to addressing and solving general issues in optimization system and software
development. Optimization Services Protocol is the first approach to standardizing all major
instance representations and communications in distributed optimization systems.

Technically, the newly introduced Optimization Services framework is an XML-based,
service-oriented, optimization centered, distributed and decentralized architecture. The
Optimization Services Protocol is an application level networking protocol that includes over
20 specifications or sub-protocols of Optimization Services x Languages (OSxL").
Optimization within a local environment is treated as a special case. Therefore issues that exist
within a local environment are mostly addressed under the distributed case.

Although large-scale optimization has been a subject of research for over half a century
now, the challenge of making it useful in practice has continued to the present day. Initially, the
greatest difficulties were posed by solution computation and model building, but the primary
impediment to broader use of optimization models and methods today is now more of
communication. Currently there exists an abundance of optimization solvers, various formats to
represent optimization problems, and heterogeneous mechanisms to communicate with

optimization components. There are also plentiful research initiatives in developing supporting

! The third small letter “x” in the acronym can be replaced with any of the other 25 letters to represent a
concrete sub-protocol. For example, OSiL stands for Optimization Services instance Language, which is
an XML language for representing any optimization instance including general nonlinear programming.
OSxL is used in this thesis to generically mean all such concrete languages or sub-protocols specified in
the Optimization Services Protocol (OSP).

tools to analyze and benchmark optimization problems, and solvers. Moreover different
optimization components are implemented in different programming and modeling languages
and located on different platforms locally or all over the network. Even if a prospective user is
not to be puzzled by such a plethora of combinations, the trouble of obtaining, installing, and
configuring the Operations Research (OR) software does not justify the benefits from using it.
A wider level of collaboration to move toward some agreements is an imminent necessity. The
research in Optimization Services originated with the motivation to start a wider level of
cooperation to move toward a final standardization and facilitate a healthier development
environment for research and development in the general area of Operations Research and
Management Sciences.

The research in Optimization Services is technologically timely. In the areas of Computer
Science and Electrical Engineering, distributed technologies such as XML and Web services
are growing rapidly in importance in today’s computing environment and are already widely
accepted as industrial standards. It is our vision that by combining Operations Research and
modern computing technologies, Optimization Services will make a wider audience aware of,
and benefit from, an increasing amount of OR software that is implemented increasingly well.

The advent of Optimization Services is also timely with the current efforts undertaken by
the Operations Research and Management Sciences community to market the area as the
Science of Better, to promote practice and to create demand. Through standardization of
modeling representation, communication, discovery and registration, the framework provides
an open infrastructure for all optimization system components including modeling language
environments, servers, registries, communication agents, interfaces, analyzers, solvers and
simulation engines. The goal is that all the algorithmic codes will be implemented as services
under this framework and customers use these computational services similar to daily utility
services (therefore the name Optimization Services). Special knowledge of optimization
algorithms, problem types, and solver options required of users should be minimized. A supply
chain modeler, for example, should just concentrate on writing a good supply chain model.
Everything else that involves detecting the problem structure, finding the right solver, invoking
the software, solving the instance, providing the computing resources and presenting the
solution should be automatically taken care of by Optimization Services. It is the combination
of distributed system embedded intelligence, smooth coordination of all the tasks, and effortless
human involvement in the whole seamless integration process that makes Optimization

Services unique and significant.

A “service” is intended to serve customers. For Optimization Services, there are mainly

three categories of customers:

Application developers create and build system components such as modeling language
environments and solvers as part of a larger optimization system. The components together
take care of such generic functions as managing data, solving optimization problems, and
presenting solutions in a graphical interface. Optimization Services provides a set of
specific guidelines for application developers to implement their part of an optimization
system. The “state-of-the-art” design and the resulted standardization extensively and
drastically reduce the development time and effort for the developers while significantly
improving software and system design qualities. Application providers are the major
intended audience of this thesis.

Modelers work in a modeling language environment or in an environment provided by
some graphical user interface to build optimization models and get acceptable solutions.
From the perspective of Optimization Services, modelers are the immediate customers and
beneficiaries; they can now solely concentrate on building more robust models by letting
Optimization Services take care of the interfacing and solution parts. Modelers should not
read this thesis in detail, but they should be aware of what Optimization Services is and
how Optimization Services can benefit them.

Users run application packages that perform optimization at some stage through the
optimization system. Users are usually the ultimate customers of any optimization system.
With Optimization Services, users may not even realize that they are running optimization
system components such as solvers, although they are often aware of optimization goals,
such as minimizing costs or maximizing profits. Although not directly interfacing with
Optimization Services, users will experience higher quality performance and results from
of the application packages that they are using. Solutions are more likely and more quickly
to be found as the application developers now have a much wider range of optimization
resources to reply upon and modelers can concentrate on building better optimization
models that more accurately reflect the users’ business problems.

A side effect of Optimization Services is that although the OS framework is intended to be

an infrastructure for the area of OR/MS, the design concept and philosophy is general enough

to be learned and adopted by designers of distributed systems and architectures in many other

domains.

CHAPTER 1 INTRODUCTION TO OPTIMIZATION SERVICES

This chapter gives a general non-technical description of Optimization Services (OS) and
the corresponding Optimization Services Protocols (OSP). Optimization Services is a unified
framework for the next generation distributed optimization systems, mainly optimization over
the Internet. The corresponding Optimization Services Protocol is intended to be a set of
industrial standards. The phrase “next generation” emphasizes the fact that Optimization

Services is a state-of-the-art design and is not adapted from any existing system. It also

suggests that the OS framework fits well in the general picture of the “Future of Computing.”

1.1 Future of Computing — A General Background
Future of

GRID
Computing

JLDJ
@IZI

Wm;;.oﬁmw i
J = £]
|:| "._ Web Page and Service Server

o=
Womnen Works[allo(\ lri
. “IBLE COMPUTER

|
[NEOS

o (R =

|-| Workstatic m kamm"

g‘?}i’-—‘

Dl}rkstallu D‘

Workslatmn Workstation

IDLE COMPUTER

Compu\ting—‘-.,‘ USER

USER | ‘Complilting
¥ ' Socket mos Soa Socket
User Laplop
Laptop szt

Figure 1-1: Future of computing.

Figure 1-1 depicts a future computing framework in which semantic Web services and
software agents interact with each other. A “consumer” plugs his computer into a so-called

“computing socket” (or a wireless access point), which is presumably next to the electrical and

phone outlets. Computing then is solely viewed as part of the daily utilities that are
ubiquitously available (thus the coined name Optimization Services).

The corresponding utility or power company is the consumer’s application service
provider that rents computing power and resources and charges a monthly bill. As soon as the
consumer starts his computer, a network connection is instantly established. Software agents
will help find where the consumer’s requested services are, automatically, based on the request
time, the computing socket location, and the consumer’s own needs. The software agents are
themselves software services. The consumer is not aware of the existence of these agents.
“Computing power companies” keep registries of these agents and contact them on behalf of
the consumer. The consumer does not need to know which computer or grid of computers his
requested services are finally run, just as he does not need to know where his electric power is
generated or where the water flows in from.

To locate services, software agents usually coordinate with each other and with registries.
Some registries are general ones that keep information of all kinds of Web services, such as
Universal Description, Discovery and Integration (UDDI, see Chapter 4). Others are
specialized ones like the Optimization Services Registry (see Chapter 8) that only serves
registration and discovery of Optimization software. Facilities such as Condor [38][72] can
help in finding computers to provide idle computing power.

Admittedly most of these tasks could be achieved by an arrangement of customized
software tools using existing technologies, but that would be an enormous human effort. Think
of the early Yahoo search engine for Web pages with human categorization.

Listed below are the major components used to achieve the tasks described in the above
scenario. Some are mature enough to be commercialized, whereas others are still in different
research phases:

e Peer to Peer (P2P) [87]

* Software Agents [1][39]

* Ontology and the Semantic Web [18]

e Grid Computing [41]

e Embedded Web services [17]

Although it is true that many of the technologies already exist, it is the combination of
distributed system embedded intelligence, smooth coordination of all the tasks, and effortless
human involvement in the whole integration process that makes these scenarios significant. In
this case, think of the Google search engine[14], with its automated web crawlers and state-of-

the-art file storage design.

The above-mentioned lack of automation and heavy human involvement is true of the
current status of Operations Research (OR) software and system development. A lot of time is
spent in solving issues such as programming language compatibility, format compatibility,
interface compatibility, platform compatibility, and system compatibility. Although most of the
OR related tasks can be done by a combination of manual labor and custom tools using existing
OR technologies, the OR community needs a combination of software and systems with
embedded intelligence, seamless integration and no human involvement.

Our research in Optimization Services is also motivated by the fact that although large-
scale optimization has been a subject of research for over half a century now, the challenge of
making it useful in practice is still a problem. Initially the greatest difficulties were posed by
solution computation and model building, but the primary impediment to broader use of
optimization models and methods today is one of communication.

Currently there are many optimization solvers, various formats to represent optimization
problems, and heterogeneous mechanisms to communicate with optimization components.
There are also numerous research initiatives in developing supporting tools to analyze and
benchmark optimization problems and solvers. Moreover, different optimization components
are implemented in different programming and modeling languages and located on different
platforms locally or all over the network. Even if a prospective user is not puzzled by such a
plethora of combinations, the trouble of obtaining, installing and configuring the OR software

does not justify the benefits from using it.

1.2 Optimization Services (OS)

In the early history of solving the mathematical programs, the translation of an
optimization model to a format required by a linear program solver involved intensive human
labor and human labor alone. The first major attempt to provide an environment to help the
solution of a mathematical program was the matrix generator. A matrix generator is a computer
code that creates input in the form of coefficient matrices for a linear program solver. The task
of translation from the modeler’s form to the algorithmic code’s form is thus divided and
shared between human and computer. The task is shared because what the matrix generator
takes is not a modeler’s form. A modeler still has to convert a symbolic model to a special
instance representation and then the matrix generator code translates this representation to the
format that the solver desires. But the dominance of matrix generator continued to the early

1980’s.

Then there was a big breakthrough with the development of modeling languages (the first

major one being GAMS, see Figure 1-2), which entirely shifted the human labor of translation

to computer. In 1983, Robert Fourer articulated a contrast between the modeler’s view and the

algorithm’s view. He described new design considerations that would combine strength of

general, high level languages with special-purpose languages [45]. Modeling languages

introduced two key ideas: separation of the data from the model and separation of modeling

language from the solver. They addressed the issues of verifiability, modifiability,

documentability, independence, simplicity, and other special drawbacks of matrix generators.

As modeling languages began to be packaged with other auxiliary tools that assist in model

construction, people started to call them modeling systems.

1=
File Edit View Fawortes Tools Help “
GBack - = - (D fat s 23- [& S| QGeach [GFavoites G Media [YFoders €9 ¢4 | BN- B8 - 5] ¥
Addrezz |@ hittp: £ v, gams. com j @Go

[Home | Support | Sales | Solvers | Documentation | Model Library | Search | Contact Us |

HE
Welcome to the GAMS Home Page!

The General Algebraic Modeling System (GAMS) is a high-level modeling system for mathematical programming
problems. It consists of a language compiler and a stable of integrated high-performance solvers. GAMS is
tailored for complex, large scale modeling applications, and allows you to build large maintainable models that
can be adapted quickly to new situations.

« An Introduction to GAMS

« Documentation (including FAQ)
+ Contributed Documentation

+ Presentations, Books, Posters

« Download Current GAMS System
+ Download Older GAMS Systems
« Contributed Software

s Courses and Workshops
s The GAMS Mailing Tist and Newsletter

« Vigit onr Fiironean Weh Site
Internet

Figure 1-2: Home page of GAMS, the first major modeling language (http://www.gams.com).

It has become increasingly common to separate modeling languages and systems from

Go gle ~ ‘fnurer alex matrix generator j B Searchweh - o | Pamhark oo - Edoy

7

optimization solvers. In fact, the modeling language software, solver software, and data used to

generate the model instance might reside on different machines using different operating

systems. The next great leap forward happened in the mid 1990°s when large-scale
optimization was brought onto the Internet. The NEOS Server [29] for Optimization is the most
ambitious realization to date of the optimization server idea. A cooperative effort of over 40
designers, developers, collaborators, and administrators at the Optimization Technology Center
of Northwestern University and Argonne National Laboratory, NEOS provides access to
dozens of solvers. Modelers can submit problems with representations of many kinds and
through networking mechanisms based on nearly all major protocols.

By using distributed computing technologies such as XML and Web services, we envision
the Optimization Services approach as the next step in the evolution of optimization
technologies.

The Optimization Services framework is an XML-based, service-oriented, optimization
centered, distributed and decentralized architecture. By using Optimization Services Protocols,
Optimization Services enable OR software to integrate with partners and clients in a fashion
that is loosely coupled simple and platform-independent. In the next four sections, we illustrate
the Optimization Services framework from different perspectives — from the viewpoint of OS
as a framework for optimization systems, from the viewpoint of OS as a middle computational
infrastructure for Operations Research (OR), from the viewpoint of OS as a next generation
Network Enabled Optimization System (NEOS), and from the viewpoint of OS as the OR

Internet.

1.2.1 OS as a framework for optimization systems
Optimization Services is a framework that specifies how a set of cooperative classes and
interfaces should be designed and implemented in order to solve an optimization problem. The

Optimization Services framework has the following properties:

» It consists of multiple classes or components, each of which may provide an abstraction of
some particular optimization concept.

» It defines how these abstractions work together to solve an optimization problem.

» Its optimization-related components are reusable, which is what makes Optimization
Services a good framework, since it provides generic behavior that many different types of
OR applications can make use of.

» It organizes patterns at a higher level. By “pattern” we mean a tried and true way to deal
with an optimization process, from the whole context to the problem and to the final

solution that appears over and over again. Thus the adopted patterns in the Optimization

9

Services should be an effective means of communication between OR software developers,
therefore bringing order into chaos.

There are many definitions of a framework. In Appendix B, we list the classes and
interfaces provided by Optimization Services. Some may regard these as a framework, but
these are really a library. There is a key difference between a library and a framework. A
library contains functions or routines that an application or a user can invoke. A framework
provides generic, cooperative components that software can follow and extend. Figure 1-3
shows the difference between a framework and a library. The Optimization Services framework
provides a foundation upon which OR applications, software, and libraries are built, whereas an

OR library is a piece of software used by other OR applications.

COR OR CR

CR Application Software Library

|
|
|
|
|
Library |
|
|
|
|
|

Optimization Services Framework

OR Application, Software, Library

Figure 1-3: Difference between an OR library and the Optimization Services framework.

Figure 1-3 also shows that the Optimization Services framework, per se, is not a system. It
becomes a system (the dashed part in the figure) when implemented with the components
(applications, software, libraries) built upon the framework. All the components work together
to solve an optimization problem.

As an analogy, think of the Optimization Services as a constitution. A constitution itself is
really not a government or a court system. Rather it is a documented framework that specifies
the components and the nature of a government, its powers and responsibilities. Likewise
Optimization Services is a “constitution” that specifies how such optimization components as
modeling languages and solvers should be built and how they should interact with each other,
only that the OS “constitution” is written in the XML language. Some specific examples in this
“OS constitution” are specifications for the format of the instance output of a modeling
language or the process for discovering and invoking a solver.

Although Optimization Services is intended to be a standard framework, not a system, we

are also developing the optimization system according to this framework (see

10

http://www.optimizationservices.org [92] or http://www.optimizationservices.net [93]) and

building libraries for other people to put up their OS software and components (see Chapter 8).

1.2.2 OS as a computational infrastructure for Operations Research (OR)
Operations Research, as a branch of applied mathematics, has its foundations in

mathematics, computing and economic theories, on which basic tools in optimization and

simulation are built. We apply these tools to model problems in such areas as manufacturing,

distribution, finance, and marketing.

High Level Modeling
(Various Applications in Operations
Research and Management Sciences)

Data Mining & Al Planning & Financial Investment Games, Declslons, Marketing
Machine Learning Expert System Engineering Science Strategic Planning Research
Experimental & Manufacturing & Logistics & Supply Chain Enterprise Resource
Engineering Design Production Transportation Management Planning
Middle Infrastructure i S
aie Tfretrii Modeling Systems and
Interfacing, Networking, H . " H
Regisration, Discovery Optimization Services
Representation, etc.)
Mathematical | Computing | Probability & | Stochastic
X Programming | Technolot Statistics Simulation
Underlying Tools B 21 ol B —
{In Industrial and Applied Systen‘!s Organization Acgoulntmg Engmeerlmg Dec|5|o_n Game Heuristics
Math and Computing) Analysis Theary Principles Economics Analysis Theary
Computer MNumeric Stochastic Queuing Evolutionary Dynamic
Programming Methods Analysis Theory Algorithms | Programming

t ¢

Mathematical| Computing Economic
Theory Theory Theory

Foundation -

Figure 1-4: Positioning of OS in the hierarchy of Operations Research (OR).

Figure 1-4 shows a hierarchy of operations research activities. The highest level in the
hierarchy is concerned with modeling and is the part that directly interfaces to consumers who
use models for daily analysis.

The level of “Underlying Tools” comprises such core areas as mathematical programming,
stochastic simulation, and statistics. This level is typically regarded as what uniquely defines

Operations Research.

11

Optimization Services’ position is in the middle of the Operations Research hierarchy. It is
concerned with things like communication infrastructures, modeling languages and systems. It
is an interface part that bridges OR modeling with OR tools. When implemented smoothly, it is

the part that is not noticed by modelers or users.

1.2.3 OS as the next generation Network Enabled Optimization System (NEOS)

Y NEOS

Serverifor Opfimization

Figure 1-5: NEOS Server for Optimization at http://www-neos.mcs.anl.gov.

The NEOS server of the Optimization Technology Center of Northwestern University and
Argonne National Laboratory makes more than 50 solvers available through several network
mechanisms. Because the Server has evolved along with the Web and the Internet from their
early times, it is limited to some degree by initial design decisions and is facing growing
communication difficulties.

Optimization Services, with all the OR applications, software and libraries built upon the
OS framework, is intended to be the next-generation NEOS. It addresses many outstanding
design and implementation challenges faced by the current NEOS under the large-scale and
distributed optimization environment. For example, the benefit to the optimization community
of a common format for instance representation and an accepted application programming
interface (API) for solvers is clear. If modeling languages support a common format (addressed
by our Optimization Services instance Language — OSiL), and solvers support a common API
that operates on the instance format, then solver developers do not have to worry about
supporting multiple model formats and modeling language developers do not have to worry
about supporting varied solver input formats. As stated in the original National Science
Foundation (NSF) proposal [44] for this research, titled Next-Generation Servers for
Optimization as an Internet Resource:

“The planned research is motivated by a vision of a next-generation NEOS Server that
addresses outstanding challenges of communication in large-scale optimization. This work will
address design as well as implementation issues posed by standardizing problem
representations, automating problem analysis and solver choice, working with new web-service
standards, scheduling computational resources, benchmarking solvers, and verification of
results — all in the context of the special requirements of large-scale computational

optimization.”

12

Considering the fact that the NEOS Server has over the past decade shown significant
value in helping users of all kinds, Optimization Services can have widespread benefits to
practitioners inside and outside of the Operations Research community. The continuing goal of
Optimization Services as the next generation NEOS should stay the same as the current NEOS,
to “make optimization a part of the worldwide software infrastructure that supports science and
commerce.”

There is one fundamental difference between NEOS and Optimization Services. NEOS is
based on a tightly coupled centralized structure. All the solvers are connected with the server,
and all the optimization job requests have to go through it. Therefore, the system does not scale
well.

On the other hand, Optimization Services adopts a decentralized Service-oriented
Architecture (SOA, see Chapter 4). There is still in some sense a “central” server in the middle,
but it functions as a lightweight “registry server,” or just “registry.” Such a registry knows all
the solvers and other Operations Research software that exist in the whole decentralized system
by keeping metadata files. Metadata here means that the registry contains information about the
software, but not the software itself. No solvers are actually executed by this registry; instead
users directly contact the solvers in a peer-to-peer mode. The advantages of a decentralized
Service-oriented Architecture are significant and are elaborated throughout this thesis. The
Internet has become popular because it is a decentralized architecture. There is no such thing as
a “central repository server” that hosts all the Web pages. Development and maintenance all
happen spontaneously. It is our vision that a decentralized architecture can better promote

research and development in Operations Research.

1.2.4 OS as the Operations Research (OR) Internet
Optimization Services and the Internet are closely related because of the decentralized

architecture.

13

Web
Internet Pages
Browser
Intermet User | Socket :11::13'
VWeb Server
Search
Engine

Figure 1-6: A simplified sketch of Internet for purpose of illustration.

In order to “surf the Internet” (Figure 1-6), a user uses an Internet browser to view the
Web pages, which usually contain interactive links and forms. Clicking the links and filling in
forms are what we call the user inputs. In the scenario of Optimization Services (Figure 1-7),
the user is a modeler and his inputs are a model and the model’s data. Instead of the browser,
the modeler constructs the model in a Modeling Language Environment (MLE'") or in a
Graphical User Interface (GUI?) environment and instead of sending the model inputs to a web
server, the MLE or GUI sends the inputs to an OS server. The OS server hosts solvers rather
than Web pages (although Web pages can still be hosted along with the solvers on an OS
server). Although the Internet existed long before it became popular, the entertaining Web
pages were what made the Internet successful. The same can be said about Optimization
Services. Without the actual “contents” provided by the solvers, OS is just an empty skeleton

that can never be widely used no matter how well the skeleton is designed.

' Modeling Language Environment is more traditionally called Modeling System. In this thesis, we
prefer to use the term Modeling Language Environment and abbreviate it as MLE to avoid the potential
confusion on the use of the term “system,” because MLE is just one of the many components considered
in a more general Optimization Services system.

? The difference between MLE and GUI will be explained in www.optimizationservices.org (or http.

14

Modeling Sog;rs.'
Language Sotwead
Environment (MLE)
or GUI
Communication QSP
Modler agent OSxL

0OS Server

Optimization
Services
registry

Figure 1-7: Analogy between Optimization Services and the Internet.

To further apply the analogy, it is never the browser that contacts a web server. Rather the
browser opens a socket, and through the socket, the browser sends the request and waits for the
response. These all happen without the user’s knowledge. The exact equivalent of the socket in
Optimization Services is the communication agent. The MLE or GUI delegates the agent to
send an optimization instance to the remote OS server that hosts the solver. Like the socket, the
agent understands all the communication protocols in order to establish the connection. But
instead of using the HTTP protocol and sending/receiving HTML instances, the agent uses the
OSP communication protocol and sends/receives OSP representation instances.

Nowadays people heavily rely on search engines to find Web pages. The Optimization
Services registry serves the function of a search engine. But unlike the Internet search engines,
there has to be a unique registry in the whole Optimization Services system to ensure Quality of
Service (QoS). Communication agents always know where the registry is, as there is only one.
This registry has complete information of available services, as this is the only place that the
services can register. The OS registry will not be overburdened as no software is connected
through it.

When a certain query is sent to the OS registry, usually from an MLE or GUI, the OS
registry returns the locations of the found software and the MLE or GUI makes a peer-to-peer
contact with the software at the provided location. This discovery process is similar to the
search engine process, with the exception that everything in the OS system happens

automatically between the software components, without user interaction.

15

On the opposite side of the discovery process is the registration process. In the case of the
Internet, it is usually the search engine “crawlers” that automatically collect the contents of all
the Web pages. In the Optimization Services case, it is the OR software developer’s
responsibility to send the required information to, and get approved by, the OS registry,
possibly through a mixture of automatic and manual procedures. This is primarily due to two
reasons. One is that the quantity of OR software packages is not nearly large enough to be
crawled efficiently. A second, and more important reason, is that the requirement of QoS on the
OS registry is much stricter in order to ensure smooth functioning between OS components.
The mechanism of “wantonly” crawling and storing “unwarranted” things found on the

hyperlink paths degrades the Optimization Services.

1.3 Optimization Services Protocol (OSP)

A protocol is an agreed upon format for transmitting data between two devices, hardware
or software. The Optimization Services Protocol determines how optimization related data are
represented and communicated between two Optimization Services compatible software
components. Just like the Internet Protocol (IP), OSP can also be used by organizations sharing
private networks.

OSP is a rapidly evolving set of standards that consists of over 20 sub-protocols, all
described by an abbreviation of in the form of “OSxL”, meaning some Optimization Services x
Language. For example, OSiL stands for Optimization Services instance Language, which is a
language expressed in XML to specify the structure and format of general optimization
instances. As a core of the Optimization Services framework, OSP has great promise for the

world of Operations Research applications, optimization systems and distributed computing.

1.3.1 OSP as an application level protocol in protocol layering

In modern protocol design, protocols are “layered.” Layering is a design principle that
divides the protocol design into a number of smaller parts, each of which accomplishes a
particular sub-task, and interacts with the other parts of the protocol only in a small number of
well-defined ways. For example, one layer might describe how to encode text (with ASCII,
say), while another may detect and retry errors (with TCP, the Internet's Transmission control
protocol), another handles addressing (with IP, the Internet Protocol). Layering allows the parts
of a protocol to be designed and tested without a combinatorial explosion of cases, keeping

each design relatively simple.

16

As illustrated in Figure 1-8, the reference model usually used for layering is the Open
Systems Interconnection (OSI) seven layer model -- physical, link, network, transport, session,
presentation, and application layers from bottom to top. The Internet protocols (TCP/IP) can be
analyzed using the OSI model, even though TCP/IP has only four distinct layers -- network
access (e.g. Ethernet), internet (e.g. IP), transport (e.g. TCP), and application layers (e.g.
HTTP). All protocols layered above the HTTP protocol (e.g. SOAP, briefly described in the
next section) are also called application level protocols. Thus OSP, being a protocol based on

SOAP (Chapter 4), is classified as an application level networking protocol.

SF

Application |—s4p —fApplication
Presentation HTT# —Presentation
Session] Session

— FCF
Transport Transport

: Network
MNetwork P
Link | Link

— Ethernet :
Physical Physical

The 7-layer OS] Model The 4-layer Internct model

Figure 1-8: Layering of Internet protocols.

1.3.2 OSP as an interdisciplinary protocol between CS and OR

The Optimization Services Protocol is entirely based on SOAP'. Short for Simple Object
Access Protocol, SOAP is a lightweight XML-based messaging protocol used to encode the
information in Web service request and response messages. SOAP messages are independent of
any operating system or protocol and may be transported using a variety of Internet protocols,
including SMTP, MIME, and HTTP, although nearly always it is using HTTP. Generally, the

protocols under the network layer belong to the area of Electrical Engineering, and the

! More exactly, it is our implementation of the Optimization Services Protocol (OSP) that is entirely
based on SOAP. Theoretically OSP can be built on any networking protocol, but the XML nature of OSP
and SOAP make them a natural pair.

17

protocols above the network layer belong to the area of Computer Science. In this regard,

SOAP is naturally a Computer Science protocol.

GET fxtsservices/ColorBecquest HITES1. 0O
Content Length: 442

Host: localhost

Content—type: text,/ml; charset=uk f-5
S0APAction: "Sgetlolor"

HTTP header SOAF i usaully
<aoap: Envelope> wrapped under
HTTP
<soap:Body>

SOAP header —
QOSP Protocol:
String zolveString instance)

OSP content 1= input ztring instance fallos Ol
-- output string follow OSrL

<zoap:Body>
£y 3EEE Eme e EES

Figure 1-9: OSP inside SOAP, which, in turn, is usually inside HTTP.

Although SOAP defines a set of rules for structuring messages, it does not specify the
actual content of the messages. In that sense SOAP is a generic and domain-independent
protocol. OSP takes on the task of specification of the content in the domain area of Operations
Research. The nature of bridging protocols in two separate areas — Computer Science and
Operations Research — classifies OSP as an interdisciplinary protocol.

In an actual data packet, all the contents specified in OSP are inside a SOAP envelope. As
both OSP and SOAP are XML based protocols, this is equivalent to saying that OSP contents
are child elements of a SOAP parent element (Figure 1-9). For example, the Optimization
Services hookup Language (OShL) sub-protocol of OSP specifies that OS compatible solvers
should provide an invocation in the form:

String solve (String instance);
in which the input string “instance” has to follow the representation format specified by the
Optimization Services instance Language (OSiL) and the output string has to follow the

representation format specified by the Optimization Services result Language (OSrL).

18
1.3.3 OSP sub-protocols

There are mainly two categories of OSP sub-protocols, one that deals with representation
(Chapter 6) and the other that deals with communication (Chapter 7). All the sub-protocols
described in Chapter 8 - Optimization Services Registry, actually belong to either the
representation or communication category. Since the registry is one of the most significant
parts of Optimization Services and there are numerous corresponding sub-protocols, all the
registry related representation sub-protocols are listed separately in Chapter 8. Most of the
representation sub-protocols are specified in XML schema, a mechanism for defining a
vocabulary specifying the structure of XML documents (Chapter 4). Most of the
communication sub-protocols are specified in Web Services Description Language (WSDL,
Chapter 4), a mechanism to describe the technical invocation syntax of a Web service, such as
an optimization service.

The principle of the representation related OSP sub-protocols is that they concentrate on
content structure rather than presentation appearance, making the files more reusable and

leaving the visual details to the end-user software, like Modeling Language Environments.

Representation sub-protocols

Here is the list of names and brief descriptions of the OSP sub-protocols for

representations (non-registry-related) that are covered in detail in Chapter 6:

* Optimization Services general Language (OSgL) — definitions of general data structures
used by all other OSxL schemas.

* Optimization Services instance Language (OSiL) — a general optimization instance format
specification, including general nonlinear, constraint and logic, network and graph,
stochastic and other extensions.

* Optimization Services linear Language (OSIL) — reserved in honor of the original LP-
FML[53]. LP-FML is among the first XML initiatives to standardize linear optimization
instance formats.

* Optimization Services nonlinear Language (OSnL) — definitions of all the nonlinear,
combinatorial, and other nodes (e.g. operators, operands, etc.) used in other OSxL's, mainly
OSiL.

* Optimization Services result Language (OSrL) — a general optimization result format

specification, mainly outputted by solvers that can include analyses as well as solutions.

19

Optimization Services option Language (OSoL) — a general OR software option format
specification.

Optimization Services analysis Language (OSaL) — an optimization analysis format
specification of analyzer output.

Optimization Services simulation Language (OSsL) — a specification of input and output
format of a simulation engine.

Optimization Services transformation Language (OStL) — a standard transformation style

sheet used to present other instance representations.

Communication sub-protocols

Communication sub-protocols deal with the general areas of optimization access,

operations and flows. No mechanisms such as encoding and security are addressed in OSP.

OSP leverages the mechanisms provided by its underlying protocols, for example the encoding

scheme from SOAP and the security support from HTTP. Here is the list of names and brief

descriptions of the OSP sub-protocols for communication (non-registry-related) that are

covered in detail in Chapter 7:

Optimization Services hookup Language (OShL) — a description of how to hook up with
OS software, mainly solvers and analyzers.

Optimization Services call Language (OScL) — a description of how to call simulation
engines.

Optimization Services flow Language (OSfL) — an XML document of predefined standard

flows of optimization services invocations.

Registry sub-protocols

The following are registry-related representation and communication sub-protocols and are

covered in detail in Chapter 8:

Optimization Services query Language (OSqL, representation) — a specification of the
query language format used to discover the optimization services in the OS registry.
Optimization Services uri Language (OSuL, representation) — a specification of the
discovery result (in uri) sent back by the OS registry.

Optimization Services entity Language (OSeL, representation) — a specification of entity
information used to describe the static information of an optimization service (such as

name, type, and description).

20

* Optimization Services process Language (OSpL, representation) — a specification of
process information to describe the dynamic information of an optimization service (such
as number of jobs being solved).

* Optimization Services benchmark Language (OSbL, representation) — a specification of
benchmark information used to partly describe an optimization service.

* Optimization Services yellow-page Language (OSyL, representation) — a specification of
the organization of the registry database information.

* Optimization Services discover Language (OSdL, communication) — a description of how
to discover optimization services in the OS registry.

* Optimization Services join Language (OSjL, communication) — a description of how an
optimization service can join the OS registry.

* Optimization Services knock Language (OSkL, communication) — a description of how the
OS registry can “knock” on remote OS services to check their run time information.

* Optimization Services validate Language (OSvL, communication) — a description of how

the OS registry can be used to validate any OS instance.

A brief outline of the thesis follows. In Chapter 2, we describe optimization systems and
components in general. Any optimization system that is built on the Optimization Services
framework is called an Optimization Services (OS) system and the system components are
called OS-compatible components. In Chapter 3, we discuss two real world distributed
optimization systems. They initially served as motivations to the research in Optimization
Services. In fact, the implementation of Optimization Services is intended to be a next-
generation system of the first example -- NEOS. Chapter 4 provides the necessary background
on modern computing and distributed technologies in order to read the thesis. Chapter 5
formally introduces the concept of Optimization Services. Chapter 6, Chapter 7, and Chapter 8
describe respectively the representation, communication, discovery and registration parts of the
OS framework and the corresponding OSP protocols. Although Optimization Services is
intended to be a standard framework, NOT a system, we are also developing the Optimization
Services system according to this framework and building libraries for other people to put up
their OS software and components. A derived research product from the Optimization Services
is a modeling language that natively supports the OSP protocols. We generically named this
modeling language Optimization Services modeling Language (OSmL, see Chapter 9). Unlike
other OSxL’s, OSmL is the component that directly faces a modeler. So it is not intended to be

a standard. What is natural for one modeler may not be for another, so user flexibility is the

21

order of the computing world today. OSmL is invented to illustrate an original idea of
designing modeling languages and to facilitate the adoption of Optimization Services. We end
the thesis with Chapter 10 with a discussion of additional research and business models based
on Optimization Services. Appendix A lists some of the extensions of optimization
representations covered in Chapter 6. The design and implementation of Optimization Services

libraries are covered in Appendix B.

CHAPTER 2 OPTIMIZATION SYSTEMS AND COMPONENTS

There are different definitions of an optimization system. The chapter is not intended to
add another one. Rather our purpose is to describe the scope of the Optimization Services
framework and show the system components that are targeted in the OS framework’s
standardization process. We are mainly interested in the more general distributed optimization
systems. Optimization within a local environment is treated as a special case. Issues that exist
within a local environment are mostly addressed under the distributed case.

First we clarify certain terminology usage in this thesis. Most modeling language software
starts with a core modeling language along with a language compiler. Gradually the core
evolves to include other auxiliary software such as preprocessors and graphical user interfaces
(GUIs). By “auxiliary” we mean tools that Aelp in constructing, preprocessing and compiling a
modeling language, but not solving the model, which is the function of a solver. Modeling
languages are eventually packaged with solvers in distribution. The whole package is usually
called a modeling system. In this thesis, however, we stay away from using the term “modeling
system” to avoid its potential confusion with the more general optimization system shown in

Figure 2-1.

5. Server

;3. Instance Representations, or Registry

and Interfacas

™ 2. Modeling
Lioreas, | Longuage
[MLE dfa-} / Environment

N (MLE)

{ar Function
Evaluator)

Figure 2-1: A typical optimization system and component interaction.

22

23

Although a modeling package without any solvers is sometimes called a modeling system,

we call a modeling language without any solvers a Modeling Language Environment (MLE),

that is, a modeling language core with only auxiliary tools. An MLE is one of the components

in an optimization system. An optimization system contains most of the following components:

1.

Model. This is where a modeler starts. The model component differs from the rest of the
optimization components in that it is an abstraction of an input problem rather than a
physical piece.

Modeling Language Environment (MLE). The core of the MLE is the modeling language,
in which an abstract model is defined. The MLE helps in the implementation process. Often
a modeling environment may not have a modeling language, but just a spreadsheet or some
graphical user interfaces with implicitly defined models. We call it a GUI. From the
perspective of the general optimization system, the functions of MLEs and GUIs are the
same.

Instance Representation. An instance Representation is also called an instance. It is
generated by various optimization system components and exchanged among them. For
example, an MLE parses a model and generates a problem instance. This problem instance
is then sent to a solver to be solved. The instance component differs from other physical
components in that it is a data piece rather than software.

Communication Agent/Interface. A communication agent is also called an agent. Agents
are in charge of communication in a distributed system. No agents are needed in a local
environment, in which case interfaces and objects are instantiated in memory and methods
are invoked locally. Communication agents are used to send and receive instances. Instance
representations and communication agents are least visible to system users, although they
constitute the backbones of an optimization system.

Server/Registry. Think of a registry as a lightweight server for now. A server or registry is
the heart of a distributed system. An agent usually communicates with a server or a registry
before invoking a solver.

Analyzer. This is as an important auxiliary component in the whole system. Without
analyzers, an optimization system can potentially involve much human interaction. So
analyzers play a key role in an automated optimization system.

Solver. Being the real “contents” of an optimization system, solvers make the whole system

meaningful and are what users really need.

24

8. Simulation. Think of a simulation as a black box function evaluator. The simulation engine
may or may not reside with the solver. If the simulation is a simple function that stays
locally with the solver, it is usually called a function evaluator, a function pointer, an
evaluation routine, or an expression tree. In an optimization system, simulations are usually
invoked by a solver. Most of the optimization solver algorithms involve some iterative
schemes and each iteration may potentially involve an invocation of the simulation.

There may be many other components in the optimization system. We mention some of them in

the following chapters, such as problem libraries, and solver benchmarkers. However the above

eight components are the key ones. They are the main targets to be “regulated” by the

Optimization Services framework (Chapter 5). When all these components are built according

to the Optimization Services (OS) framework, we call them “OS-compatible,” and we call the

optimization system an Optimization Services system. Each of the components is explained in
detail in the subsequent sections.

The process of the optimization system in Figure 2-1 is self-explanatory. Typically the
process starts from a modeler who has a model (1) to be solved. He constructs the model in an
MLE (2). The MLE in turn compiles the model and generates an instance representation (3).
The MLE then delegates a communication agent (4) to send the instance to a solver (7). In a
local environment, where there is no agent, the link between 4 and 7 is an interface through
which the MLE instantiates the solver in memory. In a distributed environment, the MLE may
access the solver through a server or a registry (5), therefore the respective links between 4 and
5 and between 5 and 7. The communication with the analyzer (6) is similar to that with a solver
(7). The link between communication agent (4) and simulation (8) means that the agent may
call the simulation to get a function value, although in an optimization scenario, it is usually the
solver (7) that calls the simulation (8) iteratively.

As will become clear, the triangle between communication agent (4), registry (5) and solver

(7) will later evolve into the Service-oriented Architecture (SOA). The design philosophy of

SOA serves as the basis of our Optimization Services framework. A “service” is intended to

serve customers. For our optimization system, there are mainly three categories of “human”

customers:

* Application developers create and build system components such as modeling language
environments and solvers as part of a larger optimization system. The components together
take care of such generic functions as managing data, solving optimization problems, and

presenting solutions in a graphical interface.

25

* Modelers work in a modeling language environment or GUI to build optimization models
and get acceptable solutions.
» Users run application packages that perform optimization at some stage through the
optimization system. Users are usually the ultimate customers of any optimization system.
Modelers and application developers may see optimization in different ways. For modelers, a
mathematical program is an abstract representation to be analyzed and understood; for
application developers, a mathematical program is a concrete instance to be represented,
communicated and solved. Modelers benefit most immediately from innovations that help
people to choose and experiment with optimization software. Some application developers are
also modelers, while others deal mainly with the inputs and outputs of optimization models set
up by modelers. Users may not even realize that they are running optimization system
components such as solvers, although they are often aware of optimization goals, such as

minimizing costs or maximizing profits.

2.1 Model

In general, models are abstractions of reality. Although a model can take forms such as a
graph or a flow chart, the models we discuss in this thesis are mainly high-level mathematical
representations of problems that people find reasonably natural or convenient. The solved
models are often used to assist in decision-making, an essential principle of Operations
Research and Management Sciences. With the help of a range of quantitative techniques,
models are tested, manipulated, and hopefully solved. Thus the models must be accurately
formulated. For example, most of the time, the goals, the decisions, and the constraints of the
problem must be clearly defined. The term “mathematical programming'” is often used as a
synonym for “optimization” to mean the minimization or maximization of an objective function
of many variables subject to constraints on the variables. A typical example is a linear program,

miniglize cx
subject to Ax=h (2-1)
x=0

" The word “programming” was first used in the 1940’s to mean planning or scheduling of related
activities within a large operation; the necessary relationship to computer programming was incidental to
the choice of name. There is no direct connection between the two, although indirectly some computer
programming must be done in order to solve mathematical programs ://www.optimizationservices.net).

26

where x is an n -vector of variables, c¢ is an n -vector of objective coefficients, A is an

m x n matrix of constraint coefficients, and b is an m -vector of constraint right hand side

coefficients. The expression cx is called the objective function and the equations Ax = b are
called the constraints. Usually A has more columns than rows, and Ax = b is therefore quite

likely to be under-determined, leaving great latitude in the choice of variables x with which to

minimize cx . The expression of the math program can have many variations. All these affect

the design of a modeling language discussed in the next section.

* Language variation. People may state the model in a different language to mean the same
model. One common example would be using “s.t.” instead of “subject to.”

* Algebraic variation. A simplest example would be to use y instead of x to represent
variable vectors. Also in (2-1), instead of using Ax = b, we can use a double-sided
constraint b < Ax < b to express the same math program.

* Mathematical program type variation. The above example illustrates a linear math
program. We can have many more math program types by allowing different variable types
(continuous, integer, binary), function types (linear, nonlinear), constraint types
(unconstrained, bound constrained, generally constrained) and other special properties
(special objectives, special operators, special structures, special parameter, variable or
function behaviors). The analysis and categorization of optimization can be a daunting task
(Figure 2-2). Much effort has been dedicated to designing a good categorization of
optimization problems such as the one shown in Figure 2-3. A good categorization with
unambiguousness and practicality will facilitate automated analysis thus directing

optimization system development in a healthy and robust way (more in Chapter 6).

27

Mixed Integer

Mixed Integer Linear Nonlinear

Progr

Progr

Integer Unconsfrained

Progr Progr

Linear Nonlinear Least
Programming Combinatorial Squares, elc)

Progr
Network H Stochastic

Progr

Bound
Constrained

Nonlinear
IProgramming

Progr

Global
Optimization

labi
Optimization

Figure 2-3: NEOS Optimization Tree to help users manually choose connected solvers.

We described three types of customers of optimization systems. A modeler is the person to
formulate a model in a mathematical program. The modeler needs to express both what the
mathematical program is and how it relates to the situation being modeled. Models expressed in
mathematical programs should have the following common characteristics [45]:
¢ Symbolic. They represent most of the problem data by symbols, which are usually

mnemonic in nature.
¢ General. They can define an entire class of mathematical programs together, each

particular mathematical program corresponding to some choice of data.

28

* Concise. They describe a mathematical program nearly as briefly as possible, in such a way
that the description’s length depends on the complexity of the model rather than on the
quantity of data or on particular data values.

* Understandable. They present a mathematical program in a form that is easily read and
comprehended by people.

Different people have different preferences of expressing a mathematical model. The
Optimization Services framework is not intended to standardize the expression of the model at
the user or modeler level. The Optimization Services framework mainly regulates the
communication between machine and software components. In fact, through standardizing the
underlying communication, the Optimization Services framework promotes the flexibility for
users to express models differently with various modeling languages, as they will no longer be

limited by the choices of software due to interface compatibility issues.

2.2 Modeling Language Environment (MLE)

Modeling languages are a standard tool in the development of mathematical programming
applications. A modeling language environment is designed to help people formulate
mathematical programs and analyze their solutions. A modeling language environment takes as
input the above described “model,” and translates the model to the forms required by solvers
automatically. Figure 2-4 shows an example of the classic diet problem expressed in the AMPL
modeling language. The goal of a modeling language is to express a mathematical
programming problem in much the same way that a modeler does, which is to describe
mathematical programs in a readable and symbolic form, such as the familiar algebraic notation

for variables, constraints, and objectives.

set NUTR ordered;
set FOOD ordered;

param cost {FOOD} >= O0;
param f min {FOOD} >= 0, default 0;
param f max {j in FOOD} >= f min[j], default Infinity;

param n min {NUTR} >= 0, default 0;
param n_max {i in NUTR} >= n min[i], default Infinity;

param amt {NUTR,FOOD} >= 0;

minimize Total Cost: sum {j in FOOD} cost[j] * Buyl[jl:

subject to Diet {i in NUTR}:
n min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n max[i];

param: FOOD: cost f min f max :=
"Quarter Pounder w/ Cheese" 1.84

"McLean Deluxe w/ Cheese" 2.19

"Big Mac" 1.84

"Filet-O-Fish" 1.44

"McGrilled Chicken" 2.29

"Fries, small" .77

"Sausage McMuffin" 1.29

"1% Lowfat Milk" .60

"Orange Juice" .72 . .
param: NUTR: n min n max :=

Cal 2000 .

Carbo 350 375

Protein 55

VitA 100

vitcC 100

Calc 100 .

Iron 100 .

param amt (tr):
Cal Carbo Protein VitA vVitC Calc TIron :=

"Quarter Pounder w/ Cheese" 510 34 28 15 6 30 20
"McLean Deluxe w/ Cheese" 370 35 24 15 10 20 20
"Big Mac" 500 42 25 6 2 25 20
"Filet-O-Fish" 370 38 14 2 0 15 10
"McGrilled Chicken" 400 42 31 8 15 15 8
"Fries, small" 220 26 3 0 15 0 2
"Sausage McMuffin" 345 27 15 4 0 20 15
"1% Lowfat Milk" 110 12 9 10 4 30 0
"Orange Juice" 80 20 1 2 120 2 2 ;

Figure 2-4: The AMPL model and data on the classic diet problem (http://www.ampl.com).

29

30

A modeling language is, however, not a general-purpose programming language; rather, it
is a special purpose declarative language that expresses the mathematical programming model
in a notation that computer system can interpret. Be aware that there are modeling languages
for other areas in Operations Research, such as simulation, statistical regression and differential
equations. But mathematical models in these areas tend to have a fairly small number of
equations that may be written out in full without undue effort.

Mathematical programming models, by contrast, are almost always too big to be
represented without symbolic combinatorial devices, such as index sets. Modeling languages
for mathematical programs are consequently somewhat harder to design and implement.

In general, any modeling language for mathematical programs must satisfy two opposing
sets of requirements. One set is imposed by the needs of customers discussed early in this
chapter and the other by the nature of computers. Customers want a modeling language that is
easy to use and to understand. Thus a modeling language needs to enforce an organization and
terminology that modelers find convenient and natural.

Computer systems, on the other hand, require a modeling language that can be processed
and translated at reasonable cost. Above all, this means that the specification of a modeling
language — both syntax and semantics — must be unambiguous and not overly complicated.
Additionally, the language’s notation must be simple and precise enough to be read, stored, and
printed by machines. A practical modeling language is a compromise between the above
requirements. In principle this compromise can be carried out in many ways, and workable
modeling languages are designed in many ways. For example, in general, a flexible and
powerful modeling language is most logically based on a variable-and-constraint (row-wise)
form. However, a modeling language can also be derived from any activity-and-requirement
(column-wise) modeler’s form with no greater difficulty. There are other attractive forms for
more specialized applications; as an example, a modeling language for network linear programs
could be based on a node-and-arc form of description.

A modeling language is the core of a modeling language environment. The most important
module in an MLE is a compiler that translates a model into an instance. Among the other
auxiliary software modules are graphical user interfaces (GUIs) (e.g. Figure 2-5) and
preprocessors. MLEs usually lead to more reliable application of mathematical programming at

lower overall cost.

31

) Data Reconciliation Demo M =15=]

File Edit Wew Data Run Settings Tools Window Help

|

I eEZMMEBPMO L EEHERR K

Model

! it Composition ComponentFlow ‘ CompositionsaddUpToCne b x
DataReconciliationModel

Q Input Data Type Yariahle X E ﬁlﬁl&l*ﬁl v | | |]o| @i

£\ Reconciliation Madel Identifier #] ComponentFlow

" Flow Variables Index domain ﬁ (f,c in MappedFlowComponents(f))
= Camponent¥ariables and Constraints Text

Compasition(nmf,c) Range # nonnegative
ComponentF oy Unit ﬁ Muol/h
CompositionsAddUpToOneinm) Default
Process Unit Balances Property ﬂ
MassHalance(pl) Nonvar status 4
CompaonentBalance(pu,.c) Definition Composition (MappedFlow(£),c) * Flow({f) / MolarFlowMass (MappedFlow(f))

H- Reactar Unit Variables and Balances
7 & Emironment Balances

7 & Error Cantral

+ 2 Flow Errors

7 & Composition Errors

ZI--- Recanciliation Programs

- [P] InitializeModel

[Pl SalveTheWadel

- @ Relative Error Support

G- @ Checks for Measurement Redundancy
- @ GLI support
&
B

e [e [[[[

- @ Reporting Support
- @ Example Initialization

X Mods! Explorer % Identifier Selector Comment |The component flow of component c© in flow £

|Data Reconciliation.prj |F\ct.Case: | V READY A

Figure 2-5: AIMMS Modeling Environment with model explorer and property windows

(http://www.aimms.com) .

Common alternatives to algebraic modeling language environments include spreadsheet
front ends to optimization, and custom optimization applications written in general-purpose
programming languages that are usually equipped with some GUIs. Matrix generators may be
used behind the GUISs to generate optimization instances.

In the Optimization Services framework, the MLE is required to output an instance in
Optimization Services instance Language (OSiL, Chapter 6). Also if the MLE is to invoke OS
software on a distributed system, it must either carry out the communication following exactly

the OS communication protocols or invoke an OS agent to do the job instead (Chapter 7).

2.3 Instance Representation
If a model is to express a mathematical program in a modeler’s form, an instance
representation is to express it in a computer algorithm’s or solver’s form. These two forms of

mathematical programs are not much alike. Most applications of mathematical programming

32

involve translating one form to the other and communicating the translated form to other

system components through some complex interfaces.

There are three main reasons we emphasize the roles of instance representations and later

interfaces (or agents in a distributed environment):

Regular users and modelers (as versus developers) do not see low-level representations and
interfaces. But in certain situations, awareness of low level operations helps make more
appropriate judgments and decisions.

The low level representations and interfaces are the biggest obstacle for the development of
optimization in the Internet age. A good design of a low level component is essential for
efficient and effective communication between different optimization system components.
This is the key to building a simple, standard, scalable and smooth system infrastructure.
The principal advantage of an instance representation as a separation between a modeling
language environment and a solver lies in its flexibility. Writing software for interfacing, or
drivers, does not require access to proprietary information about either the MLE or the
solver. Thus the writing of drivers is encouraged. Some may be written by a modeling
language developer and others by a solver developer. Driver source code can be made
public, providing useful examples for writers of additional drivers.

Upon receiving a “solve” request from the modeler, the modeling language environment

compiles the current high-level model/data into a particular low-level’ optimization problem, or

instance representation, in a format that has been designed to be flexible and easy to be parsed

to the input data structure required by a solver. Such a generic process is described in Figure

2-6.

Madel!Solvar
Parser
Interface

Modeling
Language
Enviranmeant

MModelData Instance Data structy

Solver

Compile Parse Solve

Figure 2-6: A generic process of instance generation and parsing.

" In this thesis, we mean the low-level instance representation when we simply say representation or
instance.

33

Without the modeling language environment, a modeler must formulate his model directly

in an instance representation, which is tedious and difficult to understand and adapt to similar

models. Instance representations are distinctly different from models expressed in mathematical

programs [45] in that they are:

* explicit rather than symbolic — they incorporate numerical problem data directly in the

model;

» specific rather than general — they describe just one particular mathematical programs;

* redundant rather than concise — they describe a mathematical program more extensively

than necessary, and the length of their description depends on the number and size of the

data values;

* convenient rather than understandable — they organize a mathematical program so that it

can be stored and operated upon most efficiently by the computer.

There are many acceptable instance representation formats just as there are many modeling

languages. Table 2-1 lists different optimization types and major corresponding input formats.

Many solvers also take binary inputs directly from general programming languages such as C,

C++, Java, Matlab and FORTRAN. The Optimization Services instance Language (OSiL) in

the OS framework supports all the major optimization types.

Linear Programming
Quadratic Programming

Mixed Integer Linear Programming

MPS, xMPS, LP, CPLEX, GMP,
GLP, PuLP, LPFML, MLE

instances

Nonlinearly Constrained Optimization

Bounded Constrained Optimization

Mixed Integer Nonlinearly Constrained Optimization
Complementarity Problems

Nondifferentiable Optimization

Global Optimization

MLE instances

SIF (only for Lancelot solver)

Semidefinite & Second Order Cone Programming

Sparse SDPA, SDPLR

Linear Network Optimization

NETGEN, NETFLO, DIMACS,
RELAX4

Stochastic Linear Programming

sMPS

Stochastic Nonlinear Programming

None

Combinatorial Optimization

None (except for TSP input, only

intended for solving Traveling

34

Sales Person problems.
Constraint and Logic Programming None
Optimization with Distributed Data None
Optimization via Simulation None

Table 2-1: Major optimization types and corresponding input formats; Optimization Services
instance Language (OSiL) supports all the listed optimization types.

As seen in Table 2-1, there is not a widely accepted format for nonlinear programs. Solvers
usually take the instance generated from a modeling language, and use the library provided by
the MLE to parse the instance. Also many optimization types do not have any standard format.

One widely used format for representing linear and quadratic math programs is the MPS
format that originated from IBM. See Figure 2-7 for the MPS representation of the quadratic
program in 2-2.

minimize - x, + 1/ 2(2x -3 x, +4x] +5x0))
subject to i 4+ Tx, —8x, 20
mnalxzlxz0

NAME gpEx
ROWS
N obj
G «cl
COLUMNS
x1 cl 6
%2 obj -1
x2 cl 7
%3 cl -8
RHS
rhs cl 9
QSECTION obj
x1 x1 2
x1 %3 -3
%2 X2 4
x3 %3 5
ENDATA

Figure 2-7: MPS representation of the quadratic math program in 2-2.

The original MPS only supported pure linear programming. The QSECTION in Figure 2-7

for quadratic programming was added in a later MPS extension. The reason that MPS has

become widely accepted is not due to its flexibility or powerfulness. In fact, MPS was

originally set up by an IBM user group for data representation using punch cards. It remained

the only choice for decades until the 1980’s. MPS already falls behind the current needs of

operations researchers. Nowadays, many outdated formats like MPS and LP, mainly serve for

35

submitting bug reports and for communicating benchmark problems. Optimization systems use
much more general and efficient formats for communicating problem instances to solvers and

for retrieving results.

2.4 Interface/Communication Agent

The instance representation created by a general-purpose modeling language environment
is usually not directly input into a solver. Instead the instance is sent through an interface, a
driver that converts between the generated instance and the data structures required by the
solver (Figure 2-6). Each solver for a modeling language environment has its own driver,
tailored to its particular requirements. The driver handles a variety of solver-specific
information. The most important tasks are the processing of instance representations, handling
of algorithmic directives (or “options”), evaluation of expressions at given points, and
generation of solution reports (or “results”).

In the case of the AMPL modeling language environment, the AMPL language compiler
converts the current problem instance to an AMPL “.nl” format, which is specific to AMPL,
but not used by other MLEs. Each solver’s AMPL driver transforms this representation as
necessary, passes the transformed instance to the solver itself, and retrieves the reported
solution. Finally the driver converts the solution information to a “.sol” result format that the
AMPL language environment is able to read and present to the user. The interfacing process is

illustrated in Figure 2-8.

AMPL Mocel AMPL AMPLICPLEX | CPLEX Data structure
Modeling Interface CPLEX Salver
AMPL Pregentation | Environmeant 50l result Library CPLEX Solution
Compile Parze Solve

Figure 2-8: Interface between AMPL and CPLEX solver.

Optimization models are usually developed in the context of some larger algorithmic
scheme or application. The ability of optimization software to be embedded through smooth
interfaces is often a key consideration. Although most optimization software packages are built
to be run in stand-alone mode, many are available in callable library form, and an increasing
number can be accessed as class libraries in an object-oriented framework. Solver systems have

long been available in this form, with the application-specific calling program taking the place

36

of a general purpose modeling language environment. Modeling language environments have
gradually also become available for embedding (Figure 2-9), so that the considerable
advantages of developing and maintaining a modeling language formulation can be carried over
into application software that solves instances of a model. Unfortunately, due to lack of

standards, each interface requires a different implementation. Needs for standardization are

receiving increasingly serious attention.

7 Maximal Software - Dptimization Modeling - Microsoft Internet Explorer _[Olx]
File Edit View Favoies Took Help -
<= Back - <} @b 88- [3 & OiSearch [Favoites @fMedia (4 Folders €9 <3 - A - 5] W

Address [&] bt/ mkimalusa. com -] @60
Google ~ [mps masimal | Bpseachwen - 5D | PRk o - [Options & >

MAXIMAL SOFTWARE, INC.

Optimizing Business Applications

W% The MPL On-Line Tutorial goes International!

About Maximal

The MPL for Windows Tutorial is now available in German, Spanish, and Italian. We hope that

MPL Modeling System this will enable our Geerman, Spanish, and Ttalian speaking users to learn MPL in their native 7
language. As this is still relatively new we ask your assistance in correcting any mistakes in the
OptiMax 2000 translation by emailing us with updates and corrections to info@maximalsoftware.com.

Our tutorial is specifically designed for teaching optimization modeling the way it is currently
MEROERERTGTE] being applied in the corporate world. Included is a complete course, featuring MPL, with all the
supporting tools needed to teach optimization modeling to your clags. All the software required
for the course is also available, free of charge, as a download from this web-site, allowing you
to introduce MPL for Windows into your classroom.

MPL Model Library

MPL User Manual

Download Software ¢ Introducing the Innovative OptiMax 2000 Component
Request Information lerary

Tech. Support (FAQ) The innovative Optifvax 2000, an object oriented component library, is revolutionizing how
optimization modeling is applied to solve business problems. OptiMax 2000 is specifically
designed to embed MPL models into object-oriented programming languages such as Visual
Basic, VBA for Excel and Access from Microsoft Office, C/C++, Java, Delphi, as well as many
web-gcripting languages. This bridges, for the first time, the gap between model developers,
whose expertise lies in developing models, and IT professionals, whose focus is mainty working
Slide Presentations on databases and building end-user applications. Embedding large-scale optimization models
into business applications, quickly and easily, is now a reality!

MPL On-Line Survey

Conference Schedule

Links to O.R. Pages

El

&1 ® Intemet
Figure 2-9: MPL Modeling Language's component library for embedding in larger applications

(http://www.maximal-usa.com).

In a distributed system, the generic process illustrated in Figure 2-6 needs the addition of a
communication agent as shown in Figure 2-10. The separation of an instance from a model
provides the valuable flexibility needed by the agent. Once a modeling language environment
has translated a model and data to an instance, the MLE delegates further solver invocation
process to the agent. The agent in turn sends the instance to the solver side through complex
networking mechanisms. The agent knows everything about how to invoke a remote solver,

which arguments to pass, and in which input formats to write the arguments.

it Madaling Instance
e Dt Language Parser
Environment Interface
Instance

Compile network | Parse

Figure 2-10: A generic process of instance generation and parsing.

Notice that the instance parsers usually reside together with the solver for purpose of
computational efficiency. The communication between the two can be highly iterative, such as
sending function and gradient values at each iteration.

The solution-finding process runs independently of the MLE. Thus the MLE developers
can concentrate on high-level language design and parsing and the agent developers can
concentrate on low-level communication. The communication can involve both distributed
networking and invocation of local drivers. In either situation, the MLE and the agent do not
need to remain an active process to wait for the response while the solver is running. For an
MLE to retrieve a job result later, some mechanisms need to be established to keep the
networking “stateful,” i.e. matching a request from a later period (e.g. retrieval) with a request
from a previous period (e.g. job submission).

The separation of communication agent also allows the agent to be used not only by MLEs
but also others components in the optimization system. This is a key in the Optimization
Services framework as many components can potentially be clients of others. For example a

solver can be a simulation client to request function values from the simulation (see §2.8).

2.5 Optimization Server and Registry

In the mid-1990s, developers of optimization software began to use Internet services so
that their users could try their software without installing it on their local computers. The initial
optimization servers tended to use email or ftp to move problem files in one or both directions,
with the associated Web pages advertising and explaining the service. Designs soon evolved to
make use of Web Wide Web forms that were integral parts of server operations. The NEOS
Server [29] for Optimization is the biggest and most successful realization to date of the

optimization server idea. More is discussed in Chapter 3.

38

For the optimization servers, people’s main interest is in the server side. The client is
generally a browser (or a “thin” client) that sends problems and receives results via ordinary
Web pages. Data are represented in HTML and sent through HTTP, while the server-side
connections to solvers are usually via such mechanisms as Common Gateway Interface (CGI)

scripts (Figure 2-11).

Data in HTML
Thin Client Communication via HTTP Optimization
(browser) Sener

Figure 2-11: A typical optimization server with a “thin” client.

Technologies are needed to balance the work between client and server while maintaining
or improving the quality of the client-server communication. For example more recent
optimization servers (e.g. NEOS Kestrel [28]) allow model building on the local machine
through a modeling language environment (or a “thick” client) and let the MLE conduct
communications via such remote procedure call mechanisms as CORBA or XML-RPC. Such

arrangements offer the greater stability and portability of established standards, together with

the advantages of an object-oriented design (Figure 2-12).

Data I instance generated by MLE

Ehidqdcr-ient Cemmunication via CORBA or BEREG Optimization

maceling Server
language

erviranment)

Figure 2-12: An optimization server with a “thick” client.

However, the fundamental server side architecture remains the same, and a user stills
needs to access the optimization software through the optimization server. Therefore, an
optimization server needs some way to protect itself from requests that can soak up all available
resources. Some improvements have been achieved through different means. For example a
time limit or a charge proportional to resource usage is sometimes imposed, but these
mechanisms may discourage the use of an optimization server. More flexible strategies are

implemented to take advantage of prior experience with different problems and solvers. One

39

such strategy is to build a database of solver performance that can be automatically updated as
optimization requests are carried out. An adaptive scheduler can then employ information from
the database, together with specific customer preferences, in making initial allocations of
computing resources to requests. For long-running jobs, such a scheduler can also monitor
performance and take simple actions, such as increasing or decreasing a job’s priority, moving
a job to a faster or slower machine, suspending a job while querying its owner for instructions,
and terminating a job.

The above strategies only achieve marginal improvements. A fundamental alternative to
the traditional centralized optimization server is to replace the server with a “middle man” not
to carry out the optimization jobs, but to provide connection information between clients and
solvers.

The optimization Services framework takes this next step and introduces the concept of an
optimization registry (Figure 2-13). An agent first contacts the registry for location information
about solvers. Upon response from the registry, the agent takes a second step to contact the
solver in a peer-to-peer mode. In both steps, data representation and communication follow the
Optimization Services Protocol (OSP). Such an arrangement alleviates the burden of any
traditional optimization server. Another direct result of the decentralization is that solver
providers will correspondingly assume a more independent role to compete for customers’
business. We envision decentralization as the future in distributed optimization for it provides
an encouraging environment for the development of optimization systems and components. The

Optimization Services registry is described in detail in Chapter 8.

Optimization

Thick Client Registry

[modeling
language
ermdranment)

Figure 2-13: The optimization registry architecture.

40

2.6 Analyzer

Programming languages such as C++ or Java are equipped with supporting tools, e.g.
debuggers, in their corresponding integrated development environment (IDE"). Similarly
analyzers are traditionally viewed as auxiliary components of a modeling language
environment (or what we abbreviated as MLE?). They can be used in a preprocessing or a
presolve phase of an optimization before the final instance is sent to a solver. If an optimization
model is easy enough, it can potentially be solved by an analyzer without sending to a solver.

As shown in the Optimization Services framework, mainly with the introduction of the
optimization registry and the corresponding discovery mechanism in a decentralized
optimization system, analyzers become a highly integrated and critical part of the whole
framework. The output of an analyzer can be used by a solver query engine to locate the
appropriate solvers for the model analyzed by the analyzer. So unlike other auxiliary tools
provided by a modeling language environment, analyzers are treated as a separate system
component.

Conventionally, a solver query engine could communicate directly with modelers. But its
usefulness would then depend on the willingness and ability of modelers to give correct lists of
characteristics for the problems they want to solve. If problem characteristics could instead be
automatically extracted from the modeler’s submissions, the query engine could operate much
more automatically and reliably. So as a basic requirement, analyzers should be able to detect
the optimization types of a problem instance. If the format of an instance is well designed, in
many cases conclusions can be immediately drawn by looking at the structure of the instance.
For example if the instance format is separated into distinct linear and nonlinear parts, and if
the analyzer does not detect the nonlinear part, it follows that the problem is a linear program.
Figure 2-14 shows a basic mathematical program analysis report from the MProbe Analyzer

[18], most of which can be detected by parsing the instance without further computation.

! An example of an IDE is Microsoft Visual Studio.
? The creation of the acronym “MLE” is related to the fact that people use “IDE” to stand for integrated
development environment.

41

~—Wariables — Constraints

wariahles (tatal) Caonstraints (total)
Feal £
Binar: I:I Inequalities
Other integers Fanges

Equalities

—Objectives SIS

Ohjectives (total) Inequalities
Lisre Ranges [9
QR) Equelities
Cither nonlinear e

Inequalities

~Nonzeros

: 3 Fanges
In ohjectives I:I =
In constraints Equalities

Help Close

Figure 2-14: MProbe Analyzer’s basic analysis report.

For more advanced details, analyzers usually require further computational work such as
studying nonlinear functions to discern their shapes in a region of interest. Such information is
often crucial in finding the best-fit optimization solver. Again for these more advanced
structure detection, there are problem characteristics that can be unambiguously determined by
fast algorithms (e.g. network flow problems, quadratic problems) and there are more difficult
ones that cannot be analyzed in an efficient and completely certain way (e.g. convex/non-
convex problems). If the analyzer is used as a standalone tool, user interaction can help
throughout the analysis process. But in the context of an optimization system, an analyzer is
used as an intermediate procedure in a computerized process. There is no user available for
extra input or hints. We want to make an automatic determination of problem characteristics,
and of solver choice based on those characteristics. Tradeoffs between speed and reliability
should be carefully considered.

From the Optimization Services framework perspective, there are more requirements on
the analyzers in terms of communication with other components. For example, after a modeling

language environment converts a model into an instance, the MLE will likely send the instance

42

to the analyzer before contacting a solver. So the analyzer should take the same instance as any
solver on the optimization system.

After an analysis is carried out, the analyzer’s output is converted into a query that feeds
into an optimization registry’s solver search engine. Such a process requires a standardized
analyzer output that can be converted into the query understood by the registry. An OS-
compatible analyzer should take OSiL as its input and generate output in OSaL, the
Optimization Services analysis Language. See Chapter 6 for more information on these

representations.

2.7 Solver

Optimization solvers, or solvers, are algorithms designed and implemented to find optimal
solutions to specific optimization problems. A solver takes a low-level instance of an
optimization problem and produces another low-level representation of the optimization result.
Any solver on an Optimization Services system should take the Optimization Services instance
Language (OSiL) as its input and generate the Optimization Services result Language (OSrL,
see Chapter 6) as its output.

A solver, however, does not usually carry out computation directly on the instance
representation. Rather an instance reader parses the input into the internal objects or data
structures required by the solver’s algorithm. Optimization Services provides libraries for
reading the standard OSiL input (OSiLReader) and writing the OSrL output (OSiLWriter), as

shown in Figure 2-15.

QSiL input instance

QS resull instange

0SilReader OSil\Writer

solver class

This is usually &n L
expression Tree J

objects or data
structures
created by
OSiLReader

and accepted
by solver class

Figure 2-15: A generic input and output process of an Optimization Services compatible solver.

43

Not only there are optimization solvers of many types, there are also usually large
differences between solvers of similar types in performance in terms of speed, numerical
stability, and adaptability to computer architectures. As solvers are the ultimate need of an
optimization system user, the quality of the solvers directly determines the success of the entire
optimization system. This is especially important in a decentralized and automated architecture
like Optimization Services. To ensure that the OS registry only send addresses of the solvers
that are of reasonably high quality, regulations are imposed when an OS-compatible solver is to
be registered in the OS registry. Special OSP protocols are also designed to make sure a solver
is well-described, live, reliable, and robust. Information about solvers that is kept in the OS
registry includes:

* entity information that is reported by solver developers at registration., e.g. solver types,
solver locations, maximum problem size (Optimization Services entity Language, OSeL,
see Chapter 8);

* option information that is reported by solver developers at registration, e.g. algorithm
directives like maximum time, output listing (Optimization Services option Language,
OSoL, see Chapter 6);

* real-time process information that is either automatically reported by the registered solver
software (“push”) or detected by the OS registry (“pull”), e.g. whether the solver is live
online, how many optimization jobs are in the solver queue (Optimization Services process
Language, OSpL, see Chapter 8);

* benchmark information that is produced separately by auxiliary software tools designated
by the OS registry, e.g. general solver ratings (Optimization Services benchmark Language,
OSbL, see Chapter 8).

Solver development in some areas like stochastic programming is lagging due to the lack of

a good representation. It is the hope of Optimization Services that by introducing a set of

universal standards, the project can help facilitate solver development in such areas.

2.8 Simulation (Function Evaluator)

A conventional iterative hill-climbing or evolutionary searching algorithm such as the
Newton-based nonlinear optimization method generates a series of trial solutions, or iterates,
and requires the values of the nonlinear objective and constraint functions only at each
iteration. These nonlinear solvers typically require a user routine, in a programming language

such as C or Java, that takes an iterate as input and returns the corresponding objective and

44

constraint function or derivative values as output. We call such routines function evaluators.

The calling conventions for user-supplied function evaluators differ from one solver to another.

The function evaluators are called repeatedly throughout the optimization process and directly

affect the speed of the employed algorithm.

Usually function evaluators reside locally with the solver that calls them and there are
explicit mathematical formulas for the objective and constraint functions. In reality, such
requirements cannot always be met due to reasons like the following:

* Function evaluators are coded in some general software, usually called a model service that
calculates function values as well as doing other things. It is possible that the final objective
and constraint functions consist of calculations from multiple model services.

* Many model services are located remotely. Local copies cannot be easily duplicated due to
various reasons. For example, the model service may be tightly coupled with a database
system.

* Some model services are so complicated that no simple mathematical representation can be
formulated.

* Some of the model services are proprietary and thus their formulas cannot be revealed.

* Most importantly, some model services do not return results instantaneously. The delays
make it difficult to integrate the model services into the optimization solver.

In situations like these, we refer to the function evaluators as simulations.

Optimization via simulation (or simulation optimization) is usually thought of as
optimization over performance measures from outputs of stochastic simulations. But the
simulations that we refer to here can be deterministic as well. As a matter of fact, from the
Optimization Services framework point of view, function evaluators that specify a set of inputs
(can be none), a set of outputs (at least one), and the invocation address are considered a
simulation as illustrated in Figure 2-16. The function form is usually hidden inside the
simulation. We also call such simulations as “black-box simulations,” and call optimization via

simulation “black-box optimization.”

L J
Y

input » Simulation » output

address

Figure 2-16: Three requirements of a simulation: input, output and address.

45

If a model requires an optimization via simulation, the simulation function has to contain
information regarding the three required components, and it is the modeling language’s job to
provide natural features to support simulation definitions.

In an optimization problem, an objective or constraint function is of the

form y = f(x,,x,, -+, x,,, where the function input is a vector and the function output is a

single scalar (R" — R). Our simulation box in Figure 2-16 is more general than a function
since the simulation can have multiple outputs (R” — R™). So a modeler has to specify which
output or combined value of several outputs is to be taken as the function value (y).

For example suppose the objective function in (2-3) cannot be written in a closed form.

minimize x] + 2x;
’ (2-3)
subject to 2x, +3x, 29

X, 20,x,20

Instead the function is calculated from the simulation at the address

http://somesite.com/mySimulation. The black box simulation — “mySimulation” — at this site

looks like the schema shown in Figure 2-17.

8 ——— | mySimulation |
iy —
(with hidden Ve

— B
b calculation:

.
a?tbec?) confidence

hirp:fsomesite cony'myS imulation

Figure 2-17: The schema of a simulation called “mySimulation,” which hides its internal

calculation.

So “mySimulation” takes three inputs: “a”, “b,” and “c” and generates two outputs: “value” and

“confidence.” The internal calculation @ +b*¢; is hidden from the user. The objective

function xl2 + 2)622 in (2-3) shows that we are only interested in changing two of the input

€6 9

parameters: “a” and “c,” as variables and keep “b” constant at 2. Also the objective function

46

ignores the “confidence” output and only takes “value” output. One way to rewrite the model in

(2-3) as a simulation optimization is shown in (2-4).

minimize mySimulation(x,,2,x,)

X

subject to 2x, +3x, 29

x,20,x,20

mySimulation{

address = http . /] somesite.com | mySimulation (2-4)
input :

a

b

c

output :

value + confidence * ()

}

We replace the objective function with the simulation mySimulation(x,,2,x,) , so we pass in
three inputs. In the simulation definition part of the model we specify the three simulation
requirements: simulation address, input and output. The inputs —a , b , and ¢ — are listed in
order and in this example take the values x,,2, and x, respectively. In a sense,

“mySimulation” is no different from a user-defined function, except that in a user-defined
function we write down the actual form of the function, whereas in “mySimulation” we write
down the three requirements.

There are essentially two types of input in the simulation: constant input (e.g.b» =2) and
variable input (e.g. a = x,). Constant inputs remain the same throughout the simulation

optimization. Variable inputs are decided by the solver and can change at each optimization
iteration. This means at each iteration, the solver may call the simulation at the address by
providing a new set of inputs and obtain a new function value from the simulation outputs.
Another thing to notice is that since the simulation engine is a black box, there are usually
no derivative values provided. Of course the solver can numerically compute a derivative by
invoking the simulation twice at two separate points and calculate a finite difference. But there

are two main reasons not to do that. One is due to the long communication time just mentioned.

47

The other is that the behavior of the simulation function is usually unknown. For example it can
be discrete. So it may not be appropriate to use a solver that requires derivatives on a
simulation optimization model. These issues and others are discussed in our second example in
Chapter 3.

From the Optimization Services framework point of view, if a simulation like
“mySimulation” is to be invoked by an OS-compatible solver, its input (“a” “b” and “c”’) and
output (“value” and “confidence”) have to be put in a standard format. Such a standard format
is specified by the Optimization Services simulation Language (OSsL). Of course when the
model in (2-4) is translated by a modeling language into the Optimization Services instance
Language (OSiL), OSiL should support features of simulation optimization and be able to
embed OSsL.

CHAPTER 3 OPTIMIZATION SYSTEM IMPLEMENTATIONS

In this chapter we discuss two distributed optimization systems — the AMPL modeling
system using remote NEOS solvers and Motorola’s Virtual Prototyping (VP) Intelligent
Optimization System. Issues in designing and implementing the two systems are discussed. The
two different optimization systems provided us with the initial motivations for a more general
design and framework. Though architecturally different, these two optimization systems can be

unified under our Optimization Services framework (see Chapter 5).

3.1 AMPL and Network Enabled Optimization System (NEOS)

AMPL is an algebraic modeling language developed by Robert Fourer, David Gay and
Brian Kernighan [48], in the mid 1980’s. For a detailed description, refer to [49] and the AMPL

Web site at http://www.ampl.com. General concepts of modeling languages and modeling

language environments (MLE) are discussed in Chapter 2.

NEOS stands for Network Enabled Optimization System. The optimization system resides
at Argonne National Laboratory. The project was started in 1995. NEOS system provides
optimization software and services through Web, email, socket-based access and Remote
Procedure Call. Development of the NEOS system has been mainly supported by the
Optimization Technology Center (OTC) team, which consists of research scientists, professors,
post-doctorate associates and graduate students from Northwestern University and Argonne
National Laboratory. With the development of NEOS, emphasis in recent years has shifted to
Internet, distributed computing, and problem-solving environments. For more information

check the OTC Web page at http://www.ece.nwu.edu/OTC and the NEOS Web page at

http://www-neos.mcs.anl.gov.

3.1.1 Standalone AMPL architecture

Figure 3-1 shows the standalone system architecture of AMPL with a local solver.

48

49

Minos
Solver
AMPL
Model
diet_mod
ek AMPL Modeling Solver
Environment Driver
madeal diet. mad;
data diet.dat;
option solver minos;
local modeling environment local solving environment

Figure 3-1: Standalone AMPL-Solver architecture (local).

A user begins in a command environment. After starting AMPL, the user sees the AMPL’s
prompt:

ampl:
The user communicates with AMPL in two ways: by typing commands, and by setting options
that influence subsequent commands. In Figure 3-1, the user invokes a previously constructed
model, which usually consist of a “.mod” file and a “.dat” file. The “.mod” file is AMPL’s
abstract algebraic representation of an optimization problem. The “.dat” file contains specific
values of data that define a particular problem. AMPL then combines the “.mod” and “.dat” file
and converts them into a low level optimization instance representation in a “.nl” format. For
the diet example in Figure 2-4, that corresponds to a user typing at the prompt:

ampl: model diet.mod;

ampl: data diet.dat;
and a diet .nl file is created. Then as soon as the user types:

ampl: option solver minos;

ampl: solve;
the “.nl” instance file is sent to the Minos solver through the AMPL-Solver Driver, a piece of
interface software between the AMPL modeling language and the hooked solver.

For nonlinear objectives and constraints, the AMPL-Solver Driver contains an expression
tree to calculate function values, and sometimes gradients and Hessians as well. Throughout the

optimization iterations, the solver calls function evaluation routines that use expression trees
and obtains function values (f,) from the expression trees by providing the current variable

values (x), all through the AMPL-Solver Driver. Due to the hill-climbing nature of most

nonlinear algorithms, solvers need to know the function values only at specific points.

50

Finally optimization results are sent back by solvers. The AMPL-Solver Driver interface
converts the results into a “.sol” format and the AMPL modeling provides convenient

commands for viewing the solutions.

3.1.2 AMPL-NEOS architecture

The NEOS Server currently provides more than 50 optimization solvers through many
types of networking interfaces. Users send requests to a central server at Argonne National Lab,
but optimization solvers can be on any workstation on the Internet that is connected with NEOS
through a standard setup [27].

NEOS’s Kestrel interface provides a mechanism that enables remote optimization from
within the AMPL modeling environment. For example to solve the diet problem using the
remote Minos solver on NEOS, the user would type at the prompt:

ampl: model diet.mod;

ampl: data diet.dat;

ampl: option solver kestrel;

ampl: option kestrel options ‘solver=minos’;

ampl: solve;

So much remains the same for the user. From the user’s perspective, Kestrel is just another
“solver” and the real solver provided through Kestrel just appears to be a further option under
the “Kestrel solver.” There is no networking jargon and all the communication details are
hidden by the AMPL-Kestrel interface. The user won’t notice whether the model is solved
locally or on a network. When the “solve” command is executed, AMPL delegates the Kestrel
agent to handle all the networking protocols such as CORBA or XML-RPC to send requests
and receive responses. In fact even AMPL does not know anything about the networking. To be
more exact, the Kestrel communication agent hides everything from the modeling language

environment. For a detailed description of Kestrel, refer to the paper by Dolan et al. [28].

51

AMPL

Model

diet. mad
diat dat

Environment
maodel dist mod,
data diet.dat;
option solver kestrel;

networking local solving environment

local modeling environment

Figure 3-2: AMPL-NEOS Architecture through Kestrel.

As a result, the locally running AMPL modeling language environment can have access to
a wide variety of the remote NEOS solvers. Moreover, optimization results are provided within
the AMPL modeling language environment so that users do not need to parse a result file to use
the generated answers. From the Kestrel perspective, we call AMPL a “thick” (or “fat”)
network client, as it takes away from the NEOS server many of the optimization
responsibilities, such as compilation, preprocessing, and presentation. Otherwise, if an
optimization request is submitted via an Internet browser, the NEOS server would do nearly all
the work. In this case, we call the Internet browser a “thin” network client.

In terms of architecture, there are no major differences between the standalone AMPL and
the AMPL-NEOS system shown in Figure 3-2. They are essentially the same at the two ends of
the optimization process, that is, the local modeling environment and the remote solving
environment. The AMPL-NEOS system adds a Kestrel client agent and a Kestrel server agent
between the AMPL modeling environment and the NEOS server and connects the two Kestrel
interfaces with either a CORBA or an XML-RPC interconnection. The NEOS server then
further relays the information to and from the solver. The “.nl” and “.sol” files are transmitted

between the Kestrel agents rather than through a local interface.

3.1.3 AMPL-NEOS optimization problem representation issues

The large number of optimization types serves as a barrier as well as a motivation toward
input format standardization. Neither AMPL nor NEOS precludes any text or binary file format
to be passed to a solver. If there are N solvers (or other software such as analyzers) on NEOS,

then N different drivers are required to read the AMPL nl format. Besides AMPL, there are

52

many other algebraic modeling languages and numerous GUI environments with prewritten
optimization models underneath. Suppose there are M modeling languages and GUIs and N

solvers, then M x N drivers are required for complete interoperability over NEOS (Figure 3-4).

Madeling Salver 1
Language 1
hadeling Solver 7
Language 2
1 i
Client GUI M Analyzer N

Figure 3-3: M x N drivers needed by M modeling languages (or GUlIs) and N solvers (or analyzers).

Even a cursory look at the NEOS Server’s list of solvers (Figure 3-5) reveals the babble of
input formats recognized by current optimization software. There are more than a dozen
different low-level formats recognized by one or another solver in the NEOS lineup, including
MPS [86] formats for linear and integer programming, SMPS [10] extensions to the MPS
format for stochastic programming, SIF [24] for nonlinear programming, formats such as
SDPA specific to semidefinite programming, and DIMACS min-cost flow and other formats
for network linear programming. Other solvers recognize input programmed as functions in
various languages including FORTRAN, C, C++, and Matlab.

To the extent that there is any greater degree of standardization, it is through the use of
input written in higher-level optimization modeling languages. Although NEOS works with the
GAMS [12][16] and AMPL [48][49] languages, however, each of these supports only some of
the available solvers. An arrangement that applies AMPL solvers to GAMS models is at best a
stopgap, requiring execution of both the AMPL and GAMS compilers.

XML has emerged over the past few years to guide the design of standard forms for
Internet communication of all kinds. The XML Schema described in Chapter 4, for example,
can be used to enforce a standard for optimization and can grow in a well-defined way to

accommodate new problems types. This contrasts with the current situation, where for example,

53

parsers for the MPS Standard [86] vary in details between implementations, interpreters of the
SMPS standard [10] are even more varied, and no proposal for nonlinear extensions (see, for
instance [60]) has caught on at all.

In our Optimization Services framework, we propose a new low-level XML format
(Optimization Services instance Language — OSiL, see Chapter 6) that currently supports all of
the problem types supported through the NEOS Server, with sufficient flexibility to be
extended to new types. Using the standard representation of an instance, only M + N drivers are

required for complete interoperability (Figure 3-4).

Modeling
Language 1

Modeling XML Solver 2
Language 2 Instance

Solver 1

Client GUI M Analyzer N

Figure 3-4: M+ N drivers needed by M modeling languages (or GUIs) and N solvers (or analyzers)
with a standard XML instance.

OSiL addresses problems that are not application-specific, but are as specialized as
stochastic recourse problems or as generalized as nonlinear-constrained programs. The
adoption of such a format by solvers will make them more universally available through
Internet services. The adoption of the same format by modeling languages will enable solvers
to more readily support many languages. The overall effect will be to decouple language and

solver choices, letting the user pick the best tools for any project.

T NEDS Sobvers - Microsoft Inbermet Explorer

He

Edt Wew Favorkes Tods Help

Addnass m Fiek e v miests. s . o freens faesu e oluers el

+ Semudefuate & Second Order Cone Programmmez

CSDT |Sparse SDFA Ingut]

CIRCUT [Graph Inpnt]

DEDP [Sparse STPA Inpnt]

LIOSFE [LMEFPS Twpmi]

FENINOMN [Sparge SINEA Input]

SDP-LE |Graph Inpt]

SDFA |Eparse SDEA Inpui]

SDFPT3 [MLadal Binsy Iuput] [Spacse SDEA Tupat
el [MMatlab By Inpnt] [Sparse SDPA Input]

Linear Proganming

BDMLP [CALTSE Tnpni]
HEBAED [LE Tuput] [MES Input] |AMPL Tuput|
FoathdE [MES Toput] [AMEL Tuput]

MOSEE [MPS Tuput] [AMPL Tiput] [LP Iput]
HOOP [AMPL Input] [MFS Tuput]

PCx [MPS Irpre] | ALMPL Tupue]
YPRESEMEBARRIER [MPS L]
NPRESS-MPSIVFPLEY [MPS Inpr]

= Bound Congoraimed Orpriuniz ation
BLMVML [C Inpuwt] [Fovtan Input] [ALPL Iuput]

L-EFGS-E [Fovtvan Inpot] [ARIPL Topt|
TRON [Foroan Tnpur] [ANEL Tnga]

Tuconstraimed Optmezation

Cliphas [Fortran Input]
TIMITH [Ingewt | [Fortran Tugnt]
VIVILK [Inpat | [Fortran Ingaat]

Limear Netwark Crptimization

NETFLO [DIMACE Min-cost Flow Formae]| METFLO Inpme]
RELANA [DIMALE Min-cost Flow Fannat|[RETAKS hiput]

Complementarity Problems

LMILES [GAMS Tnput]
PATH [Fortvan Input] [ALIPL Tupou| |GADLS Tupoe]

MNondifferentiable Opruaization

A CTPRA B Townwi

Figure 3-5: Part of the NEOS Server’s list of solvers and problems formats.

3.1.4

AMPL-NEOQOS optimization communication issues

Solving large optimization problems may require computational power far beyond what

regular desktop workstations can offer. Due to increasing computing and networking power,

typical users now have access to more resources than ever before. When NEOS project was

begun in 1995, the Web was just beginning to come into widespread use. At first the NEOS

55

supported only low-level file formats and FORTRAN programs, and input only via e-mail;
successive enhancements provided the much more powerful and convenient communication
options available today. To ensure reliability of the Server, this work used early and relatively
mature standards, such as Web forms, TCP/IP sockets for the NEOS Submission Tool (see

http://www-neos.mes.anl.gov/neos/server-submit.html) and CORBA for the Kestrel interface

[28] (see also http://www-neos.mes.anl.gov/neos/kestrel.html).

Now a user can submit an optimization problem to NEOS via any of the above-mentioned
interfaces. The NEOS Server then locates the specified solver in its data bank and schedules the
user’s optimization job request on a remotely connected computation resource that is currently
available and equipped to process jobs of the given type. Registered solver providers must
provide software and sometimes hardware. Solver administrators have to write implementations
to check data consistency, solve optimization problems, and return appropriate results. The
NEOS Communication Package, a Perl application, is provided to facilitate communications
between the NEOS Server and solver computers. The latest version of NEOS has been re-
implemented in the more powerful Python programming language and all the server-solver
connections have been updated accordingly.

But still, the current NEOS Server has not fundamentally addressed the communication
difficulties of large-scale optimization with respect to the combinatorial effect of the plethora of
solver types, interface choices, and connection to modeling languages. As the NEOS Server has
evolved along with the Web and the Internet, it is limited to some degree by early design
decisions.

We are now seeing a new generation of standards that make Web services more flexible in
design and easier to build and maintain. With tools such as SOAP, WSDL, Web services
registries (see Chapter 4), we have developed a general and flexible Optimization Services
environment for developers to make their software easily accessible on the Internet.

The effects of Optimization Services on NEOS are multifaceted:

* The NEOS server and its connected solvers will communicate using the Optimization
Services framework, e.g. using standard representation for data communication.

* External optimization submissions can still be kept as flexible as possible and may become
even more flexible. At least one more networking mechanism will be provided, i.e. the
networking based on the Optimization Services Protocol (OSP). That means NEOS will
add an interface so that it can be invoked exactly as what’s specified by the Optimization
Services hook-up Language (OShL, Chapter 7). It will also accept OSiL as a standard

input, and may gradually deprecate the other formats.

56

* The entire Optimization Services system over the Internet can just be viewed as a new
decentralized NEOS. In effect the old NEOS will become another OS-compatible solver in
the new system. The “NEOS server” can then solve more types of optimization by
delegating the job further to different solvers behind it. We therefore regard the old NEOS
as a “meta-solver” registered on the new Optimization Services system.

The Optimization Services framework is also complementary to the design of OSI (Open

Solver Interface), a standard procedural interface to solvers currently being implemented under

the auspices of the COIN-OR project [23]. OSI provides a way of calling optimizers directly

from applications, whereas OSiL is an optimization instance that can be communicated to
solvers in a variety of ways. The interfacing between Optimization Services and OSI is

illustrated below in Figure 3-6.

Suppose an OSiL instance (1) comes in through the Internet from another Optimization
Services component. From the OSiL sender’s view, an OS solver is being invoked as it accepts
the standard OSiL as an input. Within the OS solver, the OSiLReader (2) first parses the OSiL
instance into a set of generic objects/data structures (3) and in turn these objects/data structures
are transformed into the Open Solver Interface (4), and any COIN-OR compatible solver can be
hooked up behind the interface. As the OSiL is a standard instance, only one OSiLReader needs
to be written to read the instance and as the Open Solver Interface is also a standard interface,
both OSiLReader and Open Solver Interface can be provided in one library. All that a solver

developer needs to do is to include this library to resolve all interface or format issues.

rowNum,
colNum,
rhef], efc.

1 osil Ahatric
3 . -
2. OSiLRaader |——m —r 4. Open Salver
2 : Interface (O31)

3.objects/data
struciuras
created by
CQSiLReader

5. COIN-OR
Compatible
Solvers

OS solver

Figure 3-6: The Optimization Services (OS) — Open Solver Interface (OSI) connection.

The success of Optimization Services will promote the work of COIN-OR and in turn the

wide acceptance of the OSI interface will allow more solvers to be easily hooked into the

57

Optimization Services system. To take further advantage of this, we are extending the OSI

interface to more optimization types.

3.2 Motorola Labs Multidisciplinary Intelligent Optimization System

This section describes another optimization system implementation. The project finished
before the first conception of Optimization Services, so it may seem a bit detached from the
central theme of this thesis. However, it was through four years of experiences with this
project, that we gained significant insights in designing Optimization Services. Also it provides
another perspective in optimization systems used on an intranet within a corporation.

The Motorola Virtual Prototyping (VP) optimization system is a critical step in a
multistage effort to develop and deploy enterprise-wide tools that drastically reduce the cycle
time for new designs and technologies. The principal feature of this effort is the integration of
design and development processes from various disciplines. The goal is to plan, design,
construct and manage knowledge-based systems for the transfer, application and execution of
highly specialized knowledge. The main economic benefit is to be realized in terms of reduced
engineering effort for new product ideas, improved compliance with standard design and

development rules, and more optimal design and development trade-offs.

3.2.1 Dataflow and knowledge flow

In 2001, we designed a nonlinear optimization solver using a modified feasible direction
algorithm for the Virtual Prototyping (VP) group [101], led by Thomas Tirpak at the then
Motorola Advanced Technology Center (MATC). Solvers of other math programming types
were subsequently developed. In the second year all the solvers were integrated into the
distributed Virtual Prototyping system as a new VP service. The service was intended to solve
most of the general large scale nonlinear optimization problems with discrete variables
encountered in Motorola’s engineering design. This optimization service has since proved to be
of value to the Motorola engineering community. It has been applied in areas such as printed
wiring board design and embedded passives design and has helped achieve significant design
and engineering cost reductions.

At the beginning, the VP optimization service was only applied on a single engineering
domain simulation model. This means the entire objective function was calculated by one

model service that is usually located on the same machine as the optimization engine. As the

58

system evolved, an objective function can consist of metrics from multiple and distributed

model services on remote machines, as illustrated in Figure 3-7.

min f(y(x). y> (X). ¥4, (X))
s.t. g (x) <= Oforall j=1,

Optimization Engine

<[00 = T x|

Figure 3-7: Dataflow of optimization with metrics calculated from distributed services.

The objective f of the optimization service is comprised of many y, metrics that are

calculated from the corresponding model service i . The variable set x is shared among all the
services. The arrows indicate flow of information at each optimization iteration. At the higher
level is the optimization engine that sends new variable values to individual model services. At

the lower level are the model services that supply objective values y,(x) and constraint

values g, (x) . If there is an objective function, it is possible to generate an improved solution

just by knowing the current function values.

This dataflow also mimics the real world knowledge flow to automate manual processes
and reduce cycle time. Knowledge derives originally from customers, who express it in the
form of specifications of their needed products. The specifications are likely to encompass a
wide area of engineering domains such as electronic engineering, mechanical engineering,
material engineering and manufacturing. These specifications are distributed to the
corresponding engineering groups for proof-of-concept designing and prototyping. Without the
VP Multidisciplinary Intelligent Optimization System, the engineering solutions that have been
developed in a separate manner are finally combined into a complete prototype in a manual
way. If the solutions have a so-called “technical interface” conflict, then they are sent back for
reengineering. Such a process goes on for several rounds mainly in a time-consuming trial and
error mechanism with many inter-departmental or group meetings. This manual process ends

when the final complete product is free from design conflicts.

59

With the establishment of the automated Virtual Prototyping system, the optimization
engine takes the responsibility of coordinating the design solutions that originate from separate
departments, finds a feasible solution and possibly optimizes within the feasible region to find
the best combination of designs. The data flow in Figure 3-7 thus leverages on knowledge flow
in the real engineering world. The higher-level optimization engine replaces the “combination”
process of inter-departmental meetings. The lower-level model services replace the

“reengineering” process of individual departments.

3.2.2 Initial modeling of computational complication in test bed

Before we implemented our robust design (next section) in the VP system, we built a
simplified test bed to simulate the true Motorola system. In our initial test bed modeling (Figure
3-8) of the data flow shown in Figure 3-7, different optimization solvers are extended from a
standard optimizer interface. All solvers interact with optimization problems through a
common interface. The optimization problem interface is connected with a simple accelerator.
The accelerator is to simulate the behavior of remote services, and provide estimated function
values to the solvers locally. Each local optimization problem has a corresponding remote
service connected with it. The real computations are carried out on the remote services and the
local optimization problems serve as bridges between the remote services and the optimization
solvers.

Model services are simulated with relatively simple functions. All the services are initiated
in separate process threads. Though the simple function value calculations take no time to
complete, different time factors are realized by forcing each process thread to wait according to
the parameters specified for each service. To speed up the optimization process, all the time
units are scaled down to milliseconds.

The time for a model service to execute may depend on a variety of factors, e.g., the
computer on which the service is running, the time of the day, the complexity of the scenario
represented by the inputs (x), etc. Services may be unavailable at certain scheduled or
unscheduled times. There may be a delay in transmitting the inputs to the services or the

outputs from the services both due to networking and model service computation time.

60

Optitazer Ittetface
r
/ v '_
Ciptimazation Ciptamazation Optimization
solver solver solver
"\ [/
¥ fmememimmimimi a
L i Estimaton’ [
Cptimizatio !
E;,:;n;;m " i Acceleratorf |
Intarface i Simelator :
'Y
/ w \

Optimization Optamization Optimization
Froblem Problem: Froblem
10, vz (),

]
v v L3
- TCP TCP TCP
A Y
Bemote setwice 1 Eemote setwrice 2 Retnote setvice n
() (372 san (3}

Figure 3-8: Initial modeling of optimization with metrics calculated from distributed model

services.

The computational performance of the model services in Motorola’s Virtual Prototyping
System can be characterized by three factors: service time, server load factor, and down time.
Down time includes when the server computer is down, when there is a bug in the model
service software, and when there are difficulties running the service for a given set of inputs
(x). Communication time between the optimization engine and remote services is
insignificant.

An immediate issue is that an optimization can easily take thousands of iterations. If each
iteration takes a long time due to the above factors, it may become impractical to solve the
whole optimization within a reasonable amount of time.

Moreover when engineers design and construct their model services, they do not know that
their models will later be used as parts of an optimization system. Therefore, these model
services usually do not provide gradient information. The optimization solver often has to be

based on an algorithm not using derivatives.

61

Benchmarking has been conducted on different optimization algorithms, and a method
based on Powell’s algorithm [95] with quadratic step length estimation was selected in the
initial modeling system. Our initial tests have proceeded as follows.

Benchmark problems are first tested with their objective functions unbroken (i.e. the entire
objective function) and statistics are collected for comparison with later tests in the distributed
system. Then the objective functions are arbitrarily divided into several parts and put on
different machines communicating with the TCP/IP networking protocol. The server, where the
optimization solver is located, sends the current variable values to each machine for a
functional evaluation and waits till it gets all the responses. It then gathers the functional values
and integrates them into a whole function for the optimization solver to conduct the next
iteration. Primitive estimations such as quadratic fitting and smoothing splines are used to
approximate the functions. Acceleration is achieved by evaluating from the approximated
functions rather than getting real values from the remote services.

Through our initial modeling, we have shown that without any estimation and acceleration
techniques, the optimizations using distributed systems are solved with the same accuracies and
same numbers of iterations as before. The time taken to solve each problem is, however,
significantly longer, since the optimization solver always has to wait for the last and slowest
machine to respond with a function value.

Simple acceleration techniques often result in less total optimization time, with relatively
the same accuracies achieved. But these improvements are not guaranteed on any functions.
The improvements are not even guaranteed on different starting points of the same function,
since the response surfaces can behave very differently in various neighborhoods. Our primitive
acceleration techniques also do not take account of networking anomalies. When a model
service generates mathematical errors (e.g. divide by zero), the network becomes congested, or
the server that hosts the model service crashes, our optimization process is terminated too. All

these suggest further research in a better design and more robust procedure.

3.2.3 A robust implementation of distributed optimization in the real VP system
The next few sections introduce our effort to design a more advanced architecture using
intelligent methods of search and acceleration. Along with optimization, special approximation
procedures are being developed in the areas of statistical learning and artificial intelligence
including data mining and machine learning. The challenge is how the optimization engine

should simultaneously use information such as rate of improvement of the objective function

62

and the computational performance characteristics of a set of distributed model services, so that
the “best” solution can be found in the “shortest” possible time.

Due to confidentiality issues, in the following discussion actual component names of the
real system are altered to more generic ones. Model services are referred to by numbers and
types according to their service categorization explained above. In the benchmarks, algorithms
are distinguished according to their levels of effectiveness, but the underlying optimization
algorithms and various methods of function approximation are not disclosed.

The general system architecture and process flow will, however, be explained in detail.
This is what the Optimization Services framework is mostly concerned with: to address the
issues in system designs and provide a good infrastructure to carry out optimization of various
types including optimization via distributed simulation. Optimization Services allows any
optimization algorithms and approximation methods to be highly modularized and easily

plugged into an optimization system.

3.2.4 Design and architecture

Figure 3-9 shows the VP Multidisciplinary Intelligent Optimization System. The upper
right part of the figure is the solver architecture. The major component modules are as follows:

Central Server. This is mainly used to connect to different distributed model services or
simulation engines offered by the Virtual Prototyping System, and maintain administrative
routines. Requests for function values from the optimizer are always routed through the server.
The optimizer is also connected with the server.

Simulation Engines. These are the major Virtual Prototyping model services in different
engineering domains. When the central server relays the input (x), the simulation engine i
returns value y, .

Model Constructor. This part is used to dynamically construct multidisciplinary models
that consist of services offered in the Virtual Prototyping system. It is mainly used to construct
multi-objective functions: f(y, (x), y,(x),...y, (x)), where y,(x) is calculated by simulation
engine 7 . From the optimizer’s view, it is just another simulation engine. Instead of returning
the value y, (x) from one simulation engine, it returns a combined value of several simulation
engines. Of course, the optimizer can choose to call separate simulation engines and construct

the multi-objective function by itself. In this way, the optimizer becomes more flexible since it

63
can decide which simulation engine to call to get an exact value ()) and which to estimate to
get an approximate value ()').

Client. This is usually any engineer who wants to use the services connected through the
central server. From the client’s view, the optimizer is simply another simulation engine, only
the optimizer returns an optimized value. The client may not be aware that an optimization
process is going on. But he may notice it takes longer to get the value, as an optimization may
involve thousands of invocations of many simulation engines. All the data from are client side

is sent through a communication socket.

 Optimizer |

) |
? -
alver Interface

Solver
Architecture

¥ T T ¥
Real Opt OptStorage‘ ‘Surrogate Opt Thread

Store retrieve
o r «
v (fashTeble) L earner Thread | Estimator |
Tl | global | local | | global | local |

. h ¥
e . Central Processed Dala

' Client sr.v. —_ e > | Server L. —————

Figure 3-9: Architecture of VP Multidisciplinary Intelligent Optimization System.

Following are the modules related specifically to the solver architecture.

Optimizer. This module contains optimization solvers of different types, including linear
programming, nonlinearly constrained programming, and integer programming.

Solver Interface. This is a generic interface that is connected to the remote central server.
All solvers have to interact with this interface if they need function values from simulation

engines connected with the central server. Notice that the solver interface separates the solvers

64

from everything else. This means when a solver asks for a function value, it does not know
where the function value comes from and it does not know whether the function value is exact
or estimated. The design is critical because it allows any nonlinear solver to carry out the
simulation optimization without changing its code at all. In a sense, the solver itself is not
“intelligent.” It is the components connected with the interface that make smart choices of
function values, making tradeoffs between speed and accuracy.

Analyzer/Decider. This is the module that the solver interface uses to branch to different
optimization processes. For example, it decides whether to get the real function value or
approximate the value from a learned function.

Statistics Data. This module keeps track of run time information through the entire
optimization process, for example, the time it takes to get a response from one of the simulation
engines. The solver interface usually stores the necessary information at each iteration. The
statistics data is also used by analyzer/decider for carrying out analysis.

Real Opt. This is the module that routes solver requests to real simulation engines, from
which the optimizer gets an exact function value.

Opt Storage. This is an interface that provides access to retrieval and storage of online
optimization data, for example the variable points and objective values on the optimization path
that are needed for function learning.

Hash Table. This is basically a hashed database that stores all the evaluated variable

points in a special way. In essence, it keeps a table in which a row looks like:

k k

n?o

ko k
k,xg,x; -, x
where £ is the iteration number, x/ ’s are the variable values at the kth iteration and f* is the

corresponding function value.

Processed Data. This module is a data structure that processes the data stored in Hash
Table into a format accessible by Learner Thread so that learning algorithms can be carried out
with no format compatibility issues.

Surrogate. This is the module that acts as an approximate deputy for a simulation engine.
It can be used either to learn a function through Learner or approximate the function value
through Estimator.

Learner Thread. This module takes the processed data from Hash Table, and learns
functions that approximate function of a simulation engine. It is a thread because it carries out

function learning in a separate thread from the optimization process.

65

Estimator. This module takes the learned function from Learner and provides Optimizer
with an estimated function value.

Opt Thread. Opt Thread is a separate thread launched by Solver Interface to get function
values from the simulation engines. The purpose of Opt Thread is that the optimizer does not
need to wait for a response from simulation engines because the thread is launched separately
from the general optimization process. Function values are still to be returned at a later time but
the optimizer can just carry on its optimization process with estimated function values. One
main advantage is that more function values will later be obtained for the learning process.
Another advantage is that when a simulation engine returns an error, the thread can simply be

aborted without affecting the optimization process.

3.2.5 Optimization process
Figure 3-10 shows the processes of the entire intelligent optimization system. We will start
with the normal flow, i.e. the flow with no learning process.

1). Normal Flow (without learning and approximation)

On the left part of the figure are processes (processes 0-10 and 11-15) with bold borders.
They represent a normal nonlinear optimization flow — start with an optimization problem,
alternate between finding directions/step lengths and updating variables, and finally terminate
upon certain conditions. The major characteristic in this flow is that processes 2 and 5 do not
get function values locally. Instead they have to go through process 11 - 15 to get function
values from remote simulation engines that are connected with the central server. Function
values are optionally stored in the hash table (process 15).

Processes 2 and 3 are intended to find step directions. Potentially a large number of
requests are made to obtain information on function values and gradients. Thus arrows leading
out of process 2 and leading into process 3 are in bold.

Processes 5 and 6 are intended to find a step length along the direction. Only a few
function requests are needed. Naturally, it takes a much shorter time to do a line search than to
find a direction. According to our benchmarks (§3.2.7), solvers that have a loop back
mechanism from process 6 to process 4 tend to be much faster. The loop back is intended to do
a very accurate line search and in practice, all the loop backs in one iteration take only a
fraction of time of finding a direction.

2). Intelligent Flow (with learning and approximation)

66

Processes on the right part of the figure (processes 16-25) are with dotted borders and
represent the intelligent components. Notice the separation between the normal flow and the
intelligent flow. None of the intelligent components are built within the solver, that is, the
optimization algorithm remains untouched. The idea is that any solver can leverage on the
intelligent system with no code alteration and any intelligent system can be plugged in without
much interfacing effort. This is the key assumption when we redesign optimization via
Simulation under the Optimization Services framework (Chapter 6).

The major decision is process 12. If no intelligence is needed, it goes through a regular
distributed optimization process (12-15) and back to the normal nonlinear algorithm flow (0-

10). Otherwise, it leverages on the estimation and acceleration techniques in the intelligent part.

0. hodel
constructor sends
optimization

inztance

67

11. Salver ' . i
1. Start i s “res -y 16. Aesigtant Cpt §
b :
sssasmassaw
" Fy }
PR~ CadiEEs =)
2. Solver requests % rurime statistics ¥
fundtional values ¥ data :
Fix) canasmEesa"
13. Central ssrver («
3. Solver identifies e - o
4 15. Store [
constraint status . 2 2 = = " .
: ¢ Evaluated 8 datain 14, Simulation 3 18. Analyzer Decider »
iggrgfﬁfgéﬁﬁﬁ F i) \': Hash engines pchooses fundion cal §
e § Table : types :
[iesassspaasans
] .) J—_—
4. Solver carties a L]] oS Lo [.
1im =tep search Evaluh 1 Leamer a globsl —e* Lea gy localm) Learner #
! and tnds Foo ™ ves, gy s ol
i step length 2 Refrieved i e 5
l Fix)
Yes
5. Solver recuests ..,o‘ "-‘.
mni‘g{ﬂ{ﬁ;ws p!f.'Reirieved cata p‘DI -
b from Hash Table? e
... ‘..
Yes. P g
Fetrieved NI;
6. ohjective ancior Fla) .
constraint im provem ent o Vas L e
'+t the step | hat? - il
it e depeodh 2 \L--:@T Closestdata porl e,
“n, doodenough? e
Saa P b
N‘? P
Estimated i
o
7. Solver updates Fxy
H=K+a*dH JUCL I
- .
=47 pleed exact” a
: e —
"q.. function walue? -
Q‘ 'O
n.- -t
¢ r*
[convergent, infeasible, Mo
et '...-‘\'-....
Y25 Etimator §
yoalculates Fode
| Estimated I either from §
F) 3y local leamer

9. Finish
optimization

10. Return result
tohodel
Constructor

1
1 or giobal H
g lesrnerow

Lo P

Figure 3-10: Flowchart of the intelligent optimization process; thicker lines mean more frequent

data flow in the optimization process.

2.1) Intelligence Flow — Analysis Stage

The first thing after the intelligent optimization starts (16) is to analyze statistics of run

time information (17), including:

68

e optimization process data, for example current iteration number, variable change rate,
objective convergence rate, and constraint improvement rate;

* historical data points in database;

» finishing status of a simulation (The simulation is successfully run or it generates
errors);

e time it takes between requests and responses of a simulation over recent iterations

* access types of recent function calculations — whether function values are retrieved
through database, estimated through an approximated function, or evaluated by the
real simulation engine;

e last global and local learning time of the function learners;

e accuracies of function learners through validation between estimated values and real
values.

Statistics are constantly updated whenever new information is available.

2.2) Intelligence Flow — Learning Stage

Process 19 is a decision to learn a function from historical points. The decision to learn a
function is based on one criterion, namely whether there are enough new data points. The
choice of the number of data points is quite empirical and depends on the chosen learning
algorithms. It can be further studied and may be changed on an adaptive basis.

Two types of learning are used. The global learning is intended to learn the entire function
surface, while the local learning is used to learn the function surface in the neighborhood of the
current variable point. In general learning takes various forms. Complex learning like Neural
Network Training and Gene Expression Programming are potentially more accurate. For
general descriptions of statistical learning, machine learning and data mining, refer to the book
[67]. But they can take a long time. Motorola Advanced Technology Center has developed a
number of advanced machine learning tools and several of them are both accurate and fast. The
main purpose here is not to describe the algorithms inside these tools. The goal is to illustrate
that with the help of well designed learning tools that are properly coordinated with an
optimization algorithm, decent acceleration can be achieved (see benchmarks in §3.2.7). In
addition to the proprietary tools, a range of other function fitting algorithms (e.g. quadratic
fitting) are tested. But they generally do not fare well in the benchmarks. Although they are
simpler and faster, they are less accurate in approximating functions in high dimensions, and
tend to lead optimization in wrong directions.

In practice, global learners are relatively slower than local learners. Global learners include

standard statistical regressions, neural network training, gene expression programming, etc.

69

Global learners are launched when an optimization first starts. The leaning or training process
is stopped sooner at the beginning, but the allowed learning time gradually increases. The
purpose is to generate a big picture and a roughly smooth shape (i.e. not over-fitting) of a
function, so optimization can move in a generally correct direction. As data points accumulate,
we increase learning time and finally as convergence slows down, we switch to local learners.

Local learners include basis expansion methods such as smoothing splines, kernel methods
such as local linear or polynomial regressions, and variants of nearest-neighbor methods. By
the time we switch from a global learner to a local learner, we have accumulated more points.
Many algorithms in local learning need a large number of points to fit functions in high
dimensional variable space.

Just as in optimization that no solver performs the best and fastest on all functions, no
learners perform the best and fastest on all datasets. Not all global learners or local learners are
launched, depending on factors such as the number of points and number of variables. For
example certain learners simply can not be launched with a few points and other learners are
only suited to fitting in low dimensions. If a learner takes an extremely long time, it may just be
dropped.

The following decisions are the three choices that the solver can make to get functional
values: retrieval, evaluation, and estimation.

2.3) Intelligence Flow — Retrieval Stage

Our database is in essence a hash table with the hash key being the x variable
(x,,X,,...x,) and the hash value being the function value (f.) along with an access index. The

access index measures recentness of variables, which is useful in cases where only recent points
are needed for learning, estimation and validation. Admittedly, a hash table takes up memory.
Our reasoning is that memories are abundant, so that in practice we never have to face memory
overflow. Our main concern is speed rather than space. A hash table’s row indexing is based on
a hash function value and record retrieval is of constant time. Thus every time we try to search
for a point x , we don’t have to go through the entire table, which can be time consuming with
accumulation of data points. Data precision is kept to certain decimal points and digits after that
are truncated, so points that are close enough are considered the same.

In our case, retrieving time is only a tiny fraction of the time it takes to calculate a function
from a simulation engine. If we succeed in locating a previously calculated function value out
of even thousands of retrievals, we still can save time. Function value retrieval from the

database happens quite often in practice. There are three reasons that the same points are being

70

retrieved. The first is due to the searching algorithm going back to the same region. The second
is due to algorithms using finite differences to evaluate gradients. For a simple illustration, in a
one variable optimization, the left point used to estimate the gradient at the current point may
be the next current point if the search decides to move left to that point. The third reason is an
implementation issue. Most of the time when a solver implementer codes an algorithm, he
assumes that function evaluation time is negligible or about the same as retrieving from
memory. So in each iteration he may just keep on requesting the same function evaluation to
calculate gradient, direction, step size etc, rather than store the value in a local variable for later
retrieval.

A closest point (process 23) may also be returned depending on its Euclidean distance to
the current point. Because variables are normalized to the same scale before optimization, a
“closeness” measure is set to a very small fraction multiplied by the number of variables. The
closest point is returned if the distance between the closest point and current point is both
smaller than the “closeness” measure and smaller than the distance between the closest point
and the last evaluated point. The first standard is an absolute measure of closeness whereas the
second standard is a relative closeness with regard to the latest movement. The second standard
is also used to protect finite difference based gradient estimation, in which the last point is
almost surely the closest point, thus generating a gradient value of 0.

2.4) Intelligence Flow — Evaluation Stage

If no previous data point or closest data point can be retrieved, the Analyzer/Decider may
choose to get the evaluation (process 24) from the real simulation engine (process 14) through
the Central Server (process 13). This process is always launched separately, but the flow does
not go on until after a maximum wait time. The maximum wait time is adaptively set to some
number of times larger than a moving average of the previous simulation time. If an acceptable
simulation result is obtained, it is first stored in the Hash Table (process 15). If there is an error
returned or the maximum wait time expires, the flow moves on to process 24 to return an
estimated function value. This is a major step toward robust optimization design protecting
against simulation anomalies. The simulation process is allowed to continue even after the
maximum wait time. Any result the simulation eventually produces is stored in the database.
This stored result is of special interest in validation and comparison of learners, because this
point is both estimated by a learner and evaluated by the real simulation engine.

2.5) Intelligence Flow — Estimation Stage

If the Analyzer/Decider finally chooses to estimate a value from a learned function (process

25), it first needs to validate all the learners to measure learner effectiveness. Whether the

71

estimation is local or global depends on whether the last learning process is global or local,
because as mentioned above only one type of learner can be at launched one time. Validation is
based on the sum of squared residual errors between estimated values and evaluated values.
Validations are executed only on the most recent data. If not enough recent data are both
evaluated and estimated, extra time will be taken to extract the most recent data from the
database and estimate them with each learner. The learner that performs the best in validation is
chosen to return its estimated function value to the solver.

Currently the Analyzer/Decider has an ad hoc mechanism to guarantee convergence or
termination. There is a maximum number of times that estimations can be made in a row. When
convergence rate is slow or the iteration number exceeds a certain limit, the Analyzer/Decider
will always choose to get an evaluation from the real simulation. Due to the big convergence

tolerance and the large iteration limit that we set, this mechanism is seldom used in practice.

3.2.6 System implementation issues and lessons learned for Optimization
Services

The simulation engines in the Motorola system were not originally built to be optimized
over a distributed system. In designing an intelligent multidisciplinary optimization system that
involves legacy simulation software, the following major issues need to be solved for any
optimization process. Due to the lack of a universal standard and framework, many of the
design issues were solved on an ad hoc basis. Many of these serve as a motivation for our
Optimization Services described in Chapter 5.

Initial Design Generation

This serves as the initial point for a nonlinear optimization. But not all the simulation
engines provide such information. A set of quadruples is required for each variable in the form
of:

(current value, most likely value, lower bound, upper bound).

These values are obtained by consulting with domain engineers. Current values can be
customized for each optimization run by the client. When multi-start optimizations are carried
out, distribution functions (for example a triangular distribution based on most likely value,
lower and upper bounds) are used to generate different starting points.

Common Variable Resolution

Different simulation engines are implemented in individual domains, without exchanging

information with each other. As a result, names of parameters and variables are different even

72

though they refer to the same things. For example, the name “bsize” in simulation engine 1 may
be the same as the name “board_size” in simulation engine 2. Originally, the situation was
handled by constructing interdisciplinary constraints forcing different variables to be of the
same values. But then the optimization problem size is made unnecessarily large due to
redundant variable declarations. An overhaul has been carried out on all the simulation engine
implementations to find common variables. To match all the different names to a standard
naming, a static “pairing” table has been constructed, so common variables are detected and
variables are declared only once. But there are still other issues. For example in the table we
match “bsize” and “board_size” respectively to a common name “boardSize.”

Clients may be unaware of the common variable situations by supplying different current
values to two differently named copies of the same variable, for example setting current values
of “bsize” to 1.0 and “board_size” to 1.2. In cases like these, we take the average of the two
values, for example, setting the current value of “boardSize” to 1.1. Most likely values, lower
bounds, and upper bounds may also be set different when constructing a multi-domain model.
In practice we choose the largest lower bound, the smallest upper bound, and the average of the
mostly likely values a compromise.

Multi-objective Function Construction

A multi-objective function usually takes the form of a weighted sum. Different simulation
engines are chosen by the client and corresponding weights are specified for the objective from
each simulation engine. Weights are solely based on the client’s personal judgment reflecting
the importance of different simulation metrics. But the client has to indicate whether a smaller
value or a bigger value of a metric is better, so that the model constructor can build a consistent
maximization or minimization objective function. Metrics of different simulation engines are
also in different units; thus the constructed multi-objective function is unitless and only useful
for relative comparisons, such as Pareto analysis.

Meaningful reports for each simulation are constructed based on optimal variable values.
Normalization techniques such as arctangential transformation are taken to bring component
metrics to the same scale.

Constraint Enforcement

Constraints of a multidisciplinary optimization are a combination of all constraints from
each separate simulation plus interdisciplinary constraints over several simulations across
domains. All the interdisciplinary constraints are hard coded in an assistant module. The
assistant module first detects which simulation engines and what variables are chosen, and then

returns the interdisciplinary constraints that contain the simulations and the variables.

73

Result Interpretation

Though the Motorola system has a proprietary data format to internally standardize results
from different simulation engines, they were never intended to be combined with each other to
construct a multi-objective function. Name conflict is thus one major issue. For example many
simulation engines return a generic name called “result.” Efforts had to be taken in setting
distinctions between the names. One way is to rename, but this caused many unforeseeable
bugs because sometimes results are further analyzed by other computer systems. Another way
is to group results into subsections and use combinations of simulation names, subsection
names and result names.

Another issue, though encountered not as often, is that results can be discrete. During any
hill-climbing type of optimization, these situations can cause optimization solvers to
immediately claim a local minimum or maximum. One technique used is a smooth
interpolation of the previous results. When using a learning technique that tries to estimate the
function smoothly, this problem is naturally avoided. Techniques can be applied on a situation-
by-situation basis. In one circumstance, we added an “interdisciplinary” objective term, as a
secondary objective, to make the discrete function continuous. All the interdisciplinary
objective terms are hard coded in an assistant module. The module first detects whether the
simulations that have discrete objectives are chosen, and then incorporates into the optimization
model the corresponding interdisciplinary objective terms. When results from an “altered”
model are returned, they have to be reinterpreted and presented to the client in terms of the
original model.

Process Coordination

Requests for results from distributed simulations are all launched in parallel, instead of
sequentially. The simplest coordination technique is to wait for all the processes to finish before
moving on to the next step. Other techniques are also employed depending on different
situations. Any major textbook on designing and building parallel programs covers some most
popular and practical algorithms; see [40]. For our case in Virtual Prototyping, the multi-
objective function can only be constructed with the returns of all the component objectives
from distributed simulations. Therefore we usually have to wait for the slowest simulation. But
due to the intelligent mechanisms described above, it is also usually the slowest simulation
engine whose values are estimated most often by the learners.

The client may happen to choose simulation engines that do not share variables and

constraints. In situations like these, separate optimization processes are launched for each

74

individual simulation in parallel, and results are combined finally according to the client’s
multi-objective construction.

Queue/Sequence Arrangement

Sometimes not all simulation processes can be launched at the same time. Some
simulations may contain input parameters that are results from other simulations. Flows are
hard coded when we encounter a combination of simulations that have to be invoked in
sequence. Simulation processes that have to wait for results from others are put in a queue to be
notified later. Some standard service flow coordination mechanism is needed here.

Input Parsing/Output Reporting

Input parsing and output reporting are specified in a proprietary format. Though
standardized, the format is complicated and only understood by a few software developers in
Motorola labs. Moreover the format was not built for multi-disciplinary optimization
constructions. Special efforts had to be taken to extend the functionality. In the case of process
sequencing, where one simulation’s input takes a value from another simulation’s output, the
effort is extremely painstaking. In the case of generating reports of multidisciplinary results and
mapping multi-dimensional space onto two-dimensional graphs, the procedure is even more

laborious.

3.2.7 Simulated benchmarks

Table 3-1 through Table 3-4 show the benchmarks from applying various combinations of
optimization solvers and function learning algorithms to different simulation services of
different types. Results are shown in minutes taken to optimize each simulation service or
combination of simulation services. An “X” in the tables means the optimization process
aborted due to simulation or network errors. The “>1500" means we manually terminate the
optimization process after 1500 minutes or 25 hours.

Each table shows a different learning algorithm used with a set of optimization solvers.
Table 3-1 uses no learning algorithm and the optimization solvers always try to get exact
function values by calling the real simulation engines. Table 3-2 uses a simple 3-layer neural
network learning algorithm. Table 3-3 uses a more advanced gene expression programming
learning technique. Table 3-4 uses an advanced generalized neural network learning algorithm.
So the tables are ordered according to the general quality of the learning algorithm used.
Qualities of these learning algorithms were intensively benchmarked within Motorola in terms

of both learning accuracy and speed.

75

Within each table, each column indicates a different optimization solver. Four
optimization solvers are used: MFD, MFD+, Direct MMFD, and Direct MMFD+. MFD is the
original optimization method based on a modified feasible direction method. MFD requires
gradient values. We use the finite difference method to get the gradients. MFD+ does a more
intensive line search to find an accurate step length. As explained in the previous sections,
finding step lengths involves much fewer function calls than finding search directions. So
MFD+ is adapted especially for optimization via simulation where each simulation takes a long
time. Direct MMFD modifies the MFD algorithm so that no gradients are required. Direct
MMFD+ does a more intensive line search than direct MMFD.

Within each table, each row indicates a different service or combination of services.

Remote service execution time is given by the following formula and data:

T =T xLF(t)+DT (3-1)
where:

T’ = Service time for a given server;
LF(t) = Load factor as a function of time (#);

DT = Down time.
Three kinds of services with typical behaviors are identified:
Service A:

T’ = Uniform distribution [6, 30] seconds
LF(t)=2.0 from 0800 to 1700 hours; 1.0 otherwise

DT = 5% probability of the service going down for 30 seconds
This service has automatic “crash detection” and recovery; therefore, the maximum down
time is 30 seconds.

Service B:

T’ = Uniform distribution [30, 60] seconds

LF(®) ~ 1 25 from 0600 to 1400 hours; 1.0 otherwise

DT = Insignificantly small

This service runs on a dedicated server; therefore, the load factor does not change
significantly during the day. The down time is insignificant, because this service runs on dual
servers, and the robustness of the model service software has been proven.

Service C:

76

T = Uniform distribution [30, 90] seconds
LF(t)=2.0 from 0800 to 1700 hours; 1.0 otherwise

DT = 1% probability of the service going down for anywhere between 15 minutes and 16
hours

In short, service type A takes the shortest time and service type C takes the longest.
Service B is the most stable and service A and C can malfunction, thus not able to return
function values sometimes. “+” means a combination. For example “A+B” means the multi-
objective function consists of metrics calculated from both service type A and service type B.

In all the tables we only show the time it takes for the methods. It turned out that quality of
solutions varies little between various methods. It is partly due to final stage fine tuning and
safeguards for convergence used in our intelligent optimization process, and partly due to
“good” function behaviors, or normal surface shapes of our simulations. Also in practice, we
have a good idea of a feasible starting point based on the existing engineering design of a
product. In most cases, our goal is to improve a product that’s already designed or

manufactured rather than find an initial design.

service type MFD MFD+ Direct MMFD Direct MMFD+
A X X X X
B 623 137 310 110
Cc X X X X
A+B X X X X
A+C X X X X
B+C X X X X
A+B+C X X X X
Table 3-1: Benchmark results from normal optimization without function learners (time in
minutes).
service type MFD MFD+ Direct MMFD Direct MMFD+
A 619 132 376 78
B 645 287 389 172
Cc >1500 >1500 422 192
A+B 641 212 358 142
A+C 1231 >1500 401 >1500
B+C 908 333 385 180
A+B+C 1147 324 >1500 202

Table 3-2: Benchmark results from intelligent optimization with a simple 3-layer neural network

learner (time in minutes).

77

service type MFD MFD+ Direct MMFD Direct MMFD+

A 343 71 210 40

B 360 160 215 91
Cc >1500 >1500 230 106

A+B 361 118 190 79
A+C >1500 190 210 92
B+C 480 846 202 93
A+B+C 647 165 273 114

Table 3-3: Benchmark results from intelligent optimization with a gene expression programming

learner (time in minutes).

service type MFD MFD+ Direct MMFD Direct MMFD+

A 182 66 93 49

B 204 87 108 42

Cc >1500 1452 105 54

A+B 165 87 92 37
A+C 1002 487 145 49
B+C 229 132 123 45
A+B+C 293 145 123 67

Table 3-4: Benchmark results from intelligent optimization with an advanced generalized neural
network learning (time in minutes).

Table 3-1 shows that without “intelligence” (learning and approximation), an optimization
either crashes or generally takes longer. In fact, as long as a simulation engine can malfunction,
the optimization always aborts since nowhere else can it get another function value when an
error or exception is returned by a simulation. The only benchmark results are from
optimization that just involves service of type B, the most stable service. From the service type
B row, we see that if we add an intensive line search (MFD+ vs. MFD, and Direct MMFD+ vs.
Direct MMFD), we do significantly reduce optimization time. The direct method (Direct
MMFD vs. MFD, and Direct MMFD+ vs. MFD+) also helps but is not as significant as the
intensive line search. Combining the intensive line search and the direct method is the best
choice and it also is true in the cases of intelligent optimization flow where learning algorithms
are employed.

Table 3-2 uses a simple 3-layer neural network. Obviously it is more robust as we can get
all the results. However if we compare the row of service type B with that in Table 3-1, we see

that the optimization takes longer with each optimization algorithm. This was also true with all

78

the other less advanced learning algorithms that we used in the early prototyping stage, e.g.
quadratic fitting. If the learning is not accurate, it tends to mislead the optimization direction
and as a result optimization takes more iterations to finish. The curse of dimensionality is
always an issue. So learning algorithms robust in high dimension can help. In our situation,
there are usually 10 to 20 variables involved. Less advanced learning algorithms tend to
perform badly when the number of variables gets over 10.

Table 3-2 (as well as Table 3-3 and Table 3-4) also shows that optimization takes longer
when simulations take longer. With combinations of simulations, the optimization time only
correlates with the simulation that takes the longest, as we launch the simulations
simultaneously and wait for the last to return before the next optimization step. One thing to
notice is that optimization with a combination of simulations does not necessarily take longer
than optimization with just one simulation. Occasionally they may even help to some extent.
For example in Table 3-4, the MFD method on service of type “A+B” takes 165 minutes,
whereas it takes 182 minutes if there is only service of type A. This is sometimes also true if
other learning algorithms are used. Part of the reason is that there are usually not many extra
variables involved with combination of services and function learning on more services may
often be more accurate due to more data accumulation.

Table 3-3 and Table 3-4 use more advanced learning algorithms. In general the
optimization takes much less time. This is most obvious in the case of using the most advanced
generalized neural network learning. So speed and quality of learning algorithms matter
significantly. But do notice that it is not always true. Occasionally there are some erratic
behaviors. For example it takes 846 minutes for the MFD+ optimization to finish on service
type B+C (Table 3-3), while it only takes 333 minutes for the simple neural network (Table
3-2). Optimization that involves service type C quite often shows these erratic behaviors. It’s
possible that service type C has a more irregular function shape than the other two, thus harder
to learn.

In summary, intensive line search and direct methods both help. Adoption of learning
makes optimization more robust. Although not always the case, good learning algorithms can
significantly speed up optimization without losing solution quality. These are all on the
assumption that simulations take a long time. With simulations whose function evaluations are
quick, there is no advantage of using intelligent optimization, due to the extra overhead in

getting a simple function value.

CHAPTER 4 OS COMPUTING AND DISTRIBUTED
TECHNOLOGIES

This chapter provides the necessary background on modern computing and distributed
technologies in order to read the thesis. We explain all the technologies in the Optimization
Services context.

Historically, distributed computing has been focused on the problem of distributing
computation between several systems that are jointly working on a problem. The most often
used distributed computing abstraction is the RPC — Remote Procedure Call. RPC allows a
remote function to be invoked as if it were a local one. The history of RPC-style distributed
computing is fairly complicated. More or less it started with Sun Microsystems’ Open Network
Computing (ONC) RPC system in 1987, as the basic communication mechanism for its
Network File System (NFS). NFS is now supported on UNIX, Linux, and many other
distributed operating systems. NFS is used to access directories and files located on remote
computer as if those directories and files were located on the local computer.

The first major effort toward language-independent and platform-neutral distributed
computing was taken by the Object Management Group (OMG) in 1989. OMG is a consortium
that includes over 500 members. In 1991, OMG delivered the first version of Common Object
Request Broker Architecture (CORBA), a distributed objects platform. CORBA allowed
programs located in different parts of the network and written in different programming
languages to communicate with each other. The term Object Request Broker (ORB) gained
popularity to denote the infrastructure software that enabled distributed objects. In 1996,
CORBA version 2 introduced the Internet Inter-ORB Protocol (IIOP) as major enhancements in
the core distributed computing model and higher-level services that distributed objects could
use. [IOP established CORBA’s dominance in distributed computing for the next 5 years until
the advent of Web services.

Microsoft started its own distributed computing initiative around 1990. In 1996, Microsoft
delivered the Distributed Component Object Model (DCOM), which was closely tied to
previous Microsoft component efforts such as Object Linking and Embedding (OLE), non-
distributed COM (or OLE2), and ActiveX (lightweight components for web applications). To
compete with CORBA, the next year (1997) Microsoft introduced COM+ to bring DCOM
much closer to the CORBA model for distributed computing.

79

80

In the same year, Sun Microsystems added Remote Method Invocation (RMI) in its Java
Development Kit (JDK 1.1). RMI is similar to CORBA and DCOM, but works only with
objects written in Sun’s Java programming language. In Sun’s 1999 Java 2 Enterprise Edition
(J2EE) platform, the company integrated RMI with CORBA’s I1OP.

Unfortunately, CORBA is very complex. It requires significant effort to implement. The
much simpler XML-based XML-RPC appeared in 1999 and became a strong competitor to
CORBA. XML-RPC was inspired by two earlier protocols. The first is an anonymous RPC
protocol designed by a person named Dave Winer. The other more important inspiration was an
early draft of the SOAP protocol.

The name of Simple Object Access Protocol (SOAP) appeared for the first time around
2000, which heralded the era of Web services. Our implementation of Optimization Services is
entirely based on SOAP and adopts the same architecture as that of Web services.

Although Remote Procedure Call has been the traditional approach for building distributed
systems, there are other alternatives such as data-oriented or document-centric messaging (for
asynchronous invocation). Rather than being focused on distributing computation by
specifically invoking remote code, messaging takes a different approach. Applications that
communicate via messaging run their own independent computations and communicate via
messages that contain pure data. IBM released its messaging product MQSeries in 1993.
Microsoft’s messaging product is the Microsoft Message Queuing Server (MSMQ). Sun
Microsystems’ J2EE defines a set of APIs for messaging through the Java Messaging Service
(JMS). There is no attempt to define a standard interoperability protocol for messaging servers.

One of the key benefits of Web services is that the core Web service protocols can support
RPCs and messaging with equal ease. We define Web services and describe related
technologies in the later sections (§4.5, §4.6, §4.7, §4.8). We also describe the service-oriented

architecture that structures the Optimization Services framework.

4.1 Basic Computing Technologies and Terminologies
This section briefly describes basic computing technologies that help in understanding the
later sections of the chapter. All of these technologies are used directly or indirectly in the

design and implementation of the Optimization Services framework.

81

4.1.1 Java and OS design philosophies

In the Optimization Services project, we use the Java programming language to implement
the Optimization Services (OS) library and build our Optimization Services system. The OS
library is designed to provide a foundation of reusable objects to speed the development of OS
applications and make them more reliable. Today many Operations Research applications are
developed from scratch to solve a specific problem without the benefit of a foundation of tested
software. This is time consuming and expensive due to the complexity and the thorough testing
that is required of OR applications. By reusing the many proven classes in the OS library, OS
developers can build OS applications more efficiently and the OS system will be more reliable.

In order for OS library to be accepted, it must be immediately useable and at the same time
provide the depth and flexibility required for advanced applications. Our OS library provides
depth and flexibility through the extensive use of interfaces to abstract methods and data
structures. All methods use only these interfaces and abstract classes when accessing internal
objects and this allows developers to substitute an object that provides new functionality.

Javawas selected because it is platform independent and provides a rich environment for
application (esp. client and server applications) development. The data structures and methods
used in OS applications have a large impact on performance and using Java will make efficient
components more widely available and easier to use. Moreover most current surveys and
benchmarks [73] find that Java performance on numerical code is comparable to, or better than

that of C++, with indications that Java's relative performance is continuing to improve.

Portability
Most programs created on a particular operating system must be converted, or ported,

before they can run on a different operating system. A major advantage of the Java
programming language is that users can run the same Java programs on computers using
different operating systems. The phrase “write once, run anywhere” is often used to describe

Java programming. This is also the goal of Optimization Services.

Java Virtual Machine (JVM)

JVM is software that runs Java programs. The virtual machine creates a simulated
software environment on a computer, which allows Java programs to run outside of the
computer’s operating system. This helps prevent malfunctioning Java programs from crashing a

computer system and makes it possible for Java programs to run on different platforms. The

82

Java virtual machine also automatically handles such tasks as garbage collection, threading,
security, and loading classes. The Optimization Services server that we implemented to host

services like solvers relies on JVM. Thus hosted services enjoy all the support from JVM.

Free Environment and Open Source Community Support

The Microsoft .NET initiative includes a new programming language (C#) and a Common
Language Runtime (CLR). C#’s language design is similar to that of Java and CLR is very
much like Java’s Virtual Machine — CLR components are implemented as byte code that runs
in a managed environment. But .NET is Microsoft proprietary and is not free.

To design and implement an open standard framework like the Optimization Services
framework, Java is a good fit and almost a necessity. Java is the most widely adopted language
in the general Open Source and free software community. The language support has a much
larger audience base. In fact, all the required libraries used in the OS library are open source.
There are different classes of “free software,” and there are gray areas between each class. For
more information on Open Source and free software and Open Source license, visit the site

http://www.opensource.org/.

Objected-oriented Language

Java is a purely objected-oriented programming language. To design a good distributed
system framework like the OS framework, the Object-Oriented Programming (OOP) ideology
and philosophy should be adopted. We describe OOP in more detail in the next section.

4.1.2 Object-Oriented Programming (OOP)

Object-Oriented Programming is a programming concept developed to make programs
more understandable and easier to correct and modify. In the OOP concept, a program is made
up of one or more objects, which are small, re-usable chunks of code. Each object is used to
perform a specific task and can be shared with other programs. Distributed object-oriented
systems require object-based RPC. It is almost a necessity to adopt OOP when designing any
good distributed system.

In our Optimization Services system, each component is designed as an object. A
communication Agent object, for example, provides methods for generic networking. The
mechanism to create the Agent objects is the Agent class. Users of the Agent class are

provided with a specification of how the class works, but they need no knowledge of how the

83

Agent class is implemented. The separation of specification from implementation is called
information hiding. In our example, the Agent class hides all the information of our
Optimization Services Protocol based networking. Classes are more formally called “abstract
data types” or ADTs in objected-oriented programming terminologies. ADT is the most
important characteristic of any OOP language.

A second characteristic of OOP languages is inheritance. In our Optimization Services
implementation, for example, there is a library package for basic algebra operations. In the
common algebra package, we define a SparseMatrix. A SparseMatrix class is certainly
a matrix. Thus the class SparseMatrix can be said to inherit from class Matrix. In this
context, class Matrix is called a base class and class SparseMatrix is called a derived
class. SparseMatrix can in turn have its own derived classes, for example,
DoubleSparseMatrix for a sparse matrix with double precision decimal matrix entries,
and BigSparseMatrix, for a sparse matrix with arbitrarily precise matrix entries. An
inheritance hierarchy of matrices is shown in Figure 4-1.

Matrix

oY

SparseMatrix DenseMatrix

/N /N

BigSparseMatrix DoubleSparseMatrix DoubleDenseMatrix BigDenseMatrix
BigDecimalSparseMatrix BigIntegerSparseMatrix BigDecimalDenseMatrix BigintegerDenseMatrix

Figure 4-1: Inheritance hierarchy for matrices.

The third characteristic of object-oriented programming language is polymorphism, a
dynamic binding of messages to method definitions. This is supported by allowing one to
define polymorphic variables of the type of the base class that are also able to reference objects
of the derived classes of that class. The base class can define a method that is overridden by its
subclasses. The operations defined by these methods are similar, but must be customized for
each class in the hierarchy. When such a method is called through the polymorphic variable,
that call is bound to the method in the proper class dynamically.

Polymorphism is the key idea in designing nonlinear programming features in

Optimization Services. In the case of nonlinear programming, a key aspect of any nonlinear

84

instance parser is some sort of expression tree for the nonlinear part of a model instance.

Consider the following Rosenbrock [97] nonlinear function:
(1-X,)* +100*(X, - X,*)* 41

An expression tree for the function is illustrated in Figure 4-2.

Figure 4-2: An OS expression tree for the Rosenbrock nonlinear function.

One approach is to use a C-structure for each node in the expression tree. The structure can
store information as to operator or operand type and pointers to children nodes. A tree-walking
method is used to perform operations on the expression tree such as function or derivative
evaluations. See Figure 4-3 for an illustration the essential idea. In Figure 4-3,

expr is a C-structure, *e a pointer to the root node of expression tree and opnum is an integer

value denoting the node type.

double evaluate_function (expr *e, double x[]1){

OpNUm = &->0p
switch{opnumi{
case PLUS_ocpno: ...
case MINU opno: ...

Figure 4-3: Sample code for parsing a nonlinear instance without polymorphism.

Currently there are more than 200 nonlinear operators supported in the Optimization
Services nonlinear Language (OSnL, §6.3). OSnL is included in the Optimization Services
instance Language (OSiL, §6.2) for nonlinear extension. A fundamental problem with the

above approach is that every method that operates on the expression tree requires a switch

85

with a whole series of case statements (or a sequence of more than 200 i f statements)
making the code very complex. Updating the code to reflect new operators can be even more
time consuming and error prone.

A second approach is to use an object oriented language such as C++ or Java and define a
class for each type of node in the expression tree. For example, define a “plus” node class, a
“minus” node class, an “exponential function” class, etc. However, for an object-oriented
approach to be effective it is necessary to avoid the use switches and complicated logic as much
as possible. This is achieved by having each node class extend a single node class and using
polymorphism.

In our Optimization Services nonlinear Language (OSnL) library for reading nonlinear
expressions, we first define an abstract class OSnLNode. All of the operator and operand
classes used to define a nonlinear term extend the base class OSnLNode. For example, there is
a class OSnLNodeTimes that extends the base class OSnLNode. This is a significant benefit,
because we can construct an expression tree of homogenous nodes, i.e. the 0OSnLNode.
Methods that operate on the expression tree to calculate function values, derivatives, postfix
notation, etc. do not require switches or complicated logic. Since each operator and operand
class extends the OSnLNode, class polymorphism eliminates the need for switches. For
example, the abstract class 0SnLNode has an abstract method calculateFunction that
takes a double precision array of variable values and evaluates the expression tree for the give
variable values. Every class that extends OSnLNode must implement this method. Consider
the node class corresponding to the plus operator, OSnLNodePlus. The
calculateFunction method for the OSnLNodePlus class is listed in Figure 4-4.
Compare the logic in Figure 4-4 with the logic in Figure 4-3. Through the use of polymorphism
and recursion the need for switches is eliminated. Because of this design, adding a new operator
element is easy. It is simply a matter of adding a new class and implementing the

calculateFunction () method.

protected double calculateFunctionideoubla[] =39
n_dFunctionValue = m_mChildren[Q] .calculateFunctionix) +
n_mChildren[i].calculateFunctiondx);
return n_dFuncticnValue;

ti/caloulateFunction

Figure 4-4: Calculating a function value in an OSnLNodePlus class.

86

4.1.3 Networking background and terminologies

Network and network software

We sometimes use the term Optimization Services (OS) network. By that we mean a
group of connected computers that allow people to share optimization services. The size of an
OS network is therefore the number of computers in this group.

The OS Network software consists of programs that 1) manage the OS network, 2) provide
optimization services, and 3) allow computers to communicate and share information on the
network.

1). Since Optimization Services relies on widely accepted networking protocols, no
software (i.e. network operating system) that manages the OS network needs to be provided.
Most of the time, Optimization Services is based on the Internet. Every modern computer has
built-in Internet support, so there is no extra installation or configuration in order to run
Optimization Services applications. If Optimization Services is used on an Intranet, popular
Local Area Network software is also readily available.

2). Optimization software developers (e.g. solver developers) are the ones who provide the
optimization services. Most software is built independent of Optimization Services. Therefore
some interfacing adaptations need to be made in order to make the software Optimization
Services compatible.

3) We as the Optimization Services developers provide the OS server software and library
to help OS computers to communicate and share optimization services on the OS network. In

this thesis, OS server and library are what we mean by OS network software.

Network protocols and standards

In §1.3.1, we talked about the Open Systems Interconnection (OSI) networking protocol
model that specifies seven layers in the OSI model — Application, Presentation, Session,
Transport, Network, Data Link and Physical from top to bottom. But OSI is only a reference
model and it may be more detailed than necessary. Sometimes two OSI layers are simple
enough that they are implemented together. In particular, the best known protocol, the Internet
protocol (TCP/IP), aggregates some of layers in the OSI model. TCP/IP is a collection of
protocols and it has only 4 distinct layers -- network access (e.g. Ethernet), internet (e.g. IP),
transport (e.g. TCP), and application layers (e.g. HTTP).

Many products (including optimization related products) are needed to create and maintain

a network. Before a network can function properly, all the products on the network must be

87

able to communicate with each other. Before the protocols are introduced, there was no
standardized way to exchange information on a network. Many companies developed their own
network hardware or software without considering how different devices would work with
other products on a network.

Most companies now follow the standard protocols so that their products will work with
products developed by other companies. When companies follow standards, they ensure their
devices will communicate with other devices on a network. It seems that the standards at the
bottom layers (hardware) tend to be more mature than those at the top. The reason may be due
to more diverse types of software at the higher level, which need to allow user flexibility. For
example, Optimization Services Protocol (OSP) is a domain-specific application protocol.
There can be many domains that need application protocols and benefit from standardization.

A major benefit of OSP is that it is an open standard protocol like TCP/IP. This means that
any company or person can design a device or program that uses OSP without having to pay a
royalty or licensing fee. Another major advantage of OSP is that due to the layering
characteristic of networking protocols, OSP can leverage the many generic networking
mechanisms from its underlying protocols and concentrate on domain specific (i.e.
optimization) designs. For example OSP can be transmitted (directly or indirectly) over the
Secure HyperText Transfer Protocol (HTTPS) instead of the normal HTTP protocol. HTTPS is
then used to securely transfer information on the Internet. HTTPS encrypts and decrypts the
information exchanged between a server computer and a client computer using a system called
Secure Sockets Layer or SSL.

Client/Server networking

A client/server network consists of a central computer that serves resources and services to
other computers, called clients. Traditional centralized optimization systems are typically based
on such networking.

A client is a computer that requests optimization-related services or access to optimization
information stored on a server. People use client computers to enter and display information
processed by an optimization server on a network. An optimization server is usually dedicated
to providing optimization-related services on a network. As with all centralized networks,
administrative tasks such as result backup and security monitoring must be performed on a
regular basis to ensure efficiency and reliability. If the optimization server is tampered with or
malfunctions, the entire optimization system will be affected. As client/server networks require

specialized, dedicated hardware and software, they can be very expensive.

88

Peer-to-peer networking

Our OS network is essentially a peer-to-peer network, as it allows all the computers on the
network to store and share their resources and services, although on each peer-to-peer link, the
networking is still set up on a client/server basis. There are no central computers that control
the network. Software applications, such as optimization solvers, and the OS networking
software/system (the OS library and OS server) run on each computer. Each computer is set up
to share and access information and resources on the OS network. Since computers on the OS
peer-to-peer network are configured to share and access information, individual developers
administer their own computers. There is usually no dedicated system administrator for the OS
network.

If a computer on an OS network is not turned on or malfunctions, the other computers on
the network will not be able to access the computer’s resources and services. However,
resources and services on other computers on the network will not be affected. So peer-to-peer
network is more fault-tolerant than a centralized client/server setup. It has to be acknowledged
that since developers on the OS peer-to-peer network store files and services on their own
computers, anyone may be able to access their computers. This makes information on the OS
peer-to-peer network less secure than the traditionally more centralized optimization systems.

The cost of a peer-to-peer network is, however, generally low.

4.2 XML

Optimization Services is an XML-based framework. The OS framework uses XML to
specify both communication and representation standards.

XML stands for Extensible Markup Language. It is a subset of Standard Generalized
Markup Language (SGML) constituting a particular text markup language for representation
and interchange of structured data. For a quick reference, see [99]. For a complete reference,
see [107]. SGML is a standard for how to specify a document markup language or tag set.
HTML is another example of SGML.

But unlike HTML, which defines a fixed set of tags describing a fixed number of
elements, XML is a meta-markup language in which we can define the tags we need to describe
a document’s structure and meaning. The tags must be organized according to certain general
principles, but they are quite flexible in their meaning. For example, as we are working with
optimization and need to describe objectives, variables, constraints, and so forth, we can create

tags for each of these elements. The tags that we create can be documented in a schema. For

&9

now, think of a schema as a vocabulary and syntax for certain kinds of documents. For
example, our Optimization Services instance Language (0SiL.xsd') is a schema that
describes a vocabulary and syntax for an optimization problem instance, and we can use the
schema to validate an optimization instance. The validation mechanism ensures the stability of
the Optimization Services standards. Formatting of our optimization instance can be added
through additional style sheets (e.g. XSL in §4.4), but the instance document itself only
contains tags that describe the optimization contents, not the appearance. So XML is a semantic

markup language.

4.2.1 Why XML

XML became a specification at the World Wide Web Consortium (W3C) in 1998. Since
then XML has increasingly been adopted as a standard for information interchange of all kinds.

Domain-specific

This is probably the biggest reason that the Optimization Services is XML-based. XML
allows workers in each research area to develop their own XML dialects. Thus XML is ideal
for large and complex optimization instance documents. For example, we can create “variable”
and “constraint” tags in a way that it is most efficient and effective for storing, transmitting and
parsing a mathematical program. XML not only lets us specify a vocabulary for the document,
but also lets us specify the relations between elements. For example, we can require that every
variable has a lower bound and if the lower bound is missing, it defaults to 0.

Open

Optimization Services, being an open framework, requires the standards that it uses to be
completely open and freely available on the Internet. XML is a W3C standard that is
nonproprietary, unencumbered by copyright, patent, trade secret, or any other intellectual
property restriction.

Interoperable

Optimization Services is intended to solve communication issues between heterogeneous
components over a distributed system. XML can be used on a wide variety of platforms and
interpreted with a wide variety of tools. XML supports a number of key standards for character
encoding, allowing it to be used all over the world in a number of different computing
environment. XML complements our programming language Java, another force for

interoperability, very well. A considerable amount of early XML development has been in

1< xsd’ is the file extension of a schema file.

90

Java. Because the document structures behave consistently, Optimization Services parsers that
interpret them can be built at relatively low cost in many languages. Also by storing an
optimization instance in XML format, we are bringing the model closer to the data source and
facilitating the integration of optimization-based solutions into IT infrastructures.

Presentable

XML-based Extensible Stylesheet Language (XSL) offers a convenient way to specify
translations of XML documents. For example if an optimization solution is formatted in
Optimization Services result Language (OSrL), XSL can be applied to the solution instance to
easily produce an HTML document that displays the solution data in a user-friendly form.

Simple

XML provides both programmers and document authors with a friendly environment, at
least by computing standards. XML documents are built upon a core set of basic nested
structures. While the structures themselves can grow complex as layers of detail are added, the
mechanisms underlying the structures require very little implementation effort. Furthermore,
XML is well-documented. The W3C’s XML specification and numerous books and resources
tell people how to read and write XML data. At a low level, XML is a simple data format.
XML can be written in pure ASCII text as well as a few other well-defined formats. At a higher
level, XML is self-describing. Even though most of the Optimization Services representations
are intended to be read by computer programs, they are certainly readable by humans. This

certainly helps in developing and debugging the Optimization Services components.

4.2.2 XML basics and MathML
An XML representation consists of data delimited by <element> tags, much like an
html representation of the content of a Web page. Each <element> tag can have space-

delimited attributes in the form of “name=value” and can contain embedded elements:
<element1 attrName1="value1" attrName2="value2">

<element1 ...>

</element1>
<element2 ...>

</e|érﬁent2>
</element1>

Elements have to be closed with a start tag and an end tag such as:
<element ...>...</element>

If an element does not contain embedded elements, the start and end tags can be

combined such as:

91

<element .../>

to save some space.

New collections of XML tags are defined for any specialized purpose by specifying a
schema. One perceived disadvantage of an XML is its verbosity — the considerable file space
taken up by tags — but in fact the tags only increase file size by a constant factor, which can be
considerably reduced by use of optional alternatives to an ASCII representation [53].

An example of XML is given in Figure 4-5, expressed in MathML [96][109], a dialect of
XML that is of some particular interest in this thesis. A dialect is an implementation of domain-
specific XML notation governed by a standard schema designed to support languages such as
chemical markup (CML), mathematical markup (MathML) and all the representation-related
OSxL in Optimization Services. There are two flavors of MathML: Presentation MathML and

Content MathML. Figure 4-5 shows the nonlinear expression (2.X, +3X,)* in Presentation

MathML, so-called because it describes math notation without trying to capture meaning.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN"
"http://www.w3.org/TR/MathML2/dtd/mathmi2.dtd">
<math xmins="http://www.w3.0rg/1998/Math/MathML" xmIns:xlink="http://www.w3.0rg/1999/xlink">
<msup>
<mfenced>
<mrow>
<mrow>
<mrow>
<mn>2</mn>
<mo>⁢</mo>
<mi>X1</mi>
</mrow>
<mo>+</mo>
<mrow>
<mn>3</mn>
<mo>⁢</mo>
<mi>X2</mi>
</mrow>
</mrow>
</mrow>
</mfenced>
<mn>2</mn>
</msup>
</math>

Figure 4-5: Expression (2X, +3X,)” in Presentation MathML.

Every XML document begins with an XML declaration, the first line in the above
example. Then we define some overhead such as the schema location to validate the XML. But
the more important part is that every MathML document starts with the root element <math>.

Again there is some overhead in the root element such as defining namespaces used to qualify

92

the elements and avoid potential naming conflicts. For simple clarification purposes, in the
following XML examples, we skip the overhead parts.

As seen, Presentation MathML is mainly used to describe the layout structure or
“rendering” of mathematical notation. Another set of MathML components, Content MathML,
attempts to represent meaning. Content MathML is intended to provide an explicit encoding of

the underlying mathematical structure without regard to how it is presented visually. Figure 4-6

shows the same expression (2.X, +3.X,)” in Content MathML.

<math>
<apply>
<power/>
<apply>
<plus/>
<apply>
<times/>
<cn>2</cn>
<ci>X1</ci>
</apply>
<apply>
<times/>
<cn>3</cn>
<ci>X2</ci>
</apply>
</apply>
<cn>2</cn>
</apply>
</math>

Figure 4-6: Expression (2.X, +3.X,)’ in Content MathML.

Content MathML still has <math> as its root element. The fundamental idea of Content
MathML is to apply (therefore the element <apply>) functions and operators to other
elements. To do this, Content MathML uses prefix notation. Prefix notation is when the
operator comes first and is followed by operands. There are three functions shown in the above
example: <power>, <plus>, and <t imes>. These functions are applied to number tokens
(e.g. <cn>2</cn>), identifier tokens (e.g. <ci>X1</ci>), or expressions that again start
with the <apply> element.

Content MathML allows information interchange to be more precise to software and
systems that are able to manipulate the mathematics. Since optimization is about numerical
computing, Content MathML can theoretically be used in optimization problems to represent
mathematical expressions, especially nonlinear expressions. But in extending our Optimization
Services instance Language (OSiL) from linear to nonlinear optimization, we decided against

using Content MathML. Instead we designed our own Optimization Services nonlinear

93

Language (OSnL) to represent nonlinear expressions in OSiL.. We summarize the main reasons

below.

Content MathML is too comprehensive. Content MathML is designed to support the needs
of a very diverse set of users. It includes far more than is required in the
modeling/optimization community. A significant number of features in Content MathML
will never be used by optimization services and modeling systems (e.g. vector calculus,
inclusion of Presentation MathML). If an instance unintentionally includes unnecessary
MathML features which shouldn’t be allowed, the MathML schema will still validate even
though none of the solvers would ever recognize such features. We believe simplicity is a
virtue and that means including only what is necessary.

Content MathML is not specifically designed to represent instances or instance components
of mathematical programs. OSiL is designed to represent instances of mathematical
optimization problems and OSnL is designed to natively complement OSiL for nonlinear
extensions. Certain features in OSnL that are critical in optimization such as XPath node,
user functions, and variable subscripts are not naturally supported in Content MathML. For
example, in Content MathML there is no built-in <var> tag to represent variables and
variable subscripts. In OSiL a variable is naturally expressed as <var idx="1"/>and
<var 1dx="2"/>.In the above MathML examples, we used <ci>X1<ci> and
<ci>X2<ci> to artificially make up the variables. The concatenation of a variable name
with an index can be confused with other identifiers. Alternatively, we might use
<ci>_{<mi>x</mi><mn>1</mn>}</ci> which is a hopelessly verbose
and memory consuming way to express a subscript.

Content MathML is not under control of the optimization community. This is perhaps the
single most important reason not to use MathML. We can add optimization-related features
to OSiL as needed. Using MathML to support optimization features is awkward at best, and
it is unlikely we can get the W3C to adopt optimization-specific features in a timely fashion.
Control of a standard for optimization is better left to an organization under the control of
the Operations Research community.

OSiL and OSnL are designed to be easily parsed and used by libraries in the OS APIL.
Content MathML has elements in the following categories: tokens, constructors, operators
and functions, qualifiers, constants and symbols, and semantic mapping elements. However,
for representing mathematical expressions, OSnL has a very consistent recursive and

object-oriented design where every element is an “nl node” that takes zero to an indefinite

94

number of children as arguments. This design results in extremely convenient parsing.
There is a one-to-one mapping between XML DOM (see §4.4) parse tree elements and the
corresponding OS Expression Tree. There is also a one-to-one correspondence between
each node element in the OS Expression Tree and each node class in the parsing library
API. Thus parsing an OSiL document is much easier than parsing a Content MathML
document.

However, in order to be as consistent with MathML as possible we adopt the MathML

element names whenever possible, for example <power> for the power function. Figure 4-7

shows the same expression (2.X, +3.X,)” in OSnL.

<nl idx="9">
<power>
<plus>
<var idx="1" coef="2"/>
<var idx="2" coef="3"/>
</plus>
<number value="2"/>
</power>
</nl>

Figure 4-7: Expression (2X, +3X,)* in Optimization Services nonlinear Language (OSnL).

There are several things worth noticing. First OSnL is usually embedded in OSiL. The root
element in the above example has an attribute 1dx="9" to indicate that it is part of the 9"
constraint, whose linear expression part is to be found in the 9" row or constraint, of the OSiL
instance. By separating out linear part from nonlinear part of an expression, we can take
advantage of sparsity, which is a necessity in large-scale optimization. The second thing to
notice is that we avoid the nuisance of unnecessary <apply> elements by adopting a
recursive design. The result is a cleaner and shorter representation. The third thing to notice is
that OSnL has the built-in <var> element which can take index (*idx") and coefficient
(“coef”) as its attribute. Variables appear so often in optimization that they have to be treated
specially to make optimization practical. By designing an XML language natively tailored to
optimization, we can achieve both efficiency and effectiveness in representation and
communication.

We illustrate one more XML example in the context Optimization Services. Consider the

following optimization problem instance which is based on an example of Rosenbrock (1960).

95

minimize 100(x, —x;)* +(1-x,)* + 7x,
subjectto x, +7x, <10 (4-2)
In(x,x,)+ 7x, +5x;, <10

Xy,%, 20

There are two continuous variables, x,, , X, in this problem, each with a lower bound of 0, and

variable x, x, with an objective function coefficient of 7. This information is represented in

OSiL in Figure 4-8.

<variables>

<var |b="0" name="x0" type="C"/>

<var [b="0" name="x1" type="C" objCoef="7.0"/>
</columns>

Figure 4-8: The OSiL <variables> element for the modified Rosenbrock problem in (4-2).

In the example, there are two kinds of elements: a <variables> element and a <var>
element. The <var> element has attributes 1b, name, type, and objCoef that further
describe the properties of the variable that <var> represents.

Next, we describe the most important technical features of XML schema that are used in

the Optimization Services representation design.

4.3 XML Schema

In order to facilitate communication between solvers and modeling languages, the instance
files must conform to an accepted standard. Otherwise, parsing optimization instance files in a
meaningful way is impossible. XML Schema is a database-inspired method for specifying
constraints and enforcing standards on XML documents. XML Schema is itself an XML-based
language.

Given an XML Schema, standard tools are available for parsing files that correspond to it,
and for building libraries to display and manipulate the contents of these files [103][119]. For
each OS representation language that we introduce for working with instances, we specify
representation rules in XML Schema. Schemas are explained in detail in §4.3.

We can think of the schema as a class and an XML instance that conforms to the schema

as an object or instance of the class. Just as a class very explicitly describes member and

96

method names and properties, an XML Schema explicitly describes element and attribute
names and properties.

For our <variables> element in Figure 4-8, Figure 4-9 shows a section of our OSiL
Schema that specifies its structure both graphically and in text. Many of the schema examples

in the later chapters are shown in this way.

“sequence”
=S
1.0

<xs:element name="variables">
<xs:complexType>
<xs:sequence>
<xs:element name="var" type="var" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

Figure 4-9: The <variables> element in OSiL Schema both graphically and in text.

In essence the schema means the variables element contains a sequence of 1 or more

(1..0) var elements of type also called var, which is defined below in Figure 4-10.

<xs:complexType name="var">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="init" type="xs:string" use="optional"/>
<xs:attribute name="type" use="optional" default="C">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="C"/>
<xs:enumeration value="B"/>
<xs:enumeration value="1"/>
<xs:enumeration value="S"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Ib" type="xs:double" use="optional" default="0"/>
<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>
<xs:attribute name="objCoef" type="xs:double" use="optional" default="0.0"/>
<xs:attribute name="mult" type="xs:positivelnteger" use="optional" default="1"/>
</xs:complexType>

Figure 4-10: The <var> element in OSiL. Schema.

This approach is very object oriented. The <var> type defined in Figure 4-10 is analogous to

an abstract class in Java. In W3C XML Schema terminology it is called a named type. In order

97

to actually have an instance file with <var> elements it is necessary to define in the schema,
an element (a class) named <var> that is of type var. This is done in the part of the OSiL
Schema illustrated in Figure 4-9. This allows an instance file to actually instantiate an instance
of the <var> element.

In defining the <var> type element, only the attributes listed in Figure 4-10 are allowed
to be present in a var element. All of these attributes are optional. Properties of the attributes
are explicitly defined. For example, the 1Db attribute (variable lower bound) and the ub
attribute (variable upper bound) must be double precision numbers and the t ype attribute
(variable type) must be a string value that is either C (continuous), B (binary), I (integer), or
S (string). In Chapter 6, we discuss in further detail the OSiL and OSnL schemas that are used
to define an optimization instance representation. We briefly discuss the basic elements in

XML Schema next.

Simple Types

We can have simple types and complex types in an XML Schema. The simple type is a
restriction of the text that appears in an attribute or element. For example here is a simple type
definition of an element.
<element name="source" type="xs:string" />
In this case, the defined element source cannot have attributes and can only contain text. We

can define more complicated simple types such as

<xs:element name="maxOrMin" minOccurs="0">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="max"/>
<xs:enumeration value="min"/>
</xs:restriction>
</xs:simpleType>
</xs:element>

In this example we are defining a simple type called maxOrMin (objective sense) that has as
its base the type string. But we further restrict the text in the attribute to take on values of

either max or min.

Complex Types

Complex types are elements that contain other elements or have attributes. There are two
different complex types: anonymous and named. Here is an example of an anonymous

complex type. In the tag <xs: complexType> there is no name, hence the term anonymous.

98

<xs:element name="con" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="ub" type="xs:double" use="optional"/>
<xs:attribute name="Ib" type="xs:double" use="optional"/>
<xs:attribute name="mult" type="xs:int" use="optional"/>
</xs:complexType>
</xs:element>

We could not use con (constraint) as a type in defining other elements. A named complex
type is much like an abstract class in C++ or Java. That is, you cannot actually have an object in
the class but you can have objects in classes derived from it. Below is an example of a named
type intVector. Inthe complexType tag there is now an associated name, in this case

intVector.

<xs:complexType name="intVector">

<xs:choice>
<xs:element name="base64BinaryData" type="base64BinaryData"/>
<xs:element name="el" maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:nonNegativelnteger">
<xs:attribute name="mult" type="xs:positivelnteger" use="optional" default="1"/>
<xs:attribute name="incr" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>

Here is another example of a named complexType.

<xs:complexType name="sparseVector">

<xs:sequence>
<xs:element name="idx" type="intVector" maxOccurs="unbounded"/>
<xs:element name="nonz" type="doubleVector"/>
</xs:sequence>
</xs:complexType>

Note that in this definition of a named complexType we are using the named type
<intVector>. For example, the element idx is of type intVector. We could now use
this <sparseVector> elsewhere as to define other elements. We can also define an

anonymous complexType sparseVector thatis of named type sparsevVector. Thatis,
<xs:element name="sparseVector" type="sparseVector" minOccurs="0" maxOccurs="unbounded"/>

We can also do a kind of inheritance through extension. First we define a base class called

<baseProgramData>.

<xs:complexType name="baseProgramData" mixed="false">

<xs:sequence>
<xs:element name="constraints" type="constraints" minOccurs="0"/>
<xs:element name="variables" type="variables"/>
<xs:element name="multiObjectives" type="multiObjectives" minOccurs="0"/>
<xs:element name="coefMatrix" type="coefMatrix" minOccurs="0"/>

99

</xs:sequence>
</xs:complexType>

Note in this definition the mixed attribute is set to false. This means that the
<baseProgramData> element can only contain the specified elements. If the mixed
attribute is set to t rue, the <baseProgramData> element can contain text or elements.
Now extend this base class to allow more elements, such as n1 (for nonlinear program

extension) and cones (for cone programming extension).

<xs:complexType name="programData">

<xs:complexContent>
<xs:extension base="baseProgramData">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="nl" type="nl" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="cones" type="cones" minOccurs="0"/>
<xs:element name="stages" type="stages" minOccurs="0"/>
<xs:element name="stochastic" type="stochastic" minOccurs="0"/>
<xs:element name="userFunctions" type="userFunctions" minOccurs="0"/>
<xs:element name="simulations" type="simulations" minOccurs="0"/>
<xs:element name="xmlData" type="xmlIData" minOccurs="0"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Similar to the extension, we can also define a restriction on a complex type base. But it is less

often used.

Substitution Groups

When deriving a new complex type by extension one can only add new elements or
attributes to the base type. When deriving a new complex type by restriction one can only put
additional restrictions on existing elements and attributes. Substitution groups allow a new
content model. They are somewhat like the concept of polymorphism in object oriented
programming in that you can substitute any type in a substitution group for the base type.

For example, to represent a generic tree node (operator or operand) for a nonlinear
expression, in our OSnL Schema, we create OSnLNode, a complex type that effectively is like

a Java abstract class.

<xs:complexType name="0SnLNode" mixed="false">
<xs:annotation>
<xs:documentation>This is a generic node from which we derive operator
nodes</xs:documentation>
</xs:annotation>
</xs:complexType>

100

The annotation element is just an XML Schema comment that can be ignored. Then we
create a substitution group based on the named element OSnLNode that is of type OSnLNode.

So we can think of OSnLNode as a derived class.

<xs:element name="0SnLNode" type="OSnLNode" abstract="true">

<xs:annotation>
<xs:documentation> Set abstract to true in order to create a substitution group</xs:documentation>
</xs:annotation>
</xs:element>

Note the abstract attribute is set to the value of t rue in order to create the abstract class.
Next, we create the actual elements that are in the substitution group for OSnLNode. For
example, we might have an OSnLNode that corresponds to subtraction. First we create the

abstract class for this operation.

<xs:complexType name="OSnLNodeMinus">

<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence minOccurs="2" maxOccurs="2">
<xs:element ref="OSnLNode"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

From this abstract class OSnLNodeMinus we create the derived element minus that is in the
substitution group OSn1Node.

<xs:element name="minus" type="OSnLNodeMinus" substitutionGroup="OSnLNode"/>

Note that the minus element requires exactly two child elements.

In a similar fashion, we define all other OSnL nodes such as plus, times, sin, sum,
PI,var,geq, if, PI, xPath, userF, quadratic. Fornodes such as sin, the
corresponding OSnLNodeSin requires exactly one chide element, as the sin operator is a
unary type. For nodes such as sum, the corresponding OSnLNode Sum requires one or more
child elements, as the sum operator is an indefinite type. For nodes such as PI, the
corresponding OSnLNodePT requires zero child elements, as the PT operator is a constant.

Essentially every operator or operand that appears in an expression tree is generically
regarded as a node of type OSnLNode. This objected-oriented style treatment provides a
significantly simple and powerful way to construct a nonlinear expression So for example, to
add nonlinear extensions to our OSiL, we simply define an element n1 that holds the nonlinear
term for a row specified by the attribute i dx, which indicates a row number of an objective or
constraint. As shown below, each n1 element has exactly one child elements, the expression

tree root, which can be anything in the substitution group for OSnLNode. Of course, we do not

101

know ahead of time whether the tree root will be a plus or a t imes node. But whatever it

may become, it has to be of a generic type OSnILNode.

<xs:element name="nl" type="nl" minOccurs="0" maxOccurs="unbounded"/>

<xs:complexType name="nl">
<xs:sequence minOccurs="1" maxOccurs="1">
<xs:element ref="OSnLNode"/>
</xs:sequence>
<xs:attribute name="idx" use="required" type="xs:int"/>
</xs:complexType>

When a concrete expression tree is finally constructed, it may look like
<nl idx="9">

<power>
<plus>
<var idx="1" coef="2"/>
<var idx="2" coef="3"/>
</plus>
<number value="2"/>
</power>
</nl>
for the nonlinear expression (2X, +3.X,) that appears in the 9" row (or constraint) of a

mathematical program. Every node in this expression tree has to follow the constraints

specified by the node’s corresponding type, e.g. the number of child nodes it can have.

Namespaces

It is possible for different XML vocabularies to use the same element name, yet the
element has a different meaning depending on the vocabulary. For example in one vocabulary
the element <t itle> might have a very different meaning than in another vocabulary.
Furthermore, when developing vocabulary a . xsd one might wish to borrow elements from
another vocabulary b . xsd or allow elements from vocabulary b . xsd to be used instead of
elements from a . xsd. For example, we have developed our instance representation language
OSiL. A user might wish to use our other optimization languages and services but use, for
example, MathML for instance representation. This is easily accomplished through the use of
namespaces. The local element together with the name space determines a globally unique
name known as a qualified name.

Assume a user wishes to represent a math program using Ma t hML rather than OSiL. They
can simply put the nonlinear program inside the <math> tag and use the appropriate name

space. For example, one approach is:

<math xmins="http://www.w3.0rg/1998/Math/MathML" xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:schemalocation="http://www.w3.org/1998/Math/MathML
http://www.w3.org/Math/XMLSchema/mathml|2/mathmI2.xsd">

102

<apply>
<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
</math>

This syntax declares that the <math> element and all of its children are in the MathML
vocabulary. That is, all of the elements are qualified and are in the default namespace MathML.

An alternative way to qualify the elements is through the use of a prefix.

<ml:math xmins:ml="http://www.w3.0org/1998/Math/MathML" xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:schemalocation="http://www.w3.org/1998/Math/MathML
http://www.w3.org/Math/XMLSchema/mathmI2/mathmlI2.xsd">
<ml:apply>
<ml:power/>
<ml:ci>x</ml:ci>
<ml:cn>2</ml:cn>
</ml:apply>
</ml:math>
Now, if we had written <ci>x</ci> instead of <ml:ci>x</ml:ci>, thenthe <ci>
would be unqualified and potentially confused with an element defined in other schemas that is
named the same.
The namespace that we use to qualify all the OSxL schemas is
“os.optimizationservices.org” and it should be different from any other

namespaces in the world as we have reserved the domain name “optimizationservcies.org.”

Import and Include

When working in the same name space it is often convenient to organize a set of schemas
in different files. We can then use one schema in another through the include element. For
example, in the instance language OSiL . xsd, we need to define the n1Node element that is

in the nonlinear language OSnL. xsd. To do this, we use the include statement as follows.
<xs:include schemalocation="0OSnL.xsd"/>

When schemas are in different name spaces we need the import element. For
example, in 0S1iL, we allow the use of MathML to describe a nonlinear program. In
order to validate a document against the os.optimizationservices.org
namespace we need to import the Ma thML namespace. This is done as follows.

First, in the root element we include the attribute:
xmins:mathML="http://www.w3.org/1998/Math/MathML"

Then we include an <import> element as follows:

103

<xs:import namespace="http://www.w3.org/1998/Math/MathML"

schemalocation="http://www.w3.org/Math/XMLSchema/mathml2/mathmI2.xsd"/>

Then in the schema we declare a <math> element.

<xs:element ref="mathML:math" minOccurs="0"/>

In this the case the <math> element is in the MathML namespace. However, we can
achieve the same result with

<xs:element name="math" type="mathML:math.type" />

in which case the <math> element is in the os.optimizationservices.org
namespace.

As a second example in 0OS1iL we build up our nonlinear terms recursively through
the abstract element OSnLNode. We can allow users to include an OSnLNode
element that is a MathML expression. First we import the Ma thML namespace as we
illustrated above. Next we define the <math> root element in the Ma thML vocabulary

as follows:
<xs:element name="math" type="mathML:math.type" substitutionGroup="nINode"/>
Then we define an OSnLNode which is really MathML.

<nl idx="2">
<math xmins:mathML="http://www.w3.org/1998/Math/MathML">
<mathML:apply>
<mathML:power/>
<mathML:ci>x</mathML:ci>
<mathML:cn>2</mathML:cn>
</mathML:apply>
</math>
</nl>

In this example, the element <math> is actually in the namespace

os.optimizationservices.org, butits children are in the MathML namespacel.

4.4 Other XML Technologies

In this section, we briefly describe other XML technologies used in the Optimization

Services project and their corresponding references.

SAX and DOM Parsing Models

Our OSiL instance is used to link modeling languages with solvers, typically over a

network. In our design, we expect a library/API to sit between the two and translate the XML

"In the first release of OSiL, we have taken out all the MathML related elements. It may or may not be
added in the later releases.

104

instance into a format that the solver can understand. To this end, the XML file must be parsed.
There are two basic approaches to parsing an XML file: Simple API for XML (SAX) [78] and
Document Object Model (DOM) [105]. Both are APIs that are used to translate XML
documents to some format suitable for use by computer programs. To construct an XML
document, DOM is used. To parse an XML document, both DOM and SAX can be used.

SAX is a set of streaming interfaces that decompose the XML documents into a sequence
of predefined method calls and fire events when elements and attributes are read. SAX does not
store the information in an element or attribute after it is initially read. Because of this, SAX is
very efficient and has low memory requirements. But when reading through an XML
document, all the previously read sections have to be remembered (stored in memory) for
parsing the later sections, so SAX may become less desirable to use. This is the case in reading
an optimization instance.

DOM is a set of traversal interfaces that decompose the XML documents into a hierarchal
tree of generic nodes. With this approach, the XML document is read into a tree-like data
structure and held in memory. In most of our parser library implementations, we use the DOM
instead of SAX and then transfer the information from the DOM into our OS Expression Tree.
We selected the DOM because it is easier to work with. For example, we have numerous error
checking routines to make sure the data is consistent and these routines require keeping

information about the problem in memory — information that is lost using SAX.

XML Authoring Tools

XML Authoring tools assist in editing XML documents or validating XML syntaxes.
XML documents can be XML Schemas as well as regular XML instances. The Optimization
Services project, for example, uses Altova’s XML Spy [1] and Progress Software’s Stylus
Studio [96]. Both XML Spy and Stylus Studio are comprehensive IDEs for developing XML
projects. They provide efficient and flexible environments for creating and editing XML
Schemas, XML instances, XQuery and XSLT style sheets. This thesis mostly uses both XML
Spy’s text view (Figure 4-11) and graphical view (Figure 4-12) for design illustrations.

] AR [V ¥ B

File Edt Project ¥ML DTD{Schema Schemadesign ¥SL Authentic Convert Yiew Browser W3DL S0AP Tools ‘window Help

Project . x

& os
E

=Pxml version="1.0" encoding="ut{-8" 7=

elementFormbefaul="gqualified"=
<xzinclude schemalocation="03gL xsd"f=
=xzinclude schemalocation="0SnL xsd"f=
=xzinclude schemal ocation="05sL xsd'f=

lotsizelookup. xsd
Ipfml. xzd
05alxsd
05gL.xsd
05iL.xsd
05iL_MaG.xsd
05l xsd
05nLxsd

<zg element name="0SIL" type="0SiL"t>
“xgicomplexType name="0%iL"=
x5 gerUences

=lEsenuences
050l xsd afescomplexTypes
<xzcomplexType name="programDescription™s

051k xed i
053l xsd “XgFeUeNCES ’

Entities

=z simpleTypes
=xzrestriction base="xs:string">
=xsenumeration value="max"iz
=xsenumeration value="min"f
=ixsrestriction=
b simpleTypes
=g lement=

Info x|

Element
Model

SeGUEnce
SegUence

=lXE SEquUENCES

ez complexTypes

=“xgcomplexType name="naseProgramData”-
<xsIgerUenCES

/XS FeUenCe:
<hescomplexTypes
<xEcomplexType name="programData"s
axscomplexCortents
=xa:Extension base="haseProgramData’s

Text Grid SchemaswS0L Authentic

hiConstant" type="xs:double" mindccurs;
umnberObjectives” type="xz:nonNegstivelntegeri=

umberConstraints" type="xs:nonNegativelrteger /=
umberariables" type="xs:nonMegativelntegert=

<xs schema targethamespace="05 optimizationservices ong" xmins="os optimizationservices.org"
e xai="pttp: M w3 orgi2001 KMLSchema-instance” «mins:xs="rttp: A 203 0rgi2001 ML Schema”

<l--zziimport namespace="http: M w3 orgd 395MathMathhL"
schemalocation="kttp: faanne w3 orgMath ML Schemaimathml2mathmi2

.

“programDescription” type="programDescription”/=
rogramData” type="programData’ /=
<k element name="math" type="mathML: math type" minOcours='

.

=xs:element name="source” type="xs:string" minOccurs="0"
escription” type="x3:string" minCcours="0"/>
hitame" type="«s string" minCccurs="0"%
=x3:element name="maxOrMin" minCccurs="0"

o

=xs:element name="constraints" type="constraints" minOccurs="0"=
=xs:element name="variables" type="variables"i=

utiokjectives" type="multiChjectives" minOccurs="0"=
oefiatrix! type="coefMatrix" minCcours="0"

=x3 seguence mindcours="0" maxOccurs="unbounded"s
<xz.element name="nl" tvpe="nl" minOcours="0" maxOccurs="unbounded"f=

Browser

(&3

Elements

{} xzal

{} x= annotation

{} xzany

£ s anyittrioute
£} s appinfo

{} = attribute

{3 xaatiributecroup
{} x= choice

€} s complexContent
{} x=complexType
{} xs documentation
{} x=:slement

{} x=:enumerstion
{} x=:extension

{} xs field

FAY

o kAR

Attrbutes

Entities

Unititled13,xml

[OSiL.xsd Ipfml.xsd

®MLSPY v2004 rel. 53U Registered to Jun Ma (Morthwestern University) ©1995-2003 Altova GmbH & Albava, Inc,

Ln 16, Cal 16

UM |

Figure 4-11: Text view of an XML file (OSiL) in XML Spy.

106

% Altova XMLSpy - [0Sil_NaG.xsd]

File Edt Project ML DTD/Schema Schemadesign ®SLfXQuery Autherbic Corwert Wiew Browser WSDL S0AP Tooks Window Help _ax
DIS®E G S48 [y Brc| v B9 coen ({0 I@ 86 G ERE s .
Project. - ax E || Components +ax

programDeseription Elelement

complexType
simple Type

} Iotsizelookup.xsd

| [;
| [|
| | |
! |
) ipfl s | | |
h 05al.xsd |
h 05aL.ked | |
h 05iL.xed | — | |
|, O5iL_Nab xsd [programescription E) |
h 0SmLxsd | |
b 05rLxsd | | ‘
4 0SeL.xsd ‘
i 05iLssd | |
3 09sL.usd | | ‘
Entities | | ‘
| | }
|
| E
| : } ‘ by Type | by Mamespace
Info vHu | | | ‘ Detais ~ax
| ‘ e progranDala BT |
| | ‘ | isRef
mindee |1
| | | | e =
type programData Ral
I | | } ;nnteu:a corples .
erivedBy =
| ‘ | mired |
| till bl =l
| | | block B
| ‘ Details
| } \ Facets - ax
| ‘ |
| | |
| | |
| |
! | |

Figure 4-12: Graphical view of an XML file (OSiL) in XML Spy.

XSL Transformation Tools

XML Transformation tools assist in transforming XML into something that can be
displayed in a browser or other rendering device. XSL [114], and its associated language XSLT
[115], is the main tool here. XSLT, is an acronym for Extensible Stylesheet Language
Transformation, is itself an XML-based declarative programming language to transform XML
files into HTML files, or other XML files, or any other plain text files. The following XSL
example retrieves all the variable names from an Optimization Services instance Language
(OSiL, Chapter 6).

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmins:os="o0s.optimizationservices.org" xmlins:xs|="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>
<xsl:template match="/">
<html>
<body>
<hr/>

107

<h1>Optimization Services instance Language Variables</h1>
<p/>
<xsl:for-each select="0s:0SilL/os:programData/os:variables/os:var">
<p/>varialbe: <xsl:value-of select="@name"/>
</xsl:for-each>
<hr/>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

The result looks something like:

Optimization Services instance Language Variables
variable: x1
variable: x2
variable: y1

variable: y2

Figure 4-13 shows how the combination of XML and XSLT can serve at least the same purpose
as HTML over the Internet. XSLT can be used for example to nicely display optimization

results formatted in Optimization Services result Language (OSrL, Chapter 6).

Client Side

XSLT-enabled - -

Browser
XML
+ Stylesheet

Server Side

Regular
Browser

HTML

Figure 4-13: An illustration of how the combination of XML and XSL style sheet can serve as the
same purpose of HTML.

108

XLink and XPointer

XLink [108] and XPointer [111] are used to link and reference information within an
XML document. XLink is a generalization of the HTML link concept, though it is at a higher
abstraction level intended for general XML — not just hypertext. Thus it has more expressive
power, such as multiple destinations, special behaviors, and link bases. Linking elements are
identified by an x1ink: form attribute with either the value “simple” or “extended.”
Furthermore, each linking element contains an href attribute whose value is the URI of the

linked resource. An XLink example is shown below:

<0SiLSchema xlink:form="simple” href="http://www.optimizationservices.org/schemas/OSiL.xsd”>Optimization

Services instance Language</OSiLSchema>

HTML links generally point to a particular document. Additional anchors (pointing to a
particular section, chapter, or paragraph of a particular document) are not well-supported.
Unlike HTML anchors, XPointers not only allow pointing to a point in a document, but also
allow pointing to ranges or spans, such as the root element of an XML document. An XPointer

is usually appended to an XLink or URL separated by a “#” sign as in the following example:
http://www.optimizationservices.org/schemas/OSoL.xsd#root() .

XPointer is sort of an extension to XPath (described next) to support linking. It
specifies connections between XPath expressions and Uniform Resource Identifiers
(URIs or more plainly, globally unique addresses). XPath, XLink and XPointer are especially

useful when some of the function evaluations in optimization problems can only be obtained

from a remote Web service.

XPath
XPath [110] is used to locate data in an XML file. It is a declarative language used to
identify subsets (nodes and fragments) of an XML document. XPath is designed standalone, but
it can also be used in XSLT (for pattern matching), XPointer (for addressing), XQuery (for

selection and iteration) and XML Schema (for uniqueness and scope description).

Unlike many other XML technologies, XPath uses a compact, non-XML format to
facilitate use within URIs and attribute values. XPath views an XML document as a tree,
containing different kinds of nodes. The XML node types include root, element, text, attribute,
namespace etc. XPath imposes a document order (order of occurrence of element start tags)
defined on all nodes except attribute and namespace nodes. The root is always the first node.

Root and element nodes have an ordered list of children. An element node is the parent of the

109

associated set of attribute/namespace nodes, the attributes/namespaces are not children of the
associated element node.

For example, given the following XML file:

<?xml version="1.0" encoding="UTF-8"?>

<stocks>
<stock name="ge" idx="2" ret=".03" mininv=".1">
<cov name="msft" idx="0" val="25"/>
<cov name="pg" idx="1" val="37"/>
<cov name="ge" idx="2" val="19"/>
</stock>
<stock name="msft" idx="0" ret=".07" mininv=".1">
<cov name="msft" idx="0" val="24"/>
<cov name="pg" idx="1" val="-10"/>
<cov name="ge" idx="2" val="25"/>
</stock>
<stock name="pg" idx="1" ret=".09" mininv=".1">
<cov name="msft" idx="0" val="-10"/>
<cov name="pg" idx="1" val="75"/>
<cov name="ge" idx="2" val="37"/>
</stock>
</stocks>

the XPath to find the return value of the Microsoft stock (ticker: msft) is:
stocks/stock[@name="msft]/@ret[1]

Since XPath 2.0, the XPath language has become a strict syntactic subset of XQuery 1.0,

described next.

XQuery
XQuery [112] is a query language for retrieving data items from an XML document.

XQuery is designed to meet the needs of the database world and the document processing
world. XQuery is to XML what SQL is to relational databases. XQuery is used in our
Optimization Services (OS) Registry (Chapter 8) implementation to find registered OS solvers
in a native XML database.

From the W3C XQuery [112] introduction page: “The mission of [XQuery] is to provide
flexible query facilities to extract data from real and virtual documents on the Web, therefore
finally providing the needed interaction between the web world and the database world.
Ultimately, collections of XML files will be accessed like databases.” With XQuery, we now
have a standard syntax by which XML processors can access XML data or non-XML data
exposed as virtual XML documents. XQuery expressions can replace procedural code that
generates new XML structures from other XML data. Thus XQuery enables robust queries
across a large set of XML documents or virtual XML data sources. The OSmL modeling

language we present in Chapter 9 is based upon the XQuery standard and is designed to convert

110

raw data in XML format into problem instances that conform to the Optimization Services
instance language (OSiL) standard.

Like XPath, XQuery uses a compact, non-XML format. XQuery is essentially an
extension to XPath. Where XPath serves simply to address XML document components and
return result sets, XQuery adds the ability to combine the result set with locally-defined
elements in order to create new XML structures. XQuery includes looping and conditional
constructs that XPath 1.0 does not have. XQuery also adds a large number of new functions, as
well as built-in support for XML Schema data types.

For example given the following XML file:

<bib>

<book>
<title>Large Scale Linear and Integer Optimization: A Unified Approach</title>
<author>Martin</author>
<publisher>Kluwer Academic Press</publisher>

</book>

<book>
<title>The Essential Guide to Internet Business Technology</title>
<author>Honda</author>
<author>Martin</author>
<publisher>Prentice Hall</publisher>

</book>

<book>
<title>AMPL</title>
<author>Fourer</author>
<author>Gay</author>
<author>Kernighan</author>
<publisher> Duxbury Press </publisher>

</book>

</bib>

the XQuery to find the titles of all the books written by each distinct author is:

for $a in fn:distinct-values(//author)
return (xs:string($a),
for $b in //book[author = $a]
return $b/title)

and the XQuery result is:
Martin

<title>Large Scale Linear and Integer Optimization: A Unified Approach</title>
<title>The Essential Guide to Internet Business Technology</title>

Honda

<title>The Essential Guide to Internet Business Technology</title>

Fourer

<title>AMPL</title>

Gay

<title>AMPL</title>

Kernighan

<title>AMPL</title>

111

4.5 Web Services and Simple Object Access Protocol (SOAP)

Web services are an evolving, middleware platform that facilitate program-to-program

interactions. W3C'’s official definition of Web services [116] is as follows:

“A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with the Web service in a manner
prescribed by its description using SOAP-messages, typically conveyed using HTTP with

an XML serialization in conjunction with other Web-related standards.”

More plainly, Web services are platform and implementation independent components

that are described using a service description language, published to a registry of services,
discovered through a standard mechanism (at runtime or design time), invoked through a
declared API (usually over a network), and composed with other services.

“Platform and implementation independent” means a client of the service can not tell
what language, operating system, or computer type the service uses. It is achieved through the
Simple Object Access Protocol (SOAP, see in this section below).

“Described” means that a Web service must describe itself, mainly in terms of what
requests are allowed, what the arguments are and which transport it uses. This is achieved
through the protocol of Web Services Description Language (WSDL, §4.7).

“Published” means that a Web service must tell a registry service where it is located (like
"yellow pages"). It is achieved through the protocols of Web Services Inspection Language
(WSIL, §4.8), Universal Description, Discovery and Integration (UDDI §4.8), or customized
domain specific registry services as in the case of the Optimization Services registry (Chapter
8).

“Discovered” means that a Web service’s potential clients can find it in a registry service.
This is also achieved through the same protocols and registry services as those in the Web
service publication.

“Invoked” means that the arguments and return types are known. This is achieved through
the protocol of SOAP.

“Composed” means that a service can also be a client. It is also achieved through the
protocol of SOAP.

In Chapter 5, we illustrate all the above mechanisms in the context of Optimization Services.

112

The core of Web services is the SOAP protocol for information exchange. The World Wide
Web Consortium (W3C) released its first recommended version, SOAP 1.2, on June 24, 2003.
SOAP Version 1.2 is a relatively simple and powerful XML-based protocol intended for
exchanging structured information in a decentralized, distributed environment such as the Web.
A W3C Recommendation is the equivalent of a Web standard, indicating that this W3C-
developed specification is stable, contributes to Web interoperability, and has been reviewed by
the W3C Membership, who favors its adoption by industry.

SOAP allows calls to remote objects’ methods and access to remote objects’ data using
standard Web services, the standard HTTP protocol for those services, and XML to describe
the call. SOAP is intended to serve as a more general and flexible successor to DCOM and
CORBA mentioned in the beginning of this chapter. Figure 4-14 gives an illustration from the
architecture view, the protocol view, the SOAP envelope structure view and the actual
HTTP/SOAP message view.

In the architecture view, a user constructs an application in any language (e.g. Visual
Basic). The purpose of the application is to call, as a client, a remote application or Web service
on the network, again written in any language (e.g. Java). The client’s VB structure is serialized
(that is transformed from binary to ASCII) through a SOAP client and into a SOAP message.
The SOAP message is then transmitted via the network to the remote application service. At the
remote end, the SOAP message is deserialized from its ASCII XML form into a binary Java
structure, before the application service executes the request call. A response is returned in the

same way.

Architecture View

VB
application

Java
application

ANY

client!

Protocol View

tture

Java-fsnucture_

AP

39

clier

SQAP

it

\ \s%
e ag,

]

SOAP
Server

Envelope

SOAP Envelope

SOAP Header

SOAP Body

Payload Document(s)

SOAP Fault

113

Web Service

SOAF

KT TP

HTTP

Content Length: 123

Host: http://user.iems.1
Content-type: text/xml
<2aml version="1.0" e

POST /services/ VersiofReq

est HTTP/1.0

vu.edu/
charset=utf-8
coding="UTF-8"7>

<soap . Envelope ... >
<soap:Body>

=/question >

</soapBody>
</soap:Envelope>

<m:SolverVersionRequestMsg
xming :m="http://www.optimizationservices. org/soap-methods/"
<question xsi:type="xsd:string">
What is the version of the IMPACT MINLP solver?

<fm: SolverVersionRequesthsg >

Actual
Message

Figure 4-14: SOAP illustration from high to low level.

In the network view protocol, all the information needed for the client call is stored in a

SOAP envelope. A SOAP envelope is usually packed inside an HTTP protocol. From that point

on, the HTTP packet is transmitted over a TCP/IP transport the same way that an HTTP request

for a Web page is transmitted. The only difference is that a request for a Web page usually

contains HTTP content such as GET or POST methods for an HTML document, whereas a

request for a Web service always contains a SOAP envelope.

Suppose we want to send the problem in (4-3) to the Lindo solver service hosted at

http://www.optimizationservices.org/os/LindoSolverService.jws.

minimize (1-x,)* +100(x, — x,*)*

subjectto x, +x, —100<0

(4-3)

We can call the method String solve (String 0SiL)in LindoSolverService.jws. The

argument OS1iL is an instance representation of problem (4-3). The returned String is an

instance representation of the problem solution. There are many libraries (including the OS

library in Appendix B) that help parsing and sending XML instances.

First an HTTP header with the POST method is prepared like the following:

114

POST /os/ossolver/LindoSolverService.jws HTTP/1.0

Content-Type: text/xml; charset=utf-8

Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.2beta3

Host: http://www.optimizationservices.org

Cache-Control: no-cache

Pragma: no-cache

Content-Length: 2488

<soapenv:Envelope ...>

</soapenv:Envelope>

Since this is an HTTP POST, we attach the POST data — the SOAP envelope — at the end of the
HTTP header with a line separation (i.e. two new line characters).
Inside the SOAP envelope, it is essentially a SOAP encoding of the LindoSolverService

method String solve (String 0SilL) with the actual OSiL string argument:

<soapenv:Envelope xmlIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<ns1:solve soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmins:ns1="http://www.optimizationservices.org/os/ossolver/LindoSolverService jws">
<OSsiL ...>
</OSiL>
</ns1:solve>
</soapenv:Body>

</soapenv:Envelope>

Optimization Services Protocol further specifies that the method signature
solve (String) should be exactly the same as specified in the Optimization Services
hookup Language (OShL Chapter 7) and the actual OSiL string argument should follow the
OSiL Schema (Chapter 6):

<OSiL xmIns="os.optimizationservices.org" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSiL.xsd">

<programDescription>
<I--simulation-->
<maxOrMin>min</maxOrMin>
<numberObjectives>1</numberObjectives>
<numberConstraints>1</numberConstraints>
<numberVariables>2</numberVariables>
</programDescription>
<programData>
<constraints>
<con ub="0.0"/>
</constraints>
<variables>
<var |b="0" name="x1" type="C"/>
<var |b="0" name="x2" type="C"/>
</variables>

115

<nl idx="-1"><plus><power><minus><number type="real" value="1.0"/><var coef="1.0"
idx="1"/></minus><number type="real" value="2.0"/></power><times><number type="real"
value="100"/><power><minus><var coef="1.0" idx="0"/><power><var coef="1.0" idx="1"/><number type="real"
value="2.0"/></power></minus><number type="real" value="2.0"/></power></times></plus></nl>

<nl idx="0"><minus><plus><var coef="1.0" idx="0"/><var coef="1.0" idx="1"/></plus><number
type="real" value="100"/></minus></nl>

</programData>

</OSiL>

SOAP, however, has its own set of encoding rules; for example it represents < with &1t ;
and > with > ;. So in an actual SOAP message over the network, the above OSIiL string

looks like

&It;OSiL xmIns="os.optimizationservices.org" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSiL.xsd">

<programDescription>
<!--simulation-->
<maxOrMin>min</maxOrMin>
<numberObjectives>1</numberObjectives>
<numberConstraints> 1</numberConstraints>
<numberVariables>2</numberVariables>
</programDescription>
<programData>
<constraints>
<con ub="0.0"/>
</constraints>
<variables>
<var Ib="0" name="x2" type="C"/>
<var Ib="0" name="x1" type="C"/>
</variables>
<nl idx="-1"><plus> <power><minus><number type="real" value="1.0"/>
<var coef="1.0" idx="1"/></minus><number type="real"
value="2.0"/></power><times><number type="real" value="100"/>&It;power>&It;minus>
<var coef="1.0" idx="0"/>&lIt;power><var coef="1.0" idx="1"/><number type="real"
value="2.0"/></power></minus><number type="real"
value="2.0"/></power></times> </plus> </nl>
<nl idx="0">&It;minus><plus> <var coef="1.0" idx="0"/><var coef="1.0" idx="1"/>
</plus><number type="real" value="100"/></minus></nl>
</programData&agt;
</OSiL>

Usually a SOAP envelope contains two sections: SOAP header (optional and not shown in
the above example) and SOAP body. The SOAP Header mainly has some administrative
information to complete a call. The SOAP body contains the major request and response
information, for example call methods and arguments. The SOAP body also contains a
subsection, SOAP fault, which specifies exception errors returned by the called Web service.
For example, if the problem is solved successfully, the Lindo solver service should return an
optimal solution of (1.0, 1.0) with an objective value 0.0 for the problem (4-3) in the following

SOAP envelope (again with < encoded as &1t ; and > encoded as > for the result string):

HTTP/1.1 200 OK

Set-Cookie: JSESSIONID=A8AF406536A271018100F64CFA462FAQ; Path=/os
Content-Type: text/xml;charset=utf-8

Date: Sun, 20 Mar 2005 21:28:40 GMT

Server: Apache-Coyote/1.1

116

Connection: close

<soapenv:Envelope xmlIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<ns1:solveResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="http://www.optimizationservices.org/os/ossolver/LindoSolverService.jws">
<solveReturn xsi:type="xsd:string">
<OSrL xmIns="o0s.optimizationservices.org"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="o0s.optimizationservices.org
http://www.optimizationservices/schemas/OSrL.xsd">
<result>
<status type="optimal"/>
<objective>
<objectiveValue value="0.000"/>
</objective>
<variables>
<variableSolution>
<description/>
<var idx="0" varName="x1" value="1.0"/>
<var idx="1" varName="x2" value="1.0"/>
</variableSolution>
</variables&agt;
</result>
</OSrL>
</solveReturn>
</ns1:solveResponse>
</soapenv:Body>
</soapenv:Envelope>

Notice the HTTP status of 200 OK in the first line. Optimization Services Protocol further
specifies that the actual returned string argument should follow the OSrL (Optimization
Services result Language Chapter 6) schema.

If the problem is not solved successfully or a networking error occurs, the following

message would be returned with a SOAP fault element:

HTTP/1.1 500 Internal Server Error

Set-Cookie: JSESSIONID=8AEFE9B91BD586ABFD237F7EEDAAC267; Path=/os
Content-Type: text/xml;charset=utf-8

Date: Sun, 20 Mar 2005 23:07:20 GMT

Server: Apache-Coyote/1

Connection: close

<soapenv:Envelope xmlIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<soapenv:Fault>
<faultcode>soapenv:Server.userException</faultcode>
<faultstring>java.lang.NullPointerException</faultstring>
<detail>
<ns1:hostname xmins:ns1="http://xml.apache.org/axis/"> A null pointer
exception</ns1:hostname>
</detail>
</soapenv:Fault>
</soapenv:Body>
</soapenv:Envelope>

Notice the HTTP status of 500 Internal Server Error in the first line.

117

As shown in the actual message part of Figure 4-14 and also illustrated in the above
examples, the realization of SOAP Envelope, Header, Body and Fault is purely through XML
representation. This is one major difference between SOAP and all other major networking
protocols. It starts a standard for newly developed network protocols, including Optimization

Services Protocol.

4.6 Service Oriented Architecture (SOA)

Early in the Web services history, people noticed a pattern. Each time they applied Web
services technologies to an integration solution, the pattern would appear. They generalized the
pattern and named it Service-oriented architecture (SOA). SOA is a simple concept. Figure

4-15 shows the main components and operations of an SOA.

Registry

Joind

Discover Publish

Service

Reg
Agent

Figure 4-15: Serviced-oriented Architecture.

Any Service-oriented Architecture contains three components (or roles): a (service)
registry, a service request agent, and a service provider.

The registry is a match-maker between service request agent and service provider because
its address is known to all the service request agents and it contains information about all the
service providers. Once the registry makes the match, it is no longer needed as the rest of the
interaction is directly between the service request agent and the service provider.

The service request agent first discovers some service descriptions published to the
registry. The act of discovery can be thought of as sending a query to a database. The service
request agent states some query criteria, such as service types, quality requirements etc. The
registry matches the query against its collection of published service descriptions. The result of

the discover operation can be a list of service locations with optional descriptions (e.g. WSDL

118

documents, see §4.7) that match the query criteria. The service request agent then uses the
location information to hook to or call the service provider. This operation can be quite
complex and highly dynamic, such as on-the-fly generation of a client-side proxy based on the
service description used to invoke the service provider. Of course if the service description is
standardized, as in the case of Optimization Services, the client-side proxy can be pre-built and
the process becomes more efficient. Examples in the Optimization Services context are
provided in Chapter 7.

The service provider joins the registry by publishing a service description to the registry.
The software itself is not published. It then waits for service request agents to make
invocations. The act of joining by publication can be thought of as advertising. There is usually
some contract between the registry and the service provider. The actual details of the advertised
information and the contract depend on how the service registry is implemented. If the service
provider is well known, potentially many service request agents can directly invoke the service
without first discovering it in the registry.

As briefly described in Chapter 2, Optimization Services also adopts the Service-oriented
Architecture. In Figure 4-16 we redraw Figure 2-1: A typical optimization system and
component interaction. We highlight the Service-oriented Architecture “triangle.” Circle 4 is
the service request agent and all the circles to its left can be thought of as the clients of the
SOA-based distributed system. Circle 5 is an optimization service registry that keeps
information of all the solvers (or analyzers). Circle 7 (or circle 6 or circle 8) is the solver (or

analyzer or simulation engine) service provider. This is discussed in Chapter 5.

5. Server
or Registry)

4. Communication “

_ mm

8, Simulation
{or Function
Evaluator)

I* 3. Instance Representations,
and Interfaces

i ™ 2 Modeling
Modeling Language
Language L

(MLE core) /{ Environment

N o (MLE)

1. Model
(Modelers
start here)

Figure 4-16: A typical optimization system and component interaction and the Service-oriented
architecture view by Optimization Services.

119

4.7 Web Services Description (WSDL)
Web Services Description Language (WSDL) [116] is another XML document type that

defines the XML tags used in accessing a Web service. WSDL is optional if a user knows
exactly where an Optimization Service is and how the Optimization Service should be invoked.
WSDL helps significantly in registering, discovering and automation of heterogeneous Web
services. Links to WSDL descriptions can be given through UDDI listings (§4.8). In
Optimization Services, we use WSDL mainly as a formal language to describe communication
standards.

Two types of information in WSDL are specified. One is about interface semantics and the
other is about administrative details of a call to a Web service. Interface semantics includes
elements of portType (equivalent to a program interface), operation (equivalent to a
method signature/prototype), message (equivalent to input and output) and types
(equivalent to data types). Administrative details includes elements of binding (specifies
transport and encoding protocols), port (specifies network addresses), service (specifies a
collection of ports), and definitions (root element of WSDL that contains all the above
elements). In our communication based Optimization Services Protocols (Chapter 7), we
enforce standards on call interface and arguments, fix certain values by default and suggest
recommendations that are most suitable for Optimization Services, thus simplifying the
invocation processes.

Figure 4-17 shows an abbreviated WSDL definition. Each WSDL document has definition
as its root element that is usually prefixed with the wsdl namespace abbreviation. Illustrated
elements about interface, protocol and address are of the most relevance to Optimization
Services. The entire program, called SimpleSolver in this example contains (in the
portType element) only one operation (or function, method, procedure etc.):
favoriteSolver, which takes a favoriteSolverRequest as an input and
favoriteSolverResponse as an output. Both favoriteSolverRequest and
favoriteSolverResponse are defined in their corresponding message element. For
example favoriteSolverRequest has only one part (or argument) in it, which has a
name question and is of type st ring. The protocol related binding element specifies that
the SOAP call is to be an RPC (Remote Procedure Call) and is to be transported over HTTP.
The address related service element specifies a location (in the port element) that tells where

the actual Web service is.

120

<wsdl:definitions ... >
r~message name="favoriteSolverRequest"=
<part name="question" type="xsd:string
</message=
<message name="favoriteSdlverRes
Interfage <part name="answer" typa="xsd:string" />
< </message=

Program name

Method name

<portType name="SimpleSolver"=

At , =" Favan rer" nars 3 = stion)' =
<operation name="favoriteSplver" parameterOrder questlm\} “Input &

<mput message="favoriteSolverRequest" ... > Output
\ <output message="tavoriteSolverResponse" ...> -t
</operation>
</portType=

Protodor-binding name="SimpleSolverSoapBinding" type="intf:SimpleSolver">
—It

<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />

</binding=
Addres service name="SimpleSolverService"= o _
<port binding="intf: SimpleSolverSoapBinding" name="SimpleSolver"=
<wadlzoap:address locmionz"http:.'."Www.op%ﬂﬁmmewices.01‘g'osﬁosossolver'SimpleSolverSen‘ice.jws”.': >

'qer\-'ic;;’port} Where the Web
f 1t Service 15
</wsdl:definitions> > S

Figure 4-17: An abbreviated WSDL document of SimpleSolver, which specifies one operation:
favoriteSolver.

4.8 Web Services Registration and Discovery (UDDI and WSIL)

After a Web service is deployed, potential users must have a way to discover and use that
service. For Web pages/sites, search engines like Google and Yahoo assume this function,
though search information is of non-standard form. Web services, unlike Web pages, are to be
invoked by computers, rather than viewed by humans; thus Web services registration and
searching require a more rigid set of rules. Universal Description, Discovery, and Inspection
(UDDI, [102]) and Web Services Inspection Language (WSIL, [64]) handle the situations for
general Web services through standardization. In Optimization Services, we use our own
specialized Optimization Services Registry and corresponding OS protocols (Chapter 8) to
register and discover Optimization Services, because more domain-specific information needs
to be integrated into an Optimization Services registry. However both WSIL and UDDI provide
the design inspiration for many of our registry related Optimization Services Protocols. We
briefly give an overview of the two standards below.

UDDI is a specification for an online registry of Web services. Service providers can list
their services in this registry, and users can seek out services by searching the registry in a
standard way. UDDI is heavyweight and is intended to be maintained by centralized registries;
it concerns itself not only with service data information (Figure 4-18) but also with service

provider’s vendor (or business entity, Figure 4-19) information. UDDI usually requires

121

infrastructure to be deployed with substantial overhead and costs. Two main sets of standard
functions (or APIs) are provided: vendors register services and data via SOAP and users

discover the services via SOAP query requests (Table 4-1).
UDDI Data Model

businessEntity . cinessE

publisherAsse

businessKev, |)

authorizedName | TfromKey || {— businessKey

operator toKey™ e }
discoveryURLs liR\'edefl.‘l'{‘.l:ll‘_l’ H _— iModel
name L —

description

contacts _businessService th lodelkey

[lauthorizedMName

identifierBag [businessKey ."lll operator
categoryBag _— Moumicekey | mame
- pame / dc:«:r{plmn
mpliun / '.'“.:r\..l.:wnw U
- identifierBag |

Kev:
Required Elements

clements used o
establish relationships

Figure 4-18: Service data information in a UDDI registry.

Business Entity Descriptive Information

businessEntity

businessKev
authorizedName

us elyvpe
11!)cl‘nt:\r description
discoverylURLs personName
name phone
descriptior eMail
contacts . address 1
businessServices —~

identifierBag T
categoryBag . —
-

categ

[
thiodelKey ke_\'ecchﬁ:% e
keyName hodelKey
kevValue keyName

kevValue

Figure 4-19: Business entity information in a UDDI registry.

122

SOAP Discover APIs

SOAP Register APIs

find_binding
find_business
find_relatedBusinesses
find_service
find_tModel
get_bindingDetail
get_businessDetail
get_businessDetailExt
get_serviceDetail
get_tModelDetail

add_publisherAssertions
delete_binding
delete_business
delete_publisherAssertions
delete_service
delete_tModel
discard_authToken
get_assertionsStatusReport
get_authToken
get_publisherAssertions

» get registeredInfo

* save binding

* save business

* save service

* save tModel

* set publisherAssertions

Table 4-1: Major SOAP discover and register operations provided by a UDDI registry.

WSIL is similar in scope to UDDI, but intended to be complementary rather than
competitive. If WSIL is comparable to business cards, then UDDI is more like yellow pages,
under which multiple "businesses” are grouped, listed along with goods or services offered and
business contact information.

WSIL can be used to point to UDDI repositories. Service description information can be
distributed to any location using a simple extensible XML document format. Compared with
UDDI, WSIL is more decentralized, more lightweight and of lower functionality. WSIL works
under the assumption that you are already familiar with the service provider. Both WSIL and
UDDI rely on other service description mechanisms such as WSDL and they are located using
existing Web infrastructure. On the other hand, in the Optimization Services situation, we no
longer need WSDL information in the registry as all the Optimization Services invocations are
standardized. Thus all services” WSDL documents will be the same except for location
information which can be provided independent of WSDL.

WSIL avoids one of the current difficulties with UDDI: entries in UDDI registries are not
moderated and a user can not be sure that a service actually belongs to the service provider who
advertises it within the UDDI registry. So Quality of Service and information reliability can be
issues with a general UDDI registry.

Figure 4-20 shows an abbreviated example of a WSIL document. Most information is self-
explanatory in this example. Each WSIL document has inspection as its root element. It

contains an abstract about the Web service, a service section detailing the description of the

123

service, and a link to other related Web services. In the service section, the WSDL document

location is provided in the description element.

mspection ...
abstract=Impact is an Integrated Mathematical Programming Advanced Computational Tool.</abstract>
service
name>Impact Solver Service</name>
abstract>The version of the Impact service ig 1.0. It solves many types of optimization problems.</abstract
description
referencedNamespace=http://schemas. ximlsoap.org/wsdl/
location="http://www.optimizationservices.org/os/ossolver/Inpact Solver Service?wsdl"
/description>
fservice>

link location=" http://www.optimizationservices.org/os/ossolver/JunMaSolverService.wsil" =
abstract>JunMa Solver Service</abstract
Minls>
/imgpection

Figure 4-20: An abbreviated WSIL document. WSDL Document

4.9 Open Grid Services Architecture (OGSA)
The Globus Alliance [42] is building fundamental grid computing technologies. By its

definition, “grids are persistent environments that enable software applications to integrate
instruments, displays, computational and information resources that are managed by diverse
organizations in widespread locations.” A major research effort of Globus Alliance is its
Globus Project on developing the Globus Toolkit, which is an open source software toolkit to
build grids. A growing number of projects and companies are using the Globus Toolkit which
has become a de facto standard for major protocols and services, although at the present time its
popularity is overshadowed by the recent success of Web services championed by major
research institutes and companies.

Globus Alliance’s Open Grid Services Architecture (OGSA) [43] represents an evolution
towards a Grid system architecture based on Web services concepts, to take advantage of Web
services’ standard interface definition mechanisms, multiple protocol bindings, multiple
implementations, local/remote transparency, etc. All services also have to adhere to specified
Grid service interfaces and behaviors. At this point, OGSA is evolving quickly, currently at its
fourth version, but far from complete or perfect.

Compared with Web services, OGSA is (potentially) strong in the following areas

e Authentication and authorization

¢ Global naming and references

¢ Lifetime management

124

* Resource registration and discovery

¢ Resource monitoring, upgradeability, concurrency, and manageability

* Reliable remote service invocation and notification

e High-performance remote data access

OGSA’s major disadvantages lie in its protocol deficiencies; it has been implemented on a
heterogeneous basis of HTTP, LDAP, FTP, etc. It also lacks (though actively intends to fix)
standard means of invocation, notification, error propagation, authorization, termination and
other functionalities. Little work has been done on total system properties including
dependability, end-to-end Quality of Service, and reasoning about system properties.

One major difference between Web services and Grid services is that Web services
addresses discovery and invocation of persistent services while Grid Services also supports
transient service instances.

Web services combined with Grid is a good idea. It is becoming a topic in the major super
computing conferences. It should not be a question of who wins. Both technologies will
provide things that are valuable toward our development of Optimization Services. As a matter
of fact, some of the design issues in our Optimization Services are based on the fact that
components from both technologies can be leveraged upon their maturities. We hope that the

two technologies will eventually converge with no distinction.

CHAPTER 5 OPTIMIZATION SERVICES (OS)

Optimization Services is a unified framework for the next generation distributed
optimization systems, mainly optimization over the Internet. The corresponding Optimization
Services Protocol is intended to be a set of industrial standards. The phrase “next generation”
emphasizes the fact that Optimization Services is a state-of-the-art design and is not adapted
from any existing system.

In Chapter 4, we provided the necessary background on modern computing and distributed
technologies in order to read from this chapter on. In Chapter 1, we gave a general non-
technical description of Optimization Services (OS) and the corresponding Optimization
Services Protocols (OSP). We describe Optimization Services in a more technical detail here.

From the system design view, Optimization Services is a SOAP protocol based and
service-oriented architecture centered framework for optimization over distributed and
decentralized systems. Through the corresponding Optimization Services Protocol,
Optimization Services specifies behaviors of its standard components on a distributed system.
We described in Chapter 2 all the system components that are targeted in the OS framework’s

standardization process.

5.1 Standardization, OSP and OSxL

The Optimization Services framework is mainly concerned with standardization in three
areas:
1 Optimization (instance) representation (Chapter 6);
2 Optimization communication that includes accessing, interfacing and component
orchestration (Chapter 7);
3 Optimization service registration, publication, discovery and quality control (Chapter
8).
For the sake of uniformity, we specify Optimization Services Protocols in all these three
areas by standard 4-letter acronyms of the form OSxL, standing for Optimization Services x
Language, where “x” is aother defined letter. Figure 5-1 shows a tree view of all the current

Optimization Services x Languages.

125

126

Optimization Services Protocol

(OSxL)
() Communication
: unicati
Lommunication .
Representation OShL - hookup (wsbL) Registry
0OSgL - general (schema) oScL I
OSiL - instance (schema) Sz OB Y S0

OSIL - linear (reserved for LP-FML) OSfL - flow (speL)

OSnL - nonlinear (schema)
OSrL - result {schema)
OSolL - option (schema)
OSal - analysis (schema)

0SsL - simulation (schema) Representation Communication
OStL - transformation (xsi) OSqL - quary’ (schamay 0OSdL - discover (wsbL)
_ Y. OSuL - uri (scheme) OSiL - join (wsoL)

0Sel - entity {schema) OSKL - knock (WSDL)

OSpL - process (schema) i
0OSbL - benchmark (schema) QSvl. -valldste: ey

OSyL - yellow-page (schema)

*OSmL: a modeling language and NOT an Optimization Services Protocol
*Letters not currently used: w, z
*BPEL: Business Process Execution Language for flow orchestration.

Figure 5-1: A tree view of Optimization Services x Languages (OSxL).

We explain the OSxL languages in each of the three areas below.

1). In §2.1 and §2.3, we discussed the differences between a model and an instance. The
Optimization Services framework is not intended to standardize high level models. The
framework only concerns itself with the low level communication between machine and
software components.

All the instance representations are specified in the XML Schema language (§4.3). The
most important instance is the representation of an optimization problem. The format of this
instance is specified by the Optimization Services instance Language (OSiL). An OSIiL instance
is usually transmitted from a modeling language environment (MLE) to a solver.

There are other kinds of instances. The Optimization Services result Language (OSrL)
specifies the result format of the solver output. It is usually transmitted back from a solver to an
MLE. Optimization Services analysis Language (OSaL) specifies the analysis format of the
analyzer output. It is usually transmitted from an analyzer to an MLE and helps in discovering
solvers in an Optimization Services registry. Optimization Services option Language (OSoL)
specifies the option format of solver (or analyzer) algorithm directives. It is usually transmitted
along with an OSiL instance. Optimization Services simulation Language (OSsL) specifies the

input and output format of a simulation service. It is usually transmitted between a solver and a

127

simulation engine. It facilitates optimization over simulation where simulations are located in
places other than the solver.

Many of the generic and common data structures are specified in the Optimization Services
general Language (OSgL) and imported by other representation schemas. All the nonlinear
functions, operators and operands are specified in the Optimization Services nonlinear
Language (OSnL). OSnL is used by the OSiL schema for nonlinear optimization extension.

2). In §2.4, we listed the interface and communication agent as a distinct component in an
optimization system. The Optimization Services framework standardizes all the
communications between any two Optimization Services components on an OS distributed
system. The framework does not standardize /ocal interfacing. Related projects such as COIN
OSI [23] discussed in §3.1.4 and derived research from Optimization Services (briefly
mentioned in the following chapters) such as the Optimization Services instance Interface
(OSil), Optimization Services option Interface (OSol) and Optimization Services result
Interface (OSrl) are intended to do this job.

Invocations of all Optimization Services are specified by WSDL (§4.7) and all the
interfaces and transport parts (i.e. except for the location information) in the WSDL documents
are standardized. So WSDL documents are not necessarily needed to dynamically generate the
communication APIs (stubs and skeletons) as we know them ahead of time already, although
they can be used for illustrations or as references to construct Optimization Services
beforehand.

The most common communication is the invocation of solvers. This is specified by the
Optimization Services hookup Language (OShL). OShL also applies to hooking up to
analyzers, as solvers often analyze an optimization problem and analyzers may potentially
solve the problem. The invocation of simulation services is essentially calling a function (§2.8)
and it is specified by the Optimization Services call Language (OScL).

Communication is not just about invocations. As we build all the Optimization Services
components into a distributed system, the sequence of invocations is an issue. For example, if a
solver service is known to a client, the client can directly contact the service. Of course the
client can still contact a registry and get the location information and then call the solver. But if
the client does not know the type of the optimization problem, he may first invoke an analyzer
service, and then use the analysis result to query the right solver from the registry. Even more
complex, before invoking the analyzer service, the client may need to find the analyzer’s

location in the registry. There can be many combinations of sequences. Optimization Services

128

flow Language (OSfL), an XML document in BPEL (Business Process Execution Language
[91]), predefines certain standard flows.

3). Representations and communications related with the Optimization Services registry are
separately grouped in the area of service registration, publication, discovery and quality control.
Differences between an optimization registry and an optimization sever are detailed in §2.5.

At the core of our Optimization Services registry implementation is a database and we
chose to use a more expressive XML-based native database as versus a relational database. The
logic is explained in Chapter 8. The organization of the native XML database is according to
the Optimization Services yellow-page Language (OSyL) which is a schema on the syntax of
the stored data. To query the database, clients use the Optimization Services query Language
(OSqL) which is a schema of the query language format. In the OS registry implementation, an
OSqL query is then converted to an XQuery (§4.4) that is executed against the XML database
in the registry. The communication of sending the OSqL query to the OS registry is specified in
the Optimization Services discover Language (OSdL), a WSDL document. In turn the clients
get the location information from the registry that is listed as a sequence of URIs (or URLSs).
The syntax is specified in the Optimization Services uri Language (OSuL).

On the other side of the discover process is the register process. The database in the
Optimization Services registry is essentially a list of szatic entity information (e.g. solver types,
owner information, service location). The entity information is specified by the Optimization
Services entity Language (OSeL) items, an XML schema. Optimization Services yellow-page
Language (OSyL) can be roughly viewed as a sequence of Optimization Services entity
Language (OSeL) items, so we can think of OSyL as a table and OSeL as a row in the table.
Besides static entity information, the Optimization Services registry also keeps dynamic
process information (e.g. whether the service is running, and number of jobs being solved)
using Optimization Services process Language (OSpL). Independent benchmarks are carried
out on registered solvers and the benchmark information is kept in Optimization Services
benchmark Language (OSbL). OSeL, OSpL, and OSbL are all the information the registry
knows about all the registered services.

Service providers join the registry with OSeL information. The WSDL document
Optimization Services join Language (OSjL) specifies how this is done. During runtime, the
Optimization Services registry periodically “knocks” on the registered services to make sure
they are live and running and to get the OSpL information. The WSDL document Optimization
Services knock Language (OSkL) specifies how this is done. Service providers can also publish

the OSeL, OSpL and OSbL information on their own Web site. To facilitate standardization,

129

the standard XSL transformation style sheet (§4.4) OStL (Optimization Services transformation
Language) is provided so individual Web publications have the same look-and-feel. The OStL
style sheet, as a matter of fact, can be used with any Optimization Services XML
representations for publication and presentation.

The decentralized Optimization Services system leaves open the question of how
optimization “jobs” will be scheduled to run on available solver services. Centralized schemes,
such as that used by the NEOS server, usually maintain one queue for each solver/format
combination, along with a list of the workstations on which each solver can run.

In Optimization Services, we want to maintain this scheduling control, while at the same
time making the scheduling decisions more distributed. Optimization Services process
Language can play an important role in dynamic optimization scheduling in a decentralized

environment.

5.2 Architecture Design

In Chapter 2, we showed a general architecture of optimization systems and discussed the
major system components of an optimization system. Most of the current centralized
optimization systems, such as the two examples illustrated in Chapter 3, serve as the initial
motivation for Optimization Services. The Optimization Services simplified view of any

centralized optimization system is shown in Figure 5-2.

imulation fo

Optimization
Client

Communication

agent

Figure 5-2: Optimization Services’ simplified architecture view of a centralized optimization
system.

130

All the components shown in Figure 5-2 were discussed in detail in Chapter 2. The
optimization client is often a modeling language environment (MLE) or some customized
graphical user interface (GUI) with prewritten optimization models behind it. Dotted arrows
indicate data flow and corresponding numbers show a typical flow sequence. The data are
usually some instance representations. Arrows that do not go through the central server mean a
direct local invocation, so a communication agent is usually bundled together with the
optimization client. The communication agent can actually be bundled with any component that
needs to make a remote connection. The simulation can be called by the optimization solver
either remotely or locally. If locally, the simulation is usually a simple function or expression
tree(§2.8). The arrows (3) between solver and simulation are in bold because the data flow
between the two can be highly iterative. The model component mentioned in Chapter 2 is not
part of the Optimization Services framework. It belongs to the user end and is isolated from the
software system by the optimization client. The analyzer component is usually not separated
out in a centralized optimization system.

Figure 5-3 matches the system components in Figure 3-9 with those in Figure 5-2 and
shows how the Motorola Labs Intelligent Optimization System discussed in Chapter 3 fits in
the Optimization Services view of a centralized optimization architecture. A similar analysis

can be done on the AMPL-NEOS system also discussed in Chapter 3.

" Optimizer

/ @ Gl
—'_.J A

i N ‘a
1 N
1
:
1

\

N Swe reee

. — , .
. N D) & .
) Estin
s AN ¢ # o Learner Thread stme\m‘ P
- glebal [local © | giobal [kocal,|#
Central ! -

C ommumication
Agent

Figure 5-3: Optimization Services’ simplified architecture view of Motorola Lab’s Optimization
System (Chapter 3).

131

Optimization Services’ own approach to the next generation architecture design is an
approach of decentralization shown in Figure 5-4. The advantage of the decentralized scheme

over the centralized scheme was mentioned in Chapter 1 and described in detail in §2.5.

Solver
/Analyzer

‘olnInumic atio:
agent

Figure 5-4: Optimization Services’ simplified architecture approach of a decentralized
optimization system; compare with Figure 5-3.

The optimization client in Figure 5-4 still invokes the communication agent, but the agent
no longer connects to the optimization solver through a server. The registry replaces the server
in a centralized scheme. All the components in the distributed system talk in a peer to peer
mode. After the communication agent discovers a solver from the registry, it contacts the solver
directly. In a decentralized system, the analyzer plays an important role as argued in §2.6. But
from the architecture view, the optimization solver and analyzer are of no difference as they are
both services provided over the distributed system and both can be discovered in the registry.
As in the centralized scheme, the simulation service is usually iteratively invoked by a solver
either locally or remotely, except that the invocation is no longer routed through the server.
Also notice that there is a link between the registry and all the services as the registry can
periodically check these services to get their latest process information. Dotted arrows that
indicate data flow no longer have corresponding numbers showing a typical flow sequence.

There can be many process flows as explained in the next section. From the Optimization

132

Services standardization perspective, the most important parts of the system components are
instances (data flow on the dashed arrows) and communication agents.

Figure 5-3 matches the system components in Figure 3-2 with those in Figure 5-4 and
shows how the AMPL-NEOS system discussed in Chapter 3 can be adapted to the “next-
generation NEOS” that is built on the decentralized Optimization Services architecture. The
exact effects of Optimization Services on NEOS can be multifaceted and are discussed in
§3.1.4.

AMPL
Model N N

diet.mod
diet.dat

model diet. mod;
data diet.dat;
option solver kestrel
7

networkin

Simulation for
O ptimization

dptimizatio
Solver
Analyvzer,

Figure 5-5: Optimization Services’ simplified next-generation architecture approach of AMPL-
NEOS system (Chapter 3).

5.3 Optimization Services Process

Optimization Services can have various process starting points. For better illustration from
a user perspective, we start the process with a modeler. Suppose the modeler has an

optimization model shown in (5-1).
minimize 100(x, —x,*)* +(1-x,)’ (5-1)

subjectto x, +x, <100

133

All that the modeler cares is to have the model solved by an appropriate solver and get the

optimized result (Figure 5-6).

. Model/Data

mitimize 100(x, — x°)° +(1- x)°

Modeler subject to x +x, =100

Figure 5-6: A modeler starts with a model and some data and wants the model solved.

But in practice there is no direct connection between the model/data and the solver (Figure

5-7). No solver understands the optimization model (5-1).

S— : \:~ -

Figure 5-7: There is no direct connection between the model and the solver.

The user has to formulate his model in a formal modeling language such as AMPL
(Chapter 3) or OSmL (Chapter 9). Alternatively the user can construct an application as a
graphical user interface with prewritten optimization models underneath, or in a spreadsheet
(Figure 5-8). Optimization Services is not intended to standardize these user environments.
What is natural for one modeler may not be for another. But Optimization Services does require
all these user environments translate the user’s model into the standard Optimization Services
instance Language (OSiL, Chapter 6). From this point on the modeler is “isolated” from the
computing system world and no longer knows what is happening inside. In fact, by
standardizing the underlying system communications, the Optimization Services framework
promotes the flexibility for users to express models differently with various modeling
languages and tools, as they will no longer be limited by the choices of software due to

interface compatibility issues.

134

MLE
—¥ __(AMPFL, OSmL)

Model/Data translate to 05il

COther optimization client
(G, spreadshest)

Modeler user world computing system world

Figure 5-8: The modeler has to formulate his model in an MLE (or GUI, spreadsheet etc.) and the
model gets translated into an OSiL instance.

Suppose the modeler chooses to formulate the optimization model (5-1) in the OSmL
modeling language (Figure 5-9). The OSmL engine will compile the model into an OSiL.
instance and delegate a communication agent to send the OSiL instance to the appropriate

solver on the OS network (Figure 5-10).

return

<mathProgram>

<obj maxOrMin="min" name="Rosenbrock">
100*(x2 - x172)"2 + (1 - x1)"2

</obj>

<constraints>

<con>

x1 +x2 <=100

</con>

</constraints>

</mathProgram>

Figure 5-9: The model can be formulated in the OSmL modeling language.

The communication agent (in this case a solver agent) knows everything about hooking up
with any OS solver. It takes OSiL as an input and contacts an OS solver using the OShL
communication protocol in OSP (Chapter 7). OShL is explained in Chapter 7. It roughly
corresponds to invoking an operation (or method) in a local environment, so OSiL can be

thought of as an input argument of this operation; this corresponds to the part “OShL

135

(0SiL)” in Figure 5-10. In all the following figures we use this convention by putting input
and output instances in parentheses.

A solver can be developed independently from Optimization Services and its API
(Application Program Interface) may be different from that specified by OShL. For example,
OShL specified an operation name called “solve (String osil)” but the solver may be
using the name “optimize” and its own data representation So in order to be OS-compatible,
the solver has to expose a standard OS API. The solver can do that by hiding the original solver
in a wrapper class and make the wrapper class implement the standard interface with all the
methods specified in the OShL WSDL document. For example the solver can implement the

following wrapper class:
String solve (String osil) {

convert osil into solver’s own data representation;
solver own result = optimize(solver own representation);
convert solver’s own result to the standard result and return;

All the OS solvers are hosted in an OS server just as all the web pages are hosted in a Web
server. We provide the OS Server software to host the OS solver. The solver developer can,
however, implement their own Optimization Services solver server, as long as the exposed
service API follows the OSP protocols. After the solver solves the problem represented by
OSIL, it returns the result in Optimization Services result Language (OSrL, Chapter 6).

e S OS Server
<

Solver

translate to 05iL

ot standard O3 AFPI

Figure 5-10: After the model is translated into the OSiL instance, an agent is delegated to send the
instance to a solver. The agent hooks up the solver using the OShL communication protocol. All
OS solvers expose themselves with a standard OS API and return the output in OSrL. An OS
server is needed to host the solver and all other Optimization Services. We provide the OS Server
software.

After the agent gets the OSrL result back, it returns the result to the calling environment.
None of the OSxL instances are meant for humans to read. A standard OStL (Optimization
Services transformation Language, Chapter 6) style sheet is provided to present the OSxL

instances. OSrL is among the instances whose contents need to be understood by humans most

136

frequently.

Return OSrL
(optionally with
OStL stylesheet)

Parse OSrlL

presentation

Other optimization client

(GUI, spreadshest)
Modeler

Figure 5-11: The agent returns the OSrL and possibly with the standard OStL style sheet to the
MLE (or GUI, spreadsheet, etc.) and the result gets nicely presented to the modeler.

Since different users have different tastes, modeling environments can choose not to use
the provided OStL style sheet (Chapter 6), and instead present the OSrL in a different way. In
situations where post-processing of OSrL is necessary, names and indexes of the original model

may be different from those in the instance, so OStL may not be appropriate to use. For

example the OSmL modeling environment presents the optimized result without using the

OStL as shown in Figure 5-12.

M OSmLGU (=)e3)

File Fun
The Model] PreParsed Model] Query Result | OSiL Instance I PostFix Instance Model Solution l

¥1=1
O 1

Objective = 0.000000

Model is nonlinear.
Solution Status: Locally Optimal

Figure 5-12: The OSmL modeling environment presents the result (without the OStL style sheet).

The agent can talk to any solver service on the Optimization Services network (Figure
5-13). This is possible because all the solver services expose the same standard OS API. All the
solvers can be invoked with an operation specified by OShL, they all take OSiL as an input,

and they all return OSrL as an output. But all these are based on the assumption that the agent

137

knows where the solvers are. Each solver is at a unique address (URI) but either it may not be

known to the agent or it may change frequently.

autput operation input location 08 Server

Solver
~a

(05Ly OSkL (OS5Il
standard O3 API

location O8 Server

<>
Solver
| Sy

stanidard OF AFI

(05 DGhL (OS5Il

location .
OS Server

QJ‘
Solver
"\‘

standard OF 4P

Figure 5-13: The agent can talk to any solver on the Optimization Services network. This is
possible because all the solver services are standardized; they can be invoked with an operation
specified by OShL, they all take OSiL as input, and they all return OSrL as output.

So the agent needs to first contact the OS registry (Figure 5-14). The location of the OS
registry is well known or is easily found. For example our test OS registry is currently at the

address http://gsbkip.chicagogsb.edu/os/osregistry/NEOSRegistryService.Jws.

The agent discovers the right solvers in the OS registry with an OSdL (Optimization
Services discover Language, Chapter 8) operation which passes the OSqL (Optimization
Services query Language, Chapter 8) query as an input. The OS registry returns the locations of
the solvers that match the OSqL query in OSuL (Optimization Services uri Language, Chapter
8).

138

location o
OS Server

T~

Y

standard OF AFI

operation input

/

0SdL (0Sqly

Figure 5-14: The agent knows how to hook up any solver, but first it needs to know where the
solvers are. So the agent discovers the solver in the OS registry with an OSdL operation, which
passes OSqL as an input. The OS registry returns the matched locations in OSuL.

The OS registry has all the solver information because all the OS solvers have to join the
registry by publishing their OSeL (Optimization Services entity Language, Chapter 8)
information to the registry with an OSjL (Optimization Services join Language, Chapter 8)
operation. OSeL describes the static information about all the solvers. Usually the information
can be filled in on a Web form and when the service provider submits the Web form, an OSjL
operation is used to register the solver service. The OS registry in return sends back the OStL
style sheet with which the solver providers publish their solver information (in OSeL) on their
individual Web sites. Besides the OSeL information, the registry also separately benchmarks all
the registered solvers and holds the benchmark information in OSbL (Optimization Services
bench Language, Chapter 8). The OS registry’s own Web site also publishes the OSeL and
OSbL information. To facilitate a uniform look-and-feel of publications over the OS network,
all the service providers have to use the provided OStL style sheet. The “triangle” between the

agent, the solver and the registry is called a Service-oriented Architecture (SOA, §4.6).

139

location

g

OS Servelr

‘

Solver

T~

F 3

Service-oriented Architecture
S0OA

standard OF AFI

operation input cutput

l\

OSiL (0Sel)

(05t

Figure 5-15: The OS registry has all the solver information because all the OS solvers have to join
the registry by publishing their OSeL information with an OSjL operation beforehand. The OS
registry in return sends back the OStL style sheet with which the solver providers publish their
OSeL information on their own Web site. The “triangle” between the agent, the solver and the
registry is called a Service-oriented Architecture (SOA).

In reality, the Optimization Services process can be more complex. Before sending a query
to the OS Registry, the solver agent may not know what query to send, as it can be hard to
determine the optimization type from an optimization instance. This was discussed in §2.6. So
the solver agent may first send the OSiL instance to an analyzer for analysis (Figure 5-16). All
the OS analyzers on an OS network are invoked in the same way as OS solvers, i.e. using
OShL. The OS analyzer takes OSiL as an input, but unlike the OS solvers, sends back OSal
(Optimization Services analysis Language, Chapter 6) as an output. Of course if the agent does
not know the location of the OS analyzer, it again needs to first discover the analyzer in the OS
registry, just like it discovers OS solvers.

Figure 5-16 also shows some other process complications. For example, the solver may
need to call a remote simulation service to get function values. The solver calls using an OScL
(Optimization Services call Language, Chapter 7) operation. Both input and output of calling
the simulation are specified in OSsL (Optimization Services simulation Language, Chapter 6)
as their formats are simple and similar.

Many of these processes are so common that they are predefined in OSfL (Optimization
Services flow Language, Chapter 7). OSfL, unlike most other communication related OSxL’s,
is an XML document in BPEL (Business Process Execution Language, [91]) that descriptively
lists all the flows.

140

location

OS5 Server

Solver

operation input

!\

OShL {OSIL)

oferation input

output

0ScL (05sL)

(DSal)
{05sL)

. OS Server
location OS Server
r ‘ Simulation
Analyzer &
N
. location et OS AP

atandard OF API

Figure 5-16: Before sending a query to the OS Registry, the agent may first send the OSiL problem
instance to an analyzer using OShL. The analyzer sends back OSaL as an output. On the other
hand, the solver may need to call a simulation service to get function values. The solver calls using
an OScL operation. Both the input and output of calling the simulation are specified in OSsL.
Some of the standard process flows are predefined in OSfL.

In all the figures above, the OS registry is not drawn inside an OS server. But in fact, the
OS registry is itself also an Optimization Service hosted in our own OS server and has a
standard OS API exposed (Figure 5-17). Besides the discovery and registration services that the
OS registry provides, the OS registry also provides a validation service. For example any
component on the OS network can send an OSxL instance representation to the registry for
validation using the OSvL (Optimization Services validate Language, Chapter 8) operation.
The OS registry will return an error message if there is any warning or error in the OSxL
instance submitted. Otherwise it returns a null or empty string.

On the other hand, the OS registry, as a client, can “knock” on all the services with an
OSKL (Optimization Services knock Language, Chapter 8) operation and all the services are
required to send the current process information in OSpL (Optimization Services process
Language, Chapter 8). This is possible because all the services are required to implement the
standard interface with all the methods specified in the OSkL. WSDL document. So a solver
now has to implement operations specified both in OShL and OSkL.

OSeL (entity), OSbL (benchmark) and OSpL (process) information is all that the OS
registry knows about any registered service. All the three types of information play important

roles for the registry to find the most appropriate service against a submitted query.

141

location

O8S Server

statidard O3 APT
output
T operation input

Error meszane

{ rwill if Fuo errar) T T

OSwL {any 050 instance)
1o a1 operation input e
OS Servel \J P 3 ,F OS Server

s

| O5SkL vno mput)

Registry

location T~a

standard OF AP output— location \standa.rd 0% APl

Figure 5-17: The OS registry is in fact also an Optimization Service hosted in an OS server and has
a standard OS API exposed. For example any service on the OS network can send an OSxL
instance representation to the registry for validation (OSvL) and the OS registry will return an
error message if there is any. Otherwise it returns a null or empty string. On the other hand, the
OS registry can “knock” on all the services with an OSKL operation and all the services are
required to send the current process information in OSpL.

As described in Chapter 1, Optimization Services and the Internet are closely related
because of the decentralized architecture. In Figure 5-18, we show that most of the components
in the Optimization Services system have a corresponding similar part in the Internet
architecture. The similarity is not the initial intention of the OS project; rather it is the result
that both are good designs based on a decentralized architecture.

Writing the model/data in a modeling language environment (MLE) more or less
corresponds with an Internet user filling in a Web form in a browser, only that the model/data
construction can be more complex. The MLE converts the model/data into an OSiL instance
and delegates the communication agent to send the instance, whereas the browser converts the
Web form into an A¢m! file and delegates a socket to send the html. The agent uses the OSP
communication protocol (in this case OShL) to contact the remote service (in this case a
solver), whereas in the Internet architecture, the socket uses the HTTP protocol to contact the
remote Web page. The solver is hosted in an OS server, whereas the Web page is hosted in a
Web server. As a matter of fact our OS server implementation is based on an existing Web

server and adds in extra plug-ins for all the Optimization Services operations. The location of

142

an OS service is in URI format, whereas a Web address is in plain URL format , a subset of
URI but practically the same. A Web page is usually a static html page whereas a solver is
more dynamic and mostly about computation. But many Web pages are also generated on the
run. If the codes behind a Web page dynamically compute the Web contents, it may use CG/
(Common Gateway Interface) or other dynamic Web technologies to wrap the codes behind the
static html page. This more or less corresponds the standard OS API that wraps the solver
codes. Like a dynamic Web page, which can get extra data from a remote database, the solver
can get function values from a simulation. The OS registry naturally plays the role of any
Internet search engine, only that the OS registry is intended for machine or software and is
highly standardized and automated while the search engine is more for humans. Services like
the analyzer are more or less like many of the HTML checker Web sites (e.g. W3C) that look

into an instance and report an analysis result.

browser Web address

/ Web page
cal x

/ location

httpthtml)
html form __- socket A

gy

4 S AMPL OSaly

I

OShI{(OSiLJ

T

Salver

g

5 . L dys sever
BTG, epnadehest T standard O3 AF]
N
Web Server
HTML
Checker Database

Search Engine

Figure 5-18: A close analogy between Optimization Services and Internet.

CHAPTER 6 OPTIMIZATION SERVICES REPRESENTATION

In this chapter, we present the instance representation part of Optimization Services
Protocol (OSP). The instance representations are a set of low-/evel formats for data
communication between different Optimization Services components. The difference between
low-level instances and high level models is explained in Chapter 2. All the registry related
OSxL representations are covered in Chapter 8. We provide open-source libraries (Appendix B)
for reading and writing all the instances to facilitate parsing and simplify exchange of
information. All the representation schemas and libraries are available at

www.optimizationservices.org [92] and www.optimizationservices.net [93].

Standards for instance representation are not new. In Chapter 2, we list all the major
instance formats. But they are all limited to optimization problem input and highly fragmented
in representing different input types. The scope of Optimization Services representations is
much more general and comprehensive. Currently all the major optimization problem types are
supported.

We are also not the first to incorporate XML into optimization representations. Fourer,
Lopes, and Martin proposed the LPFML Schema [53] for representing instances of mixed
integer linear programs. Chang [19] and Kristjansson [69] also proposed XML representations
for linear-program instances. Bradley [15] proposed an XML markup grammar for networks
and graphs. But all these XML representations deal mainly with one or two optimization types
and none support the general nonlinear optimization problems.

The Optimization Services representation project started with the Optimization Services
instance Language (OSiL, §6.2) for representing general optimization input instances. OSiL has
its roots in LPFML for representing linear program instances (Figure 6-1). For linear
programming, an instance can be represented as a list of nonzero coefficients of variables in the
objective and constraint functions, along with bounds on the variables and constraint functions.
LPFML also has slight support for solver options and optimization outputs. OSiL extends and
improves LPFML’s idea for linear program design and adds other optimization types. There is
no separate /inear instance representation in Optimization Services. We reserve the acronym
OSI/L (Optimization Services linear Language) in honor of LPFML for providing us the base
and insight in linear program representations and for its early adoption of XML technologies in

optimization. Optimization Services, however, has its own separate supports for optimization

143

144

options and results through OSoL (Optimization Services option Language, §6.5) and OSrL
(Optimization Services result Language, §6.4).

;-4 sparseVector
: M

o
B

'
L
'

<xs:element name="mathProgram">
<xs:complexType>
<xs:sequence>
<xs:element name="sparseVector" type="sparseVector" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="sparseMatrix" type="sparseMatrix" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="linearProgramDescription" type="linearProgramDescription"/>
<xs:element name="linearProgramData" type="linearProgramData" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="linearProgramSolution" type="linearProgramSolution" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="linearProgramlterative" type="linearProgramiterative" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>

Figure 6-1: LPFML Schema at the root level.

The key benefit of defining the OSxL Schemas is that they impose standards for
representing optimization instances. This is critical for parsers that read an instance that can be
validated against OSxL Schemas. However, as useful as the validation concept is, validation is

about syntax, not semantics. For example, a problem instance that validates against the OSiL

145

Schema may list a value for the <numbervVariables> element that is not consistent with the
actual number of <var> elements in the <variables> elements. These problems are not

detected by XML validation software and require additional checking on the part of a parser.

6.1 Optimization Services general Language (OSgL)
The OSgL schema is located at http://www.optimizationservices.org/schemas/OSgL.xsd.
OSgL defines general elements and data types used by many other OSXL schemas. Thus OSgL

is usually included in the beginning of another OSxL schema by
<xs:include schemal.ocation="0OSgL.xsd"/>

In the subsequent sections, we will frequently refer to many of the elements and types
defined in OSgL. Figure 6-2, for example, shows the <intVector> data type in OSgL that

is used in OSIiL for defining a vector of row or column indexes.

choice

EIms@:(icIBinar)‘fI]lata

1.0

<xs:complexType name="intVector">
<xs:choice>
<xs:element name="base64BinaryData" type="base64BinaryData"/>
<xs:element name="el" maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs: int ">
<xs:attribute name="mult" type="xs:positivelnteger" use="optional" default="1"/>
<xs:attribute name="incr" type="xs:int" use="optional" default="0"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>

Figure 6-2: <intVector> data type in OSgL.

An <intVector> may have one or more <el> children or a <base64BinaryData>
child if the data in the <e1> elements are compressed. The compression is explained in detail
in the LPFML paper [53]. Each <e1> element has a mult attribute (for multiplicity) with a
default value 1 and an incr attribute (for increment) with a default value 0. For example

<el>0</el><el>0</el><el>0</el><el>0</el><el>0</el> and
<el>0</el><el>1</el><el>2</el><el>3</el><el>4</el>

is more concisely expressed as

146

<el mult="5">0</el> and <el mult="5" incr="1">0</el>
There is also a similar <doubleVector> data type defined in OSgL.

<listMatrix> (Figure 6-3) is another commonly used data type. It stores the nonzero
elements of a sparse matrix. It has three child elements. The first child is <start> of type
intVector. The ith <e1> element in the intVector points to the start of the nonzero
elements for column (row) i (= 0). The number of <e1> elements should be the number of
columns (rows) plus 1. The first <e1> element should always be 0 and the last <e1> element
should always be the number of nonzero elements. The second child of <1istMatrix> is
<rowIdx> (or <colIdx>) again of type intVector for storing row (or column) indices if
the matrix is stored by column (or row). The third element is <value> of type

doubleVector for storing all nonzero values in the matrix.

Figure 6-3: <listMatrix> data type in OSgL.

In Table 6-1, we list some common data types defined in OSgL.

Type Name Brief Description
intVector vector of integers
doubleVector vector of doubles
elType el element with a name and a value attribute and a description text
mapType a sequence of el elements (name-value pairs)
base64Binary compression of a sequence of data usually expressed in el elements; see the LPFML paper
[53]
sparseVector sparse vector with an idx array and a nonz value array

147

listMatrix typical sparse matrix storage type with a start array, a choice of rowIdx or colIdx
array, and a nonzero value array

mpsMatrix MPS style sparse matrix storage with a sequence of col (or row) elements; each col (or
row) element is in turn a sequence of row (or col) elements

matrixMarket common sparse matrix storage used in linear algebra with a sequence of e elements; each
element is a double value (for a matrix entry) with a row and a col attribute (for matrix
indexes)

xmlData a sequence of any data

(see § 6.2.2)

networkAndGraph | comprehensive description of a network and graph topology through a set of nodes and
(see Appendix A) | arcs elements and definitions of nodeProperties and arcProperties; Reserved
for future use.

Table 6-1: Common data types defined in OSgL.

In Table 6-2, we list typical function-related elements. Many of these functions are
distribution functions. All the distribution functions can have an optional cdf boolean attribute
which is false by default. If true, the distribution function is a cumulative distribution function.
If false, the distribution is a probability distribution function (pdf, for continuous distributions)
or probability mass function (pmf, for discrete distributions). Many of these functions have
parameters which are expressed as element attributes. The distribution functions are widely

used in the OSiL extension to stochastic programming.

Function Name Brief Description

userFunctions a sequence of userFunction elements; each userFunction element contains one
0OSnLNode as an expression tree root for expressing a function (see § 6.2.2)

userVariables a sequence of userVariable elements; each userVariable element contains one
0SnLNode as an expression tree root for expressing a user defined variable (see §6.2.2)

discreteUniform Discrete Uniform function with a parameter N

bernoulli Bernoulli function with a parameter p

binomial Binomial function with parameters N, p

hypergeometric Hypergeometric function with parameters N, M, n

poisson Poisson function with a parameter 1amda

geometric Geometric function with a parameter p

negativeBinomial Negative Binomial function with a parameter p, r

empiricalDiscrete Empirical Discrete function with a sequence of e1 elements; each e1 element is a
double value and has a prob attribute

empiricalContinuous Empirical Continuous function with a sequence of el elements; each el element

contains one OSnLNode as an expression tree root for expressing a function and a from
and a to attribute for the function domain

uniform Uniform function with parameters a, b

normal Normal function with parameters mu, sigma

stdNormal Standard normal function

exponential Exponential function with a parameter 1amda

weibull Weibull function with parameters location, scale, shape

erlang Erlang function with parameters 1amda, n

gamma Gamma function with parameters location, scale, shape

beta Beta function with parameters degreel, degree?2

betaGeneral General Beta function with parameters degreel, degree2, min, max
lognormal Lognormal function with parameters mu, sigma

cauchy Cauchy function with parameters location, scale

148

t

Student T function with a parameter degree

chiSquare Chi Square function with a parameter degree

f F function with parameters degreel, degree?2

logistic Logistic function with parameters mu and beta

logLogistic Log Logistic function with parameters mu and beta

logarithmic Logarithmic function with parameters a, b

pareto Pareto function with parameters shape and scale

rayleigh Rayleigh function with a parameter beta

pert Pert function with parameters a, c, b

triangular Triangular function with parameters a, c, b

multivariateDiscrete Multivariate Discrete function with a sequence of 2 or more scenario elements; each
scenario is a sequence of 2 or more el elements of double values

multinomial Multinomial function with a parameter N and a sequence of e1 elements of
probability values

bivariateNormal Bivariate Normal function with parameters mul, sigmal, mu2, sigma2, rho

multivariateNormal | Multivariate Normal function with a sequence of 3 or more mu elements and a
covariance matrix of matrixMarket type

linearTransformation | Linear transformation function with a numberRows and a numberColumns

attribute; it contains one constants element of type doubleVector, one
matrix element of type matrixMarket, and a randomVariables
element to indicate a multivariate distribution

Table 6-2: Common function related types defined in OSgL.

Elements of similar types can be grouped and referenced together. For example the

discreteDistributionGroup group shown in Figure 6-4 is used to group all the

discrete distribution functions shown in Table 6-2.

(discreteDistrioutionGroup [T~ 5

,empiricall)iscrete

a discretelUniform

,Immrgeometric
APoisson

’geome'tric

,negativeBinomial

<xs:group name="discreteDistributionGroup">

<xs:choice>

<xs:element ref="empiricalDiscrete"/>
<xs:element ref="discreteUniform"/>
<xs:element ref="bernoulli"/>
<xs:element ref="binomial"/>
<xs:element ref="hypergeometric"/>
<xs:element ref="poisson"/>
<xs:element ref="geometric"/>
<xs:element ref="negativeBinomial"/>

</xs:choice>
</xs:group>

Figure 6-4: <discreteDistributionGroup> group in OSgL.

149

A continuousDistributionGroup is similarly defined. The more general
distributionGroupisagroup of discreteDistributionGroup and

continuousDistributionGroup as shown in Figure 6-5.

discreteDistrihLﬂiunGroup

diztributionGroup =

u:ontinuu:uusDis‘tributinnGroup

<xs:group name="distributionGroup">
<xs:choice>
<xs:group ref="discreteDistributionGroup"/>
<xs:group ref="continuousDistributionGroup"/>
</xs:choice>
</xs:group>

Figure 6-5: <distributionGroup> group in OSgL.

6.2 Optimization Services instance Language (OSiL)

The OSIiL schema is located at http://www.optimizationservices.org/schemas/OSiL.xsd.
OSiL is definitely the most critical instance representation. OSiL should be interpreted as
Optimization Services input instance Language. The contents of many other OSxL
representations such as the Optimization Services result Language and Optimization Services
analysis Language are based on and driven by the OSiL design. In explaining the Optimization
Process in §5.3, we see that OSiL is transmitted from and to nearly all the major components on
the OS network.

As explained in Chapter 2, there are many modeling languages and even more solvers for
computing solutions to mathematical programs. If there are M modeling languages and
N solvers, then M x N drivers are required for complete interoperability. One way to
encourage modeler-solver compatibility is to use a standard problem instance representation, so
that all modeling languages and all solvers deal with problem instances in the same form. With
a standard representation, only M + N software drivers are needed for complete
interoperability: each modeling language environment supplies its own driver to output the
standard instance and each solver supplies its own driver to read the standard instance.

There are derived research projects in Optimization Services such as Optimization
Services instance Interface (OSil), Optimization Services result Interface (OSrI) and
Optimization Services option Interface (OSol) to standardize local interfaces. An instance is
parsed into a standard set of data structures in OSil. If all the solvers adopt the standard local

interfaces, there is potentially only one driver at the solver side instead of N drivers. In reality,

150

solvers are implemented in different languages. Suppose there are L (a number<< N)
programming languages used; then ideally only L driver copies of the same OSil local interface
specification are implemented. Our ultimate goal is thus to have a very small number of drivers.
The same logic applies to the adoption of Optimization Services result Language and the
corresponding OSrI local interface. More is explained in the examples illustrated in §7.1.
Figure 6-6 shows the root element <OSiL> of the OSiL schema. This is the convention

of all the OSxL schemas: their root elements are the same as their schema names.

programbDescription
programbData

Figure 6-6: OSiL Schema at the root level <OSiL>.

The <OSiL> element has two children <programDescription> and
<programData>. The <programDescription> element is used to convey the basic
properties of an optimization instance. All its children are shown in Figure 6-7 and are self-

explanatory. Elements in dashed rectangles are optional.

- i
L_.: objHame !

(prngram[lescriptinn

sequence —|Enumher0hiecﬁues :|_> required

—Fnumher(ﬁonstraims |

—|=numll-er\|'ariahles

Figure 6-7: <programDescription> element in OSiL.

Consider the following optimization problem:

151
minimize 100(x, —x;)* +(1-x,)* + 7x,
subject to x, +7x, <10 (6-1)

In(x,x,) + 7x, +5x, <10

Xy,%, 20
There are two continuous variables, x, and x,, each with a lower bound of 0. There is one

nonlinear objective function. There are two constraints, each with a lower bound (or left-hand
side) of — oo and an upper bound (or right-hand side) of 10. The first constraint is linear and
the second constraint is nonlinear.

The <programDescription> element for the math program instance is:

<OSiL xmIns="os.optimizationservices.org" xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/OSiL.xsd">

<programDescription>
<source>Optimization Services, Jun Ma's Thesis</source>
<description>Adapted from an example of Rosenbock (1960)</description>
<objName>adaptedRosenbrock</objName>
<maxOrMin>min</maxOrMin>
<objConstant>0.0</objConstant>
<numberObjectives>1</numberObjectives>
<numberConstraints>2</numberConstraints>
<numberVariables>2</numberVariables>

</programDescription>

<programData>

.<./;;rogramData>
</OSiL>

The actual math program data are contained in <programData> (Figure 6-8).

152

4/"'"_5' ' _________________

extensions ™% r-+ userFunctions

| mmmmmmmmmmmmmmm 1
'

t-- userVariables

-+ simulations

Figure 6-8: <programData> element in OSiL.

6.2.1 Base program data

As mentioned in the beginning of this chapter, OSiL has its roots in LPFML for
representing linear programs. Our approach for a general nonlinear optimization problem is to
write the problem as a linear program (the baseProgramData part in Figure 6-8) plus a set
of nonlinear expressions for each objective or constraint function (the <nl1> elements). This
allows us to take advantage of the sparsity of most of the linear structures and save space for
general nonlinear programs.

In the base program data part, there are four parts, <constraints>, <variables>,
<multiObjectives>, and <coefMatrix>, which we next describe in sequence.

1. The <constraints> element is shown in Figure 6-9.

153

(e - (o]

1.m@

<xs:complexType name="constraints">
<xs:sequence>
<xs:element name="con" type="con" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="con">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>
<xs:attribute name="Ib" type="xs:double" use="optional" default="-INF"/>
<xs:attribute name="mult" type="xs:positivelnteger" use="optional" default="1"/>
</xs:complexType>
Figure 6-9: <constraints> element in OSiL.

The <constraints> element contains a sequence of 1 or more <con> elements. Each
<con> element has an optional name attribute. The constraint name is optional because each
constraint is referenced by its index (starting from 0) according to the order the <con> element
is listed in the <constraints> element. The <con> element also has an optional ub
attribute which by default is INF (positive infinity), and an 1b attribute which by default is -
INF (negative infinity). The optional attribute mult (for multiplicity) is similar to the mult
attribute of the intVector element explained in the OSgL section (§6.1).

2. The <variables> element is shown in Figure 6-10.

@ (e (]

1.0

<xs:complexType name="variables">
<xs:sequence>
<xs:element name="var" type="var" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="var">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="init" type="xs:string" use="optional"/>
<xs:attribute name="type" use="optional" default="C">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="C"/>
<xs:enumeration value="B"/>
<xs:enumeration value="1"/>
<xs:enumeration value="S"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Ib" type="xs:double" use="optional" default="0"/>
<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>
<xs:attribute name="objCoef" type="xs:double" use="optional" default="0.0"/>
<xs:attribute name="mult" type="xs:positivelnteger" use="optional" default="1"/>
</xs:complexType>
Figure 6-10: <variables> element in OSiL.

154

The <variables> element contains a sequence of 1 or more <var> elements. Each <var>
element has an optional name element. Like constraints, a variable is referenced by its index
(starting from 0) according to the order the <var> element is listed in the <variables>
element. The <var> element also has an optional init attribute of string (not double)
type. This is because in certain optimization problems (such as those typically solved by
constraint programming), variables may assume non-numeric values. The optional type
attribute has four possible values: C for continuous (default), B for binary, I for integer, and S
for string. The optional ub attribute is by default INF. The optional 1b attribute is by default 0.
The optional objCoef attribute is by default 0. The optional attribute mult (for multiplicity)
is similar to the mult attribute of the intVector element explained in the OSgL section

(§6.1).

3. The <coefMatrix> element is shown in Figure 6-11.

MistMatrze]
| [——— |
| intVector
| | |
== |
j v ||
| |
|
Emies-ne: |
choice : . |
| |
| Fotll)le\.'ect0| | |
e | [| }

| e

Figure 6-11: <coefMatrix> element in OSiL.
The coefficient matrix contains the linear part of the constraints. The <coefMatrix>
can contain a choice of 1istMatrix and mpsMatrix. Both types of matrices can be

combined with a sparseSDPA matrix, if a sparseSDPA matrix is mixed with a regular linear

155

matrix. The 1istMatrix and mpsMatrix elements are briefly explained in the OSgL
section (§6.1). The sparseSDPA matrix is for semidefinite programming and is mainly an
XML version of the sparse SDPA format [89]. There can be other common semidefinite

formats, so the semidefinite programming representation may adapt to a better one in the future.

The linear part of the objective function in (6-1) is 7x, . The first constraint
(7x, +5x, <10) is linear. The linear part of the second constraint is 7x, + 5x, . By using the

con elements to store upper and lower bounds on the constraints, the var elements to store the
upper and lower bounds on the variables and the objective function coefficients, and the
coefMatrix element to store the linear part of the constraint matrix, all of the information
necessary to represent a linear programming instance, or the linear part of a nonlinear program

is represented. For example we can represent the linear part of (6-1) as:

<programData>

<constraints>
<con ub="10.0"/>
<con ub="10.0"/>
</constraints>
<variables>
<var name="x0" objCoef="0"/>
<var name="x1" init="1" Ib="0" ub="INF" type="C" objCoef="7"/>
</variables>
<coefMatrix>
<listMatrix>
<start>
<el>0</el>
<el>2</el>
<el>4</el>
</start>
<rowldx>
<el>0</el>
<el>1</el>
<el>0</el>
<el>1</el>
</rowldx>
<value>
<el>1</el>
<el>7</el>
<el>7</el>
<el>5</el>
</value>
</listMatrix>
</coefMatrix>

<programData>

Some of the optional attributes in the above example are explicitly shown for the purpose of
illustration. The 1istMatrix element is listed in column major form using the rowIdx
element. It can be listed in row major form using the colTdx element in a similar fashion.

Alternatively the coefMatrix can be represented using the mpsMatrix element:

< coefMatrix >

<mpsMatrix>
<col idx="0">
<row idx="0">1</row>
<row idx="1">7</row>
</col>
<col idx="1">
<row idx="0">7</row>
<row idx="1">5</row>
</col>
</mpsMatrix>
</ coefMatrix >

4. The <mut1lObjectives> element is shown in Figure 6-12. This element is for

optimization with respect to more than one objective.
| ohj |

e e S T s =5 i

1.

a8
3

<xs:complexType name="multiObjectives">
<xs:sequence>
<xs:element name="obj" maxOccurs="unbounded">
<xs:complexType>
<xs:complexContent>
<xs:extension base="obj"/>
</xs:complexContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="obj">
<xs:sequence>
<xs:element name="el" maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:double">

<xs:attribute name="varldx" type="xs:nonNegativelnteger" use="required"/>

</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="maxOrMin" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="min"/>
<xs:enumeration value="max"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="weight" type="xs:double" use="optional" default="1.0"/>
<xs:attribute name="constant" type="xs:double" use="optional" default="0.0"/>
</xs:complexType>
Figure 6-12: <multiObjectives> element in OSiL.

The <mut1lObjectives> element has a sequence of 1 or more <obj> elements. Each

156

<obj> child element has an optional name attribute. Again like constraints and variables, each

157

objective is referenced by its index; the first objective starts with an index -1, the second with -
2, and downwards. Since constraint indexes start from 0 upwards, the objective and constraint
indexes do not conflict with each other and together all potential the row indexes span the
entire integer domain. If the optimization has only one objective (objNumber = 1 in the
programDescription element), it is recommended that the single objective be specified
using the regular mechanism described above and not go inside the <multiObjectives>
element. Each <obj> has a required maxOrMin attribute which can take on a value of either
max or min. Each <ob7j> can also have an optional weight attribute (1 by default), and an
optional constant attribute (0 by default). The <obj> element contains a sequence of 1 or
more double-valued <e1> elements to specify objective coefficients. Each <e1> element has a

required varIdx attribute to indicate to which variable the coefficient belongs.

6.2.2 [Extension elements

There are currently eight extension elements in the programData (Figure 6-8) of OSiL.
They are <n1> for nonlinear programming, <cones> for cone programming, <stages> for
any math programming that uses stage information (e.g. dynamic programming, stochastic
programming), <stochastic> for stochastic programming, <userFunctions> for user-
defined functions, <userVariables> for user-defined variables, <simulations> for
definitions of simulations, and <xm1Data> for data representation in XML form. The
extension to semidefinite programming is already included in the baseProgramData part
through the representation of constraint matrix in sparseSDPA. The extensions to quadratic
programs, constraint programs, and complementarity problems are included in the nonlinear
programming extension through incorporation of special nonlinear nodes described in §6.3. We
go through each of the eight extensions below.

1. <n1> for nonlinear programming (including quadratic programming, constraint
programming, complementarity programming)

In keeping with the philosophy of separating out the linear and nonlinear parts of an
optimization instance, the nonlinear ferms in an instance are defined using the OSnL schema.

The OSIiL schema then imports the OSnL schema. The OSnL schema represents a wide
variety of general nonlinear operators, functions and operands and is made simple to parse by
adoption of a recursive design. OSnL is detailed in §6.3.

For nonlinear extensions, an alternative to the OSiL approach is Content MathML as

described in §4.2.2. In that same section, we listed reasons why we decided against using

158

Content MathML to represent general nonlinear optimization problems. However, in order to

be as consistent with MathML as possible, we adopt the MathML element names whenever

possible, for example <1n> for natural logarithm.

The way OSiL uses OSnL is through the use of a sequence of 0 or more <n1> elements

immediately after the last element in the base program data as shown in Figure 6-8. Figure 6-13

shows the definition of the <n1> element in OSiL.

Arrows indicate
references

3

" OSnLHode
s E

Can be expanded to contain
children as its operands.

plus

i

SLIM
minus

times

Hefe

negate
power

sin

[

normalDist

o

=

quadratic
wPath

userf

=

TP

number

var

<xs:complexType name="nl">

<Xs:.sequence>

<xs:element ref="OSnLNode"/>

</xs:sequence>

<xs:attribute name="idx" type="xs:int" use="required"/>

</xs:complexType>

Figure 6-13: <nl1> element in OSiL.

—

, OSnLLHode

plus
sum

minus

negate

normalDist

or

cquadlr atic

=

B OREREE

numibrer

war

]

The <n1> element has a required attribute i dx, to indicate that it is part of an objective

or constraint function whose index is equal to idx. Objectives are indexed by negative

integers, with the first one being -1, the second one -2, and so on. Constraints are indexed by

nonnegative integers, with the first one being 0, the second one 1, and so on. So <n1l

159

idx="0"> indicates the nonlinear expression belongs to the first constraint; and <nl
idx="-1"> indicates the nonlinear expression belongs to the first objective function.

The <nl1> element contains one and only one OSnLNode element. This single child
element is the root element of the nonlinear expression. 0OSnLNode is an abstract element
defined in OSnL. In a real instance, it is represented by a concrete element, such as plus,
times, sum, PI, number, var. That is why in the <n1> schema, the child element is written
as <xs:element ref="0SnLNode"/>,usinga ref attribute rather than a type
attribute. The concrete elements are all defined in OSnL. There are more than 200 concrete
elements that represent various operators, functions, and operands. All inherit from the abstract
OSnLNode element through the idea of substitution groups. Inheritance through substitution
groups was described in §4.3 and is illustrated in detail in §6.3.

Each concrete OSnLNode element can have 0 or more concrete child elements that also
inherit from OSnLNode. For example, if the concrete element is plus, it has exactly two child
concrete elements that inherit from OSnLnodes. If the concrete element is an operand (e.g. a
constant PT), it has no children. This recursive design allows us to build an entire expression

tree in a clean, effective and scalable way.

Horizontal <nl=> expression tree viewed graphically in a vertical tree

=programCsta=
=constraintz= . . . =fconstraints=
=variables= . <farishbles-

=nl idx="-1"=
=plus=
=times=
=number valle="100""
=povErs
=minus=
=var idx="1"f=
=powErs
=war idx="0"r=
=number value="2"f=
=fposver=
=/minus>
=lpowers
=fimes=
<pOYVER=
=Mminus=
=number value="1"f=
=var id=="0"¢=
=iminus=
=number valle="2"t=
= MaEr=
=iplus=
=inl=
=iprogrambata=

Figure 6-14: Objective function nonlinear part 100(x, —x_)”> + (1 —x,) represented in <n1>

and the corresponding vertical tree view of the expression.

160
The nonlinear part of the objective function (idx = -1) in (6-1) is 100(x, —x;)* +(1—x,)".
Its XML representation (horizontal tree) and the corresponding tree visualization (vertical tree)
is shown in Figure 6-14. The first constraint in (6-1) is linear; it does not have a corresponding
<nl> element. The linear part of the second constraint (1dx = 1) is In(x,x,). It is represented

as

<nl idx="1">

<In>
<times>
<var idx="0"/>
<var idx="1"/>
</times>
</In>

</nl>
Thus the entire optimization problem (6-1) has been characterized in XML.

2. <cones> for cone programming
The cone programming extension mainly addresses second-order cone programming (SOCP).
SOCEP is usually solved with some kind of primal-dual interior point method. The objective
function is usually linear, while the constraints are an intersection of an affine set and the direct
product of quadratic cones. See [75] for more details. OSiL extension to cone programming
using the <cones> element is explained in detail in Appendix A.

3. <stages> for math programs using stage information
Information of stages is used in several optimization types, such as dynamic programming, and
stochastic programming. OSiL extension to these problems types using the <stages> element
is explained in detail in Appendix A.

4. <stochastic> for stochastic programming
For a complete review of stochastic programming, refer to [11]. The OSiL stochastic
programming extension is designed to make it convenient and powerful to transform existing
deterministic linear or nonlinear programs into stochastic programs by adding dynamic and
stochastic structure information. It was first designed totally independent of the SMPS
format[10] and later, through working with Horand Gassmann, one of the coauthors of the
original SMPS format, added many new ideas. OSiL extension to these problems types using
the <stages> element is explained in detail in Appendix A.

5. <userFunctions> for user-defined functions in terms of OSnLNode expression

trees

Figure 6-15 shows the <userFunctions> element.

161

1.0 U
<xs:element name="userFunction" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element ref="OSnLNode"/>
</xs:sequence>
<xs:attribute name="name" type="xs:ID" use="required"/>
<xs:attribute name="numArg" type="xs:nonNegativelnteger" use="required"/>
</xs:complexType>
</xs:element>

Figure 6-15: <userFunctions> element in OSiL.

The <userFunctions> element contains a sequence of one or more
<userFunction> elements. Each <userFunction> has a required name and numArg
(number of arguments) attribute. <userFunction> has one and only one OSnLNode
element. This single child element is the root element of the nonlinear expression that
represents a user-defined function. The use of OSnLNode is just like defining any nonlinear
expression in the <n1> element, except that it uses some <arg> elements. The definition of
the user function should be independent of the mathematical program represented by the OSiL
instance. For example, it is required that the user function definition can not use math program
variables (<var> elements) because the variable indexes change between instances of the
same optimization problem; instead, the <arg> element from OSnL is provided to define the
user function. If a modeler wants to define “user” variables using the math program variables,

he should use the <userVariables> element described below. For example, suppose the

nonlinear term 100(x, — xg)? in the objective function of (6-1) is defined by a user function

called myFunction as myFunction(arg,,arg,) = 100(arg, - argoz)2 . It is represented

using the <userFunctions> element as

<userFunctions>

<userFunction name="myFunction" numArg="2">
<times>
<number value="100"/>
<power>
<minus>
<arg idx="1"/>
<power>
<arg idx="0"/>
<number value="2"/>
</power>
</minus>
<number value="2"/>
</power>
</times>
</userFunction>

162

</userFunctions>

In the above example, we should not use <var idx="0"/> instead of <arg idx ="0"/>.
With the definition of the user function, we can represent the nonlinear part of the objective

function in OSIiL as:
<nl idx="-1">

<plus>
<userF name="myFunction">
<var idx="0"/>
<var idx="1"/>
</userF>
<power>
<minus>
<number value="1"/>
<var idx="0"/>
</minus>
<number value="2"/>
</power>
</plus>
</nl>

The <userF> nonlinear node is explained in §6.3.

6. <userVariables> for user-defined variables in terms of OSnLNode expression trees
Figure 6-16 shows the <userVariables> element, which contains a sequence of

<userVariable> child elements.

userVariables [-] ,OSnLHo{Ie
1.0 T

<xs:complexType name="userVariables">
<xs:sequence>
<xs:element name="userVariable" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element ref="OSnLNode"/>
</xs:sequence>
<xs:attribute name="name" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

Figure 6-16: <userVariables> element in OSiL.

The use of the <userVariables> element is very similar to that of
<userFunctrions>, only that the user-defined variables are defined over the math program
variables declared in the <variables> element and therefore there are no arguments to pass
to each uservVariable. So, unlike the user functions, user variables highly depend on the

math program instance.

163

Like <userFunction>, each <userVaraible> has one and only one OSnLNode
element which defines the root element of the nonlinear expression that represents a user-

defined variable.
Suppose the nonlinear term 100(x, — xé)? in the objective function of (6-1) is defined by

a user-defined variable called myVariable. It is represented using the <uservVariables>

element as

<userVariables>

<userVariable name="myVariable" numArg="2">
<times>
<number value="100"/>
<power>
<minus>
<var idx="1"/>
<power>
<var idx="0"/>
<number value="2"/>
</power>
</minus>
<number value="2"/>
</power>
</times>
</userFunction>
</userFunctions>

In the above example, there are no <arg> elements as there are not going to be arguments
passed in. We directly use <var idx="0"/>and <var idx="1"/> from the math
program instance. In a sense, every <userVariable> element has all the <var> elements
as their predefined arguments. With the user variable definition, the nonlinear part of the

objective function is represented in OSiL as:
<nl idx="-1">

<plus>
<userVar name="myVariable"/>
<power>
<minus>
<number value="1"/>
<var idx="0"/>
</minus>
<number value="2"/>
</power>
</plus>
</nl>

The <userVar> nonlinear node is explained in §6.3.
7. <simulations> for definition of black-box calculations of any type

Figure 6-17 shows the <simulations> element.

164

1.m

<xs:complexType name="simulations">
<xs:sequence>
<xs:element name="simulation" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="uri">
<xs:complexType>
<xs:attribute name="value" type="xs:anyURI" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="0SsL" type="0OSsL"/>
</xs:sequence>
<xs:attribute name="name" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

Figure 6-17: <simulations> element in OSiL.

The <simulations> element contains a sequence of one or more <simulation>
elements. Each <simulation> has arequired name attribute. A simulation is similar to a
user function as described in §2.8, except that there is no longer a closed form expression for
the function. Instead, three things have to be specified for the simulation: input, output, and the
simulation’s address. Thus each <simulation> has a required <uri> child to specify an
address in URI format and a required OSsL element to specify the input and output of the

simulation. OSsL is specified in the Optimization Services simulation Language of §6.7.
Suppose the nonlinear term 100(x, — x;)” in the objective function of (6-1) is one of the

multiple outputs from a simulation called simpleSimulation shown in Figure 6-18. Of

course, in reality the simulation calculation can be extremely complex.

b simpleSimulation | F1

input thidden) Output
a -]]f:'f][l_:—._—:'.];' . 2

I'? a + |:_:

URI

hitp:iiwww optimizationservices.orgfos/ossimulation/SimpleSimulationService jws

Figure 6-18: simpleSimulation with two inputs (a, b), two outputs (f1, f2) and an address at
http://www.optimizationservices.org/os/ossimulation/SimpleSimulationService.jws.

165

The simpleSimulation element is represented using the <simulations> element as

<simulations>

<simulation name="simpleSimulation">
<uri value="http://www.optimizationservices.org/os/ossimulation/SimpleSimulationService.jws"/>
<OSsL>
<input>
<el name="a"/><el name="b"/>
</input>
<output>
<el name="f1"/><el name="f2"/>
</output>
</OSsL>
</simulation>
</simulations>

Notice simpleSimulation has two outputs and we only need the first output £1. Now the
objective function is written as mySimulation(x,, x,) = f; +(1—x,)’ + 7x, and the

nonlinear part of the user function is represented as
<nlidx="-1">

<plus>
<sim name="simpleSimulation">
<simlInput inputName="a"> <var idx="0"/> </siminput>
<simInput inputName="b"> <var idx="1"/> </simInput>
<simOutput outputName="f1"/>
</sim>
<power>
<minus>
<number value="1"/>
<var idx="0"/>
</minus>
<number value="2"/>
</power>
</plus>
</nl>

The <sim> nonlinear node is explained in more detail in §6.3. The process of invocation of
simulation services in simulation optimization is explained in more detail in §7.2.

8. <xmlData> for data definition in XML form

Figure 6-19: <xmlData> element in OSiL.
Figure 6-19 shows the <xmlData> element.

@ (-)

1.0

<xs:complexType name="xmlIData">

<xs:sequence>
<xs:any processContents="skip" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

Figure 6-19: <xmlData> element in OSIiL.

166

In an optimization instance, there is usually no need to separately keep a data list, as all the
data are substituted into the instance. But occasionally there is the need to keep separate data.
For example, in constraint programming, a parameter can be indexed over variables such as
p[x[0], x[1]]. Parameter values are not known at compile time. It is not until run time, when the
variable values (x[0], x[1]) are known, can parameter values be retrieved. A simple example of
keeping the parameters (p[i, j]) in xm1lData is shown below:

<xmlData>

<p>
<i>
<j>1 _2</j><j>1 _3</j>
</i>
<i>
<j>0.4</j><j>0.5</j>
</i>
<>
<j>3_1 </j><j>4_5</j>
</i>
</p>
</xmlIData>

In the example p[0,0]=1.2, p[0,1]=1.3, p[1,0]=0.4, p[1,1]=0.5, p[2,0]=3.1 and
pl2,1]=4.5. Notice almost all the databases and spreadsheets are xml-enabled, meaning that

they can at least export the data in XML formats, which can then be retrieved with the standard
XPath language (§4.4). So this simple example has its universal appeal in practice. For
example to get the value of p[2,0] (the 1% <j> element in the 3" <i> element; xPath starts
element index with 1), we construct the following XPath:

xmlData/p/i[position()="3"}/j[position()="1"]

Of course, in an optimization process, we pass in x[0] and x[1] instead of the numbers “3” and
“1”. We will explain more on the <xPath> nonlinear node in §6.3; the nonlinear node uses

the XPath syntax to retrieve data values from any XML data.

6.3 Optimization Services nonlinear Language (OSnL)

The OSnL schema is located at http://www.optimizationservices.org/schemas/OSnL.xsd.
In keeping with the philosophy of separating out the linear and nonlinear parts of an
optimization instance, the nonlinear expressions in an instance are defined using the OSnL
schema. OSnL itself is not a nonlinear program instance representation. As described in the
OSIL section (§6.2), all types of optimization instances are described using OSiL. More
appropriately OSnL should be interpreted as Optimization Services nonlinear node Language.
OSnL defines nonlinear nodes and nodes on/y. The nodes can be operators, functions or

terminal operands. Operators always have child nodes. Function may or may not have child

167

nodes. Terminal operands do not have children. Examples of terminal nodes are the number
node and constant nodes such as PT and E.

OSnL is then included in the OSiL schema to support nonlinear instance representation in
OSiL. The way OSiL uses OSnL is through the use of a sequence of 0 or more <n1>; each
<nl> element has an only child OSnLNode as an expression tree root to define a nonlinear
function. This is described in detail in the OSiL section (§6.2).

In §4.3, we described schema type inheritance through the idea of substitution groups. For
a nonlinear expression, we use an expression tree and view every node in the expression tree as
a generic node, which we call “OSnLNode.” Each OSnLLNode can have 0 or more OSnLNode
children. A terminal node is just an OSnLNode without children. To represent a generic node,

at the beginning of the OSnL schema, we create a complex type OSnLNode:

<xs:complexType name="0OSnLNode" mixed="false">

<xs:annotation>
<xs:documentation>This is a generic node from which we derive operator nodes</xs:documentation>
</xs:annotation>
</xs:complexType>

The annotation element is just an XML schema comment. Next we create a
substitution group based on the named element OSnLNode, which is of the above type

OSnLNode.

<xs:element name="0SnLNode" type="OSnLNode" abstract="true">

<xs:annotation>
<xs:documentation> Set abstract to true in order to create a substitution group</xs:documentation>
</xs:annotation>
</xs:element>

So we can think of OSnLNode as a derived class. Note the abstract attribute is set to
the value of t rue in order to create the abstract class. Now with the substitution group defined,
throughout the rest of the OSnL schema, we create concrete OSnLNode elements that are in the
substitution group for OSnLNode. For example, the first concrete element we define is an

OSnLNode for addition:

<xs:complexType name="0SnLNodePlus">

<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence minOccurs="2" maxOccurs="2">
<xs:element ref="OSnLNode"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="plus" type="OSnLNodePlus" substitutionGroup="0SnLNode"/>

We first define the complex type OSnLNodePlus and we then create the derived element

plus that is in the substitution group OSnLNode. Note that the plus element requires

168

exactly two child elements (<xs:sequence minOccurs="2" maxOccurs="2">), both of
which should be in the 0SnLNode substitution group too (<xs:element
ref="0SnLNode"/>). In a similar fashion, we define all other OSnL nodes such as minus,
divide, arcsin, sum, E, var, leq, 1f, complements, xPath, userF, quadratic.
For nodes such as sum, as the sum operator is an indefinite type, the corresponding

0OSnLNodeSum requires one or more child elements:

<xs:complexType name="0OSnLNodeSum">
<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element ref="OSnLNode"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="sum" type="OSnLNodeSum" substitutionGroup="0OSnLNode"/>

For nodes such as E, as E is a constant, the corresponding OSnLNodeE has no children:

<xs:complexType name="OSnLNodeE">

<xs:complexContent>
<xs:extension base="OSnLNode"/>
</xs:complexContent>
</xs:complexType>
<xs:element name="E" type="0OSnLNodeE" substitutionGroup="OSnLNode"/>

he recursive design provides a significantly simple and powerful way to construct a
nonlinear expression. As shown in Figure 6-13 in the OSiL section (§6.2), the definition of an
<nl> element for the nonlinear extension is only six short lines.

When a concrete expression tree is finally constructed, it may look like:

<sum>
<times>
<var idx="0" coef="3"/>
<var idx="1"/>
</times>
<power>
<var idx="0" coef="4"/>
<number value="2"/>
</power>
<divide>
</PI>
<var idx="0"/>
</divide>
</sum>

for the nonlinear expression (3x,x,) + 4x¢ + 7/ x, .

The OSnL schema is very compressive; over 200 elements are supported. They fall
broadly into the following 8 categories:
1. Arithmetic operators

2. Elementary functions

® N o AW

169

Trigonometric functions

Statistical and probability functions
Terminals and constants
Optimization related elements
Logic and relational operators

Special elements

The input and output of all the currently defined operators/functions are scalars

(R" — R"). Set or vector valued function elements may be added in the future. Next we

describe elements in each category.

1. Arithmetic operators

In Table 6-3, we list the arithmetic operator elements.

Name Child # Note Name Child # Note

plus 2 + divide 2 =

sum 1 or more > quotient 2 \; e.g. 11 quotient 4 =2

minus 2 - rem 2 remainder, e.g. 11 rem4 =3

negate 1 - power 2 A : base is the 1% child; exponent is the 2™ child
times 2 X product 1 or more 11

Table 6-3: Arithmetic operators in OSnL.

“Child #” indicates the number of OSnLNode children that an element can take as operands.
Elements with 1 operand are of unary type. Elements with 2 operands are of binary type.
Elments with n (n>2) operands are of n-nary type. Some of the subsequent element types have
n-nary functions. Elements such as sum and product are of indefinite types. As useful as the
validation concept is, validation is about syntax not semantics. For example, the OSnL schema
can make sure there are exactly 2 child elements for the <divide> element, but the schema
cannot make sure the second child evaluates to a non-zero. Similarly the schema does not check

whether the child elements of the integer-based quotient and rem operators evaluate to

integers. These require additional checking and interpretation on the part of a parser.

2. Elementary functions

In Table 6-4, we list the elementary function elements.

Name Child # Note Name Child # Note
abs 1 |al In 1 natural log of a
squareRoot 1 Ja log 2 log (a,b) = log, b
square 1 a° log10 1 log10(a) = log,, b
floor 1 |_aJ round* 2 see blow
ceiling 1 |_a-‘ roundTolnt 1 round to integer
factorial 1 n! ged 2 greatest common divisor

170

exp 1 e’ lem 2 least common multiple
combination 2 C truncate* 2 see below
n "k
permutation 2 P rand* 1 see below
n'k
percent 1 a% gammaFn 1 gamma function
sign 1 1 or-1 gammalLn 1 natural log of the gamma function

Table 6-4: elementary functions in OSnL.

Most of the elementary functions are self-explanatory.

The round function takes 2 children. The first child is the number to be rounded. The
second child is the number of digits to round; a negative number rounds to the left of the
decimal point; zero to the nearest integer.

The truncate function truncates a number to an integer by removing the fractional part
of the number. It takes 2 children. The first child is the number to be truncated. The second
child indicates truncation precision; negative number truncates to the left of the decimal point;
zero to the nearest integer.

The rand function takes 1 child as a seed. It returns a random number from a continuous
uniform distribution > O and <1.

3. Trigonometric functions

All the 24 standard trigonometric functions are defined in OSnL (Table 6-5).

Name Name Name Name Name Name
sin cos tan cot sec csc
sinh cosh tanh coth sech csch
arcsin arccos arctan arccot arcsec arccsc
arcsinh arccosh arctanh arccoth arcsech arccsch

Table 6-5: Trigonometric functions in OSnL.

A trigonometric function takes one and only one child.
4. Statistical and probability functions
In Table 6-6, we list the statistical function elements that take one list of data, and hence

are of indefinite types.

Name (no notes) Name Note
mean Absdev average of absolution deviations from the mean
geometricMean Stddev standard deviation
harmonicMean Cv coefficient of variance (standard deviation / mean)
count Large the n™ largest number in a data list; n (>0) is the 1* child
median Small the n™ smallest number in a data list; n (>0) is the 1% child
mode Percentile the n™ percentile in a data list; n (= 0,< 1) is the 1% child
min interQuantileRange thirdQuartile - firstQuartile
max Range max - min

171

skewness trimMean* see below; fractional value is the 1% child

kurtosis Npv net present value; discount rate 7 is the 1% child
firstQuartile Irr internal rate of return

thirdQuartile autocorrelationl regular autocorrelation with lag = 1

variance autocorrelation general correlation with lag=n (> 1) ; n is the 1% child

Table 6-6: Statistical functions that take a list of data in OSnL (indefinite types).

Each entry in the data list corresponds to a child node. The parameters (if any) of a statistical
function go before the data list children. For example the 1arge function takes a number n as
its first child to indicate the n™ largest number in the rest of the children. Most of the statistical
functions are self-explanatory.

The trimMean function takes 2 or more children. The first child is a number (€ [0,1])
indicating the fraction of data points to exclude from the top and bottom of the data list. The

rest of the children (from the second on) are the data list.

In Table 6-7, we list the statistical function elements that take two data lists as operands.

Name Note
covariance covariance of two data lists; 1% data list is the 1% half of the children
correlation correlation of two data lists; 1% data list is the 1° half of the children

pearsonCorrelation | Pearson product moment correlation coefficient; 1% data list is the 1°* half of the children
rankCorrelation rank correlation of two data lists; 1% data list is the 1** half of the children
Table 6-7: Statistical functions that take two lists of data in OSnL (indefinite types).

Each entry in the 2 data lists corresponds to a child node. The parameters (if any) of a statistical
function go before the data list children. After the parameter children, there should be even
number of the rest of the children; the first half of these children corresponds to the first data
list; the second half of these children corresponds to the second data list.

In Table 6-8, we list the probability function elements. Almost all probability functions
can have three versions: density, cumulative, and inverse; child arguments for the three
versions are exactly the same. An OSnL element is created for each version (if there is one).
Density type elements are suffixed with “Dist”, cumulative type elements are suffixed with

“Cum”, and inverse type elements are suffixed with “Inv.”

Name Name Name Child Sequence of Children
(Density) (Cumulative) (Inverse) # (paraml, ..., param2, X)
discreteUniformDist discreteUniformCum discreteUniformInv 2 (N, x)
bernoulliDist bernoulliCum bernoullilnv 2 (p, %)
binomialDist binomialCum binomiallnv 3 (N, p, x)
multinomialDist multinomialCum multinomiallnv 3or (N, p1, P2rev-s Pus %)
more

172

hypergeometricDist hypergeometricCum hypergeometriclnv 4 (N, M, n, x)

poissonDist poissonCum poissonlnv 2 (lamda, x)

geometricDist geometricCum geometriclnv 2 (p, %)

negativeBinomialDist | negativeBinomialCum | negativeBinomiallnv 3 (p, r, x)

uniformDist uniformCum uniformInv 3 (a, b, x)

normalDist normalCum normallnv 3 (mu, sigma, x)

stdNormalDist stdNormalCum stdNormallnv 1 (x)

bivariateNormalDist | bivariateNormalCum / 7 (mul, sigmal, mu2,
sigma2, pho, x1, x2)

exponentialDist exponentialCum exponentiallnv 2 (lamda, x)

weibullDist weibullCum weibulllnv 4 (location, scale, shape,
x)

erlangDist erlangCum erlanglnv 3 (lamda, n, x)

gammaDist gammaCum gammalnv 4 (location, scale, shape,
X

betaDist betaCum betalnv 3 (;egreel , degree?2, x)

betaGeneralDist betaGeneralCum betaGenerallnv 5 (degreel, degree2, min,
max, X)

lognormalDist lognormalCum lognormallnv 3 (mu, sigma, x)

cauchyDist cauchyCum cauchylnv 3 (location, scale, x)

tDist tCum tinv 2 (degree, x)

chiSquareDist chiSquareCum chiSquarelnv 2 (degree, x)

fDist fCum flnv 3 (degreel, degree2, x)

logisticDist logisticCum logisticInv 3 (mu, beta, x)

logLogisticDist logLogisticCum logLogisticInv 3 (mu, beta, x)

logarithmicDist logarithmicCum logarithmicInv 3 (a, b, x)

paretoDist paretoCum paretoDist 3 (shape, scale, x)

rayleighDist rayleighCum rayleighInv 2 (beta, x)

pertDist pertCum pertlnv 4 (a, ¢, b, %)

triangularDist triangularCum triangularInv 4 (a, ¢, b, %)

Table 6-8: Probability functions (density, cumulative, inverse) in OSnL.

All the probability functions and related parameters are quite standard; they are named to be

indicative of what are used in common practice. The last child (or last two in bivariate cases)

always evaluates to a number that corresponds to the distribution function variable (or

variables). The parameters of a probability function (if any) go before the variable child (or

children).

5. Terminals and constants

In Table 6-9, we list the terminal elements, which do not have children.

Name Attributes
number value, type, id
identifier Name

Table 6-9: Terminals in OSnL.

The number schema is shown below:

<xs:complexType name="OSnLNodeNumber">

173

<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:attribute name="value" type="xs:string" use="required"/>
<xs:attribute name="type" use="optional" default="real">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="real"/>
<xs:enumeration value="string"/>
<xs:enumeration value="random"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="id" type="xs:ID" use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="number" type="OSnLNodeNumber" substitutionGroup="OSnLNode"/>

The <number> element has three optional attributes value, type, and id. The value
attribute is required and is of st ring type. The t ype attribute is optional and can take on a
value of either real (default), string, or random. A “string-valued” number is often used
in constraint programming. A “random” number is often used in stochastic programming and
in this case the value attribute of number can either be treated as an initial value or ignored.
The id attribute is optional. But if there is one, it has to be unique as it of type ID. A number
with an 1d can be located. For example, in stochastic programming, we may need to change
the number to different values in different scenarios. For example, all the following are valid

number elements:

<number value="100"/>

<number value="100" type="real"/>
<number value="Chicago" type="string"/>
<number value="3.2" type="random" id="n4"/>

The identifier schema is shown below:

<xs:complexType name="0OSnLNodeldentifier">

<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="identifier" type="OSnLNodeldentifier" substitutionGroup="OSnLNode"/>

The <identifier> element has one required name attribute. It is seldom used in numerical
optimization. It can potentially be used for symbolic optimization. The following is an example

of an identifier element:
<identifer name="a"/>

A variable is not always a terminal node, as it may take a child operand as its index. This is

explained later.

174

In Table 6-10, we list the constant elements, which do not have children.

Constants | PL, E, TRUE, FALSE, EULERGAMMA,
INF (infinity), EPS (epsilon), NAN (Not a Number)
Table 6-10: Constants in OSnL.

Most of these constants are well supported in various programming languages. So parser
implementation can leverage on the support from the programming languages. TRUE and
FALSE are not double values, but parsers may for example choose to use a positive number to
represent TRUE and a negative number to represent FALSE.

6. Optimization related elements

In Table 6-11, we list the three optimization related elements.

Name Child # Attributes
var Oorl idx, coef
objective Oorl idx
constraint Oorl idx, valueType

Table 6-11: Optimization related elements in OSnL.

The var element schema is shown below:

<xs:complexType name="0OSnLNodeVar">

<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence minOccurs="0">
<xs:element ref="OSnLNode"/>
</xs:sequence>
<xs:attribute name="idx" type="xs:nonNegativelnteger" use="optional"/>
<xs:attribute name="coef" type="xs:double" use="optional" default="1"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="var" type="OSnLNodeVar" substitutionGroup="OSnLNode"/>

<var>" has two optional attributes, idx and coef. The idx attribute is nonnegative and if
it’s not there, an optional child can be used to evaluate to the variable index. This can be useful
in, for example, constraint programming in which a variable’s index can sometimes be an
integer-valued variable or expression. The coef attribute is designed as a shorthand to avoid
explicitly expressing a constant times a variable, which appears frequently in optimization. By
default, coef is 1. For example, all the following are valid variable elements:

x[0]: <var idx="0"/>

3x[10] : <var idx="10" coef="3"/>

S5x[1+ x[2]] : <var coef="5.0"> <plus><number value="1"/><var idx="2"/></plus> </var>

! We did not choose to use <variable> because variables appear too often in an optimization instance.

175

The objective element schema is shown below:

<xs:complexType name="0OSnLNodeObjective">

<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence minOccurs="0">
<xs:element ref="OSnLNode"/>
</xs:sequence>
<xs:attribute name="idx" type="xs:int" use="optional" default="-1"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="objective" type="OSnLNodeObjective" substitutionGroup="OSnLNode"/>

<objective> has one optional attribute idx; idx is negative and by default -1, which
corresponds to the first objective. The element evaluates to the objective value corresponding to
the index. Like the var element, an optional child can be used to evaluate to the objective

index. The following is an example of an objective element:
<objective idx="-1"/>
The Constraint element schema is shown below:

<xs:complexType name="0OSnLNodeConstraint">

<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence minOccurs="0">
<xs:element ref="OSnLNode"/>
</xs:sequence>
<xs:attribute name="idx" type="xs:int" use="required"/>
<xs:attribute name="valueType" use="optional" default="value">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="value"/>
<xs:enumeration value="status"/>
<xs:enumeration value="surplus"/>
<xs:enumeration value="shortage"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="constraint" type="0OSnLNodeConstraint" substitutionGroup="0OSnLNode"/>

The <constraint> element has two optional attributes 1dx, and valueType. The 1dx
attribute is nonnegative. Like the var and objective elements, an optional child can be
used to evaluate to the constraint index. The value of the valueType attribute can be either of

“value” (default), “status” (whether the constraint is satisfied, a boolean), “surplus”
((value —ub)"), or “shortage” ((Ib —value)"). The following are valid examples of a

constraint element:

<constraint idx="2"/>

<constraint idx="3" value Type="status"/>
<constraint idx="0" valueType="surplus"/>

176

<constraint idx="11" valueType="shortage"/>

7. Logic and relational operators

In Table 6-12, we list the standard logic and relational operator elements.

Name Child Note Name Child # Note
#

Lt 2 < and 2 &&
Leq 2 < or 2 [
Gt 2 > not 1 !
geq 2 > XOr 2 exclusive or
Eq 2 = implies 2 —> : true if both children are true or false
neq 2 1= if 3 If(a, b, ¢): if a is true, then b, else ¢

Table 6-12: Standard logic and relational operators in OSnL.

In Table 6-13, we list the extended logic and relational operator elements.

Name Child # Note Example
forAll lor | trueifall the <forAll>
more | child nodes <constraint idx="0" valueType="status"/>
evaluate to <constraint idx="1" valueType="status"/>
true <or>
<constraint idx="3" value Type="status"/>
<constraint idx="4" valueType="status"/>
<or/>
<[forAll>
exists lor | trueifanyof | <exists>
more | the child <gt><var idx="0"/><number value="1.2"/></gt>
nodes <geg><constraint idx="2"/><number value="1.2"/></geq>
evaluate to <implies>
true <constraint idx="3" valueType="status"/>
<constraint idx="4" valueType="status"/>
<implies/>
</exists>
logicCount lor | number of <logicCount>
more | child nodes <neg><var idx="0"/><number value="3"/></neq>
that evaluate <and>
to true <constraint idx="0" valueType="status"/>
<constraint idx="1" value Type="status"/>
<and/>
</logicCount>
allDiff 1 or true if all the <allDiff>
more | child nodes <constraint idx="0" valueType="value"/>
evaluate to <plus><var idx="0"/><var idx="1"/></plus>
different <objective idx="-1"/>
values </allDiff>
atMost 2or | 1%child <atMost>
more | evaluates to <number value="2"/>
an integer n; <if>
true if at most <eg><var idx="1"/><Pl/></eq>
n of the rest <FALSE/>
of the child » f:TRUE’>
nodes are true <constraint idx="1" valueType="status"/>
<neqg><var idx="0"/><number value="1.2"/></neq>
</atMost>
atLeast 2or | 1%child <atLeast>
more | evaluates to <number value="1"/>
an integer n; <xor>
true if at least <constraint idx="1" valueType="status"/>

177

n of the rest <constraint idx="2" value Type="status"/>
of the child <xor/>
nodes are true <lt><var idx="0"/><number value="1.2"/></It>
</atLeast>
exactly 2or | 1™child <exactly>
more | evaluates to <number value="2"/>
an integer n; <not><constraint idx="1" valueType="status"/></not>
true if exactly <constraint idx="2" valueType="status"/>
n of the rest <leg><var idx="0"/><number value="1.2"/></leq>
of the child </exactly>
nodes are true
inSet 2or | trueifI™ <inSet>
more | child’s value <number value="2"/>
is equal to <constraint idx="0" valueType="value"/>
one of the rest <plus><var idx="0"/><var idx="1"/></plus>
of the child </inSet>
nodes
inRealSet 1 true if the <inRealSet>
child is a real <var idx="2"/>
number </inRealSet>
inPositiveRealSet 1 true if the <inPositiveRealSet>
child is a <constraint idx="6" valueType="surplus"/>
positive real </ inPositiveRealSet>
number
inNonnegativeRealSet 1 true if the <inNonnegativeRealSet>
child is <constraint idx="4" valueType="shortage"/>
nonnegative </ inNonnegativeRealSet >
real number
inIntegerSet 1 true if the <inIntegerSet>
child is an <divide><var idx="4"/><number value="2"/><divide/>
. </inintegerSet>
integer
number
inPositiveIntegerSet 1 true if the <inPositivelntegerSet>
childis a <minus><var idx="4"/><number value="2"/><minus/>
positive </inPositivelntegerSet>
integer
number
inNonnegativelntegerSet 1 true if the <inNonnegativelntegerSet>
child is a <ceiling><objective idx="-2"/><ceiling/>
nonnegative </inNonnegativelntegerSet >
integer

Table 6-13: Extended logic and relational operators in OSnL.

For instance, the first example (forAl1l) in the table:

<forAll>
<constraint idx="0" valueType="status"/>
<constraint idx="1" valueType="status"/>
<or>
<constraint idx="3" valueType="status"/>
<constraint idx="4" valueType="status"/>
<or/>
</forAll>

means that the forAll operator is true if constanint 0 and constraint 1 are both true, and one

of the constraints, constraint 3 or constraint 4, is true.

All of the extended logic and relational operators are explained with an example in the

above table. Most of these are used in combinatorial and discrete optimization such as

178

constraint programming. Potentially more logic and relational operators will be added,
especially the set-valued operators. For more details, refer to [47].
8. Special elements

In Table 6-14, we list the special elements.

Name Children Attributes
quadratic 1 or more gpTerm elements (only for quadratic programs) none
qpTerm 0 or 1 child; the optional child evaluates to the coefficient value of | idxOne (required)
the quadratic term which must evaluate to a constant term (only idxTwo (required)
under the <quadratic> element) coef (optional, default = 1)
userF 0 or more children as the userF arguments name (required)
arg no children idx (required, nonnegative)
userVar no children name (required)
sim 0 or more simInput elements, the last child is simOutput name (required)
simInput 0 or 1 child; the optional evaluates to the simInput value simName (optional)
inputName (required)
simOutput | 0 or 1 child; the optional evaluates to the simOutput value simName (optional)
outputName (optional)
xPath 0 or more xPathIndex elements uri (optional, default=*.”)
path (required)
xPathIndex | O or 1 child; the optional child evaluates to the index value indexName (required)
indexValue (optional)
complements | 2 children none
nodeRef 0 or 1 child; the optional child evaluates to the node property nodeID (optional, nonnegative)
value propName (required)
arcRef 0 or 1 child; the optional child evaluates to the arc property value arcID (optional, nonnegative)
propName (required)

Table 6-14: Special elements in OSnL.

Unlike most of the previous elements, many of these special elements have complex
attributes and indefinite number of children. The special elements are described below. Several

elements are explained using the Markowitz [76] optimization problem in (6-2) using a three
stock instance where X, represents the percentage of the portfolio invested in stock 7. Assume
the portfolio is re-balanced when returns and covariances are updated.
minixrnize 24x[msft]’ +75x[pg]> +19x[ge]’ —
2*10x[msft|x[pg]+ 2 * 25x[msft]x[ge] + 2 * 37 x[pg1x[ge]
subject to
07 x[msft]+.09x pg]+.03x[ge] 2= 0.5 (1) (6-2)
x[msft] + x[pg]+ x[ge] =1 (2
if x[msft] > 0 then x[msft]—.1else 0>0 (3)
if x[pg]>0then x[pg]—.1else0=0 4
if x[ge] > 0 then x[ge]—.1else 0 >0 5)

quadratic, qpTerm

179

The <quadratic> and <gpTerm> schemas are shown below:

<xs:complexType name="0OSnLNodeQuadratic">

<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence maxOccurs="unbounded">
<xs:element ref="qpTerm"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="quadratic" type="OSnLNodeQuadratic" substitutionGroup="OSnLNode"/>

<xs:complexType name="OSnLNodeQpTerm">
<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence minOccurs="0">
<xs:element ref="OSnLNode"/>
</xs:sequence>
<xs:attribute name="idxOne" type="xs:nonNegativelnteger" use="required"/>
<xs:attribute name="idxTwo" type="xs:nonNegativelnteger" use="required"/>
<xs:attribute name="coef" type="xs:double" use="optional" default="1"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="gpTerm" type="OSnLNodeQpTerm" substitutionGroup="OSnLNode"/>

Although the instance of any quadratic program is easily represented as a general
nonlinear program using OSnLNode elements, a more compact representation is provided for
quadratic terms. A <gpTerm> element is used to represent each quadratic term. The
<guadratic> element sums up all its <gpTerm> child elements. The <gpTerm> element
has two required integer attributes (1dxOne, indxTwo) that specify the two variable indices
in the quadratic term. The coefficient of the quadratic term is specified using either a third
optional double attribute coef or by a single child element. One advantage of using the
<gpTerm> elements is that quadratic programming solvers typically take coefficient lists
rather than nonlinear expressions. An added advantage is that if an analyzer applied to the
problem instance discovers that the only nonlinear terms are <quadratic> and <gpTerm>
terms, it can classify the problem as a quadratic program. Suppose in the instance
representation of (6-2), the variable index for x[msft] is 0, for x[pg] is 1, and for x[ge] is 2.

The objective function is represented as

<quadratic>

<gpTerm idxOne="0" idxTwo="0" coef="24"/>

<gpTerm idxOne="1" idxTwo="1" coef="75"/>

<gpTerm idxOne="2" idxTwo="2" coef="19"/>

<gpTerm idxOne="0" idxTwo="1" coef="20"/>

<gpTerm idxOne="0" idxTwo="2" coef="50"/>

<gpTerm idxOne="1" idxTwo="2" coef="74"/>
</quadratic>

userF, arg

180

Often a problem instance has an expression that is repeated numerous times. As in
programming, where a method (subroutine) simplifies repeated logic, the <userF> element is
used to simplify instance representation by calling a pre-defined user function. Consider the
constraint set (3)-(5) of (6-2). These constraints require that if a nonzero investment is made in
stock i, then at least 10% of the portfolio must be invested in stock i . Rather than repeat the

same logic for each stock, it is much cleaner to first write the logic only once in a user defined

function: minlnv(arg,) = if arg, > 0 then arg,—.1 else 0, where arg is to be passed a
value of x,. User functions are defined in OSiL though the <userFunction> element

(discussed in the OSiL section §6.2). The representation for the minInv function looks like:

<userFunction name="minInv" numArg="1">
<if>
<gt>
<arg idx="0"/>
<number value="0"/>
</gt>
<minus>
<arg idx="0"/>
<number value="0.1"/>
</minus>
<number value="0"/>
<[if>
</userFunction>

The <userF> and <arg> schemas are shown below:

<xs:complexType name="0OSnLNodeUserF">

<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="OSnLNode"/>
</xs:sequence>
<xs:attribute name="name" type="xs:IDREF" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="userF" type="OSnLNodeUserF" substitutionGroup="OSnLNode"/>

<xs:complexType name="0OSnLNodeArg">
<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:attribute name="idx" type="xs:nonNegativelnteger" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="arg" type="0OSnLNodeArg" substitutionGroup="OSnLNode"/>

As mentioned in §6.2.2, the definition of the user function should be independent of the
optimization problem instance represented by the OSiL instance; thus it is required that the user
function definition use the <arg> elements instead of the math program variables <var>

elements. The <arg> element has one required index attribute (1dx) which is a nonnegative

181

number. The numArg attribute of userFunction is used to check that all the argument

indexes are 2 0 and < numArg —1.

Now with the minInv user function definition, we can write constraint set (3)-(5) of (6-2)

using the <userF> element as:
<nl idx="2">

<userF name="minInv">
<var idx="0"/>
</userF>
</nl>
<nl idx="3">
<userF name="minInv">
<var idx="1"/>
</userF>
</nl>
<nl idx="4">
<userF name="minInv">
<var idx="2"/>
</userF>
</nl>

In this example, the <userF> element’s required attribute name is minInv. <userF> can
take 0 or more children as function arguments to pass. Here, we only have one argument which
is <var idx=".."/>.

userVar

Sometimes a problem has some “new” variables defined over other math program decision
variables and these user-defined variables are used repeatedly in the objective or constraint
functions. The <userVar> element is used to simplify instance representation by calling a
pre-defined user variable. Notice user variables are not math program variables and thus not
counted in the total number of math program variables. <userVar> is just another special
nonlinear node and is very similar to the use of <userF>, only that <userVar> no longer
carries any child elements as its arguments, as all its arguments are from the already defined
math program variables. Consider constraint (2) of (6-2), which is the unity constraint that
requires the percentages of stock investments add up to one. We can define a new variable

called total such that total=Xx, + X, + x,. User variables are defined in OSiL though the

<userVariable> element (discussed in the OSiL section §6.2). The representation for the

total variable looks like:

<userVariable name="total">

<sum>
<var idx="0"/>
<var idx="1"/>
<var idx="2"/>
</sum>
</userVariable>

182

The <userVar> schema is shown below:

<xs:complexType name="0OSnLNodeUserVar">

<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:attribute name="name" type="xs:IDREF" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="userVar" type="OSnLNodeUserVar" substitutionGroup="0OSnLNode"/>

As mentioned in §6.2.2, the definition of the user variable is entirely dependent on the
variables already defined in the mathematical program represented by the OSiL instance, that is,
it becomes meaningless outside of the OSiL context. In practice, a userVariable definition
can be a more complex nonlinear expression than just the variable summation. Now with the
total user variable definition, we can write constraint (2) of (6-2) using the <uservar>

element simply as:
<nl idx="1">

<userVar name="total"/>
</nl>

<userVar> is a terminal node and does not take any children. In this example, the
<userVar> element’s required attribute name is total. Of course in more complex
examples, <userVar> is used in more than one constraint or objective function and can be
inside a bigger expression.

sim, simInput, simQutput

In some optimization problems there may not be a closed form expression for all functions
—they may be black boxes. This case is handled by the <sim> element. As explained in §2.8, a
simulation is similar to a user function, only that there is no longer a closed-form that can be
expressed; three things have to be specified for the simulation: input, output, and the
simulation’s address. The simulation definition, like the user function definition is specified in
OSiL. This was discussed in the OSiL section (§6.2).

Suppose the above minInv user function is now calculated by a simulation called

stockSimulation shown in Figure 6-20.

_ stockSimulation ;
|an|J[ticker —» (hidden) » mininv w
minInv= if amount>0 then amount-0.1 [—= pl‘i{:E outpu
amount glse 0 price = lookupiticker) dﬂ
day = dav{) :"-
URI

http:/fwww optimizationservices. org/osfossimulation/StockSimulationService jws

183

Figure 6-20: stockSimulation with two inputs (ticker, amount), three outputs (minlInv, price, day)
and an address (http://www.optimizationservices.org/os/ossimulation/StockSimulationService.jws).

There are two inputs of the simulation service: ticker for the stock symbol and amount for the
percentage of the stock in the portfolio. Notice the stockSimulation engine provides more
“services” than just calculating the minimum investment. It can look up a stock price according
to a stock ticker (a string). It also outputs the day of the week (no input needed for this
function). So it has three outputs: mininv, price and day.

The stockSimulation element is then be represented using the <simulation>

element of OSiL (§6.2.2) as

<simulation name="stockSimulation">

<uri value="http://www.optimizationservices.org/os/ossimulation/StockSimulationService.jws"/>
<OSsL>
<input>
<el name="ticker"/>
<el name="amount"/>
</input>
<output>
<el name="minInv"/>
<el name="price"/>
<el name="day"/>
</output>
</OSsL>
</simulation>

The format of the 0Ss1L child is described in detail in the OSsL section (§6.7). It contains
information about inputs and outputs. Note that simulations generally refer to inputs and
outputs by name rather than by order.

The <sim>, <simInput>, and <simOutput> schemas are shown below:

<xs:complexType name="OSnLNodeSim">

<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence>
<xs:element ref="simlInput" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="simOutput"/>
</xs:sequence>
<xs:attribute name="name" type="xs:IDREF" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="sim" type="0OSnLNodeSim" substitutionGroup="OSnLNode"/>

<xs:complexType name="0OSnLNodeSimInput">
<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence minOccurs="0">
<xs:element ref="OSnLNode"/>
</xs:sequence>
<xs:attribute name="simName" type="xs:IDREF" use="optional"/>
<xs:attribute name="inputName" type="xs:IDREF" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

184

<xs:element name="simInput" type="OSnLNodeSimInput" substitutionGroup="OSnLNode"/>

<xs:complexType name="0OSnLNodeSimQOutput">
<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence minOccurs="0">
<xs:element ref="OSnLNode"/>
</xs:sequence>
<xs:attribute name="simName" type="xs:IDREF" use="optional"/>
<xs:attribute name="outputName" type="xs:string" use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="simOutput" type="OSnLNodeSimOutput" substitutionGroup="0OSnLNode"/>

Now with the stockSimulation definition, we can write constraint set (3)-(5) of (6-2)

using the <sim> element as:
<nl idx="2">

<sim name="stockSimulation">
<simlnput inputName="amount">
<var idx="0"/>
</simlnput>
<simOutput outputName="minInv"/>
</sim>
</nl>
<nl idx="3">
<sim name="stockSimulation">
<simInput inputName="amount">
<var idx="1"/>
</simInput>
<simOutput outputName="minInv"/>
</sim>
</nl>
<nl idx="4">
<sim name="stockSimulation">
<simlnput inputName="amount">
<var idx="2"/>
</simlnput>
<simOutput outputName="minInv"/>
</sim>
</nl>

In this example, the <sim> element’s required attribute name is stockSimulation.
<sim> can take 0 or more <simInput> child elements, followed by one required
<simOutput> child element because we must have one output value to further calculate an
objective or constraint function value. So <sim> always has at least one child. Here, we only
have one <simInput> element whichis <var idx=".."/>.Each <simInput> element
has a required inputName attribute, which refers to an input defined in the corresponding
<simulation> definition. Each <simInput> element also has an optional simName
attribute. If the attribute is not there, as in the above example, it defaults to the name of the
parent <sim> element. So in the above example we can also write <simInput
simName="stockSimulation” inputName="amount"> with an explicit simName

attribute. The same rule applies to the <simOutput> element. <simInput> can have an

185

optional child that evaluates to an input value and <simOutput> can have an optional child
that evaluates to an output value. If the child is not there, <simInput> or <simOutput>
takes the value from the OSsL element (<e1>) with the same input or output name. In our
example <simOutput> is a taker. If there is a child of <simInput>, it supplies the value to
the OSsL element with the same input name. In our example <simInput> is a supplier. If
there is a child of <simOutput>, it constructs a new value from the OSsL elements.

Of course the example is somewhat simplified. The child element of <simInput> can be
more complex than just one single <var> node. In reality, the child can be a more complex
expression tree with many nodes. Also <simOutput> may not just directly take the minInv
output value. For example we can say if the day output from stockSimulation is 1 (Monday),
we want to add a fixed amount (say 0.05) to the minimum investment requirement for the stock

ge. This corresponds to constraint (4). So constraint (4) now looks like:

<nl idx="4">

<sim name="stockSimulation">
<simInput inputName="amount">
<var idx="2"/>
</simlnput>
<simOutput>
<if>
<eq>
<simOutput outputName="day"/>
<number value="1"/>
<leg>
<plus>
<simOutput outputName="minlnv"/>
<number value="0.05"/>

</plus>
<simOutput outputName="minlnv"/>
<[if>
</simOutput>
</sim>
</nl>

Here <simOutput> constructs a new output. That is why, unlike <simInput> whose
inputName attribute is required, the out putName attribute of <simOutput> is optional.
Such a construction can be commonly used in optimization via stochastic simulation, where the
simulation usually outputs a variance value as well as a mean value, and the optimization uses
some combination of both the mean and the variance.

xPath, xPathIndex

In practice, problem parameters are often dynamic over time. If the value of a parameter
changes, a new instance must be created using the modeling language. These problems are
eliminated using <xPath> and <xPathIndex> elements. By allowing xPath nodes in an

OSIL instance representation it is possible to reference data in an external XML data file. Thus

186

a modeler, in a distributed environment, can generate a model, send it to the server, and the
server can operate with current data without the necessity of the modeling language creating a
new instance file.

The <xPath> and <xPathIndex> schemas are shown below:

<xs:complexType name="0OSnLNodeXPath">
<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence>
<xs:element ref="xPathIndex" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="uri" type="xs:anyURI" use="optional" default="."/>
<xs:attribute name="path" type="xs:string" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="xPath" type="OSnLNodeXPath" substitutionGroup="OSnLNode"/>'
<xs:complexType name="0SnLNodeXPathIndex">
<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence minOccurs="0">
<xs:element ref="OSnLNode"/>
</xs:sequence>
<xs:attribute name="indexName" type="xs:string" use="required"/>
<xs:attribute name="indexValue" type="xs:string" use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="xPathlndex" type="OSnLNodeXPathindex" substitutionGroup="OSnLNode"/>

The <xPath> element has an optional uri attribute which specifies where the XML data
file is. It is by default ““.” which is the current OSiL instance file, that is, the data are included in
the <xmlData> element as explained in the OSiL section (§6.2). The <xPath> element also
has a required path attribute which is a string of XPath syntax (§4.4), used to locate values
within the XML data. An XPath string may contain one or more “XPath variables” indicated by
an initial “$” sign.

The <xPath> element can have zero or more <xPathIndex> child elements. Each
<xPathIndex> has arequired indexName attribute and an optional indexValue
attribute. An optional child of xPathIndex can be used that evaluates to the index value if
indexValue is missing. The indexName attribute is used to match the xPathIndex with a
$variable in the path attribute of <xPath> and indexValue is used to supply the
value for the variable. So the number of xPathIndex child elements has to be exactly the

same as the number of variables in the path attribute of <xPath>.

187

As an example, consider the Markowitz optimization problem (6-2). Assume the data on
returns and covariances are located within the file stockdata.xml in same directory as the OSiL

instance (uri = “./stockdata.xml”). The xml data file is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<stocks>
<stock name="msft" idx="0" ret=".07" minIlnv=".1">
<cov name="msft" idx="0" val="24"/>
<cov name="pg" idx="1" val="-10"/>
<cov name="ge" idx="2" val="25"/>
</stock>
<stock name="pg" idx="1" ret=".09" mininv=".1">
<cov name="msft" idx="0" val="-10"/>
<cov name="pg" idx="1" val="75"/>
<cov name="ge" idx="2" val="37"/>
</stock>
<stock name="ge" idx="2" ret=".03" mininv=".1">
<cov name="msft" idx="0" val="25"/>
<cov name="pg" idx="1" val="37"/>
<cov name="ge" idx="2" val="19"/>
</stock>
</stocks>

There are three stocks each corresponding to a <stock> element. Each <stock> contains
information about its ticker (name), index (idx), return (ret), minimum investment
requirement (minInv) and covariances with all the stocks (<cov>). The data within the XML
file at the indicated uri are located using the path attribute of XPath syntax. So if we use the
<xPath> elements to locate the coefficients (stock return values) for each variable in
constraint (1) of (6-2) instead of directly specifying the values inside the instance, we come up

with the following representation for constraint (1):
<nl idx="0">

<sum>
<times>
<var idx="0"/>
<xPath uri="./stockdata.xml" path="/stocks/stock[@name="msft'/@return"/>
</times>
<times>
<var idx="1"/>
<xPath uri="./stockdata.xml" path="/stocks/stock[@name="pg'/@return"/>
</times>
<times>
<var idx="2"/>
<xPath uri="./stockdata.xml" path="/stocks/stock[@name="ge'/@return"/>
</times>
</sum>
</nl>

Alternatively we can use xPathIndex if the name of the stocks are variables:

<nl idx="0">
<sum>
<times>
<var idx="0"/>
<xPath uri="./stockdata.xml" path="/stocks/stock[@name=$stockName/@return">
<xPathIindex indexName="stockName" indexValue="msft"/>
</xPath>

188

</times>
<times>
<var idx="1"/>
<xPath uri="./stockdata.xml" path="/stocks/stock|@name=$stockName/@return">
<xPathIndex indexName="stockName" indexValue="pg"/>
</xPath>
</times>
<times>
<var idx="2"/>
<xPath uri="./stockdata.xml" path="/stocks/stock[@name=$stockName/@return">
<xPathIindex indexName="stockName" indexValue="ge"/>
</xPath>
</times>
</sum>
</nl>

The above two examples are equivalent, but by using the variable $stockName and
xPathIndex to supply the values (“msft”, “pg”, “ge”), the 3 xPath elements become the
same and we can potentially simplify the syntax by designing a user function using an
argument to pass the stock names.

The library that reads the OSiL instance can use the xPath element to locate the stock
return data before sending the instance to the solver. It is also possible to carry the XML data
with the instance file. If this is desired, it is done by putting the data in the xm1Data element.

complements

The <complement s> element allows complementarity problems to be constructed for
solvers to search for a feasible solution. The <complements> element is explained in detail
in Appendix A.

nodeRef, arcRef

As the first release of OSiL does not include network and graph extension, the
<nodeRef> and <arcRef> elements, which are used to reference node and arc property

values in a network, are reserved for future use. See Appendix A for more descriptions.

6.4 Optimization Services result Language (OSrL)

The OSrL schema is located at http://www.optimizationservices.org/schemas/OSrL.xsd.
OSrL is a general optimization result format specification, mainly outputted by solvers.

OSrL is among the instances whose contents need to be understood by humans most
frequently. The optional OStL transformation style sheet (§6.8) allows OSrL to be presented in
a clear and nice form. Of course as OSrL is well structured, it can also be analyzed and reused
in the middle of a large computation where sub-problems are constantly solved and results are

resubmitted for subsequent calculations.

189

OSrL, an output format, can be thought of as the counterpart to the input format OSiL. The
structure and contents of OSrL is based on and driven by the OSiL design. But compared with
OSiL, OSrL is more straightforward. The separation of OSrL from OSiL helps in reducing
network traffics and enhancing flexibility.

Figure 6-21 shows the root element <OSrL> of the OSrL schema.

Figure 6-21: OSrL Schema at the root level <OSrL>.

The <OSrL> element has an optional <solverMessage> child, an optional
<status> child, and 1 or more <result> children for all the solutions. In
<solverMessage>, a solver can put a general message on the whole optimization process
(not on each solution). The <status> element has a required t ype attribute used to indicate
various predefined standard status types on the general optimization process, e.g. “success”,
warning, and “error.” The <status> element can have 0 or more <subStatus> elements.
As sub-statuses are not standardized, each <subStatus> element has a required name
attribute for sub-status name and a value for sub-status value, and inside the <subStatus>

element, a description can be put. The following is an example of the <status> element:

<status type="error">

<subStatus name="inputError" value="array out of bound">
variableNumber inconsistent with the number of var elements
</subStatus>
<subStatus name="internalError" value="out of memory">
data too large to handle
</subStatus>
</status>

There has to be at least one <result> child element under the root <OSrL>. Each
<result> element corresponds to one optimization solution. In most cases, there is only one
<result> child in the root <OSrL> element. But in situations such as nonlinear optimization
where several locally optimal points are found, or multi-objective optimization where a set of
pareto-optimal solutions are returned, we may have more than 1 <result> element. The

<result> element is shown in Figure 6-22.

190

Figure 6-22: <result> elementin OSrL.

The <message> and <status> are similar to the <solverMessage> and
<status> elements directly defined under the root <OSrL> element, only that now they are
message and status on each result. Status types are standardized and can be “optimal”,
“infeasible”, “unbounded”, “error” etc. Sub-statuses are again not standardized.

Objective-related results should be put in the <objective> element. The
<multiObjectives>, <variables>, <constraints> elements are provided for
similar purposes. These are explained below.

When solving an optimization problem, a solver may gather additional analysis of the
problem. The <analysis> element is provided for this purpose. The <analysis> element
is of the Optimization Services analysis Language (OSaL) format explained in §6.6. Results
that do not belong to the above categories should go into the <other> elements. The
<other> element has a required resul tName attribute and a required value attribute. A

description can be put in the <otherResult> element.

1. The <objective> element is shown in Figure 6-23.

= - - 1
-+ objectiveValue !
emmnme]

T G = i

Figure 6-23: <objective> element in OSrL.

191

The <objective> element currently contains one predefined standard element
<objectiveValue>. More standard objective related elements may be added in the future.
Like most of the elements in OSrL, the <objectiveValue> element is optional, as a solver
may not be able to find any solution. Of course, even if there is a solution, the objective value
can be constructed from the variable solution. So it is not absolutely necessary for solvers to
explicit output the value. But if a solver does output the value, it has to be put inside the
<objectiveValue> element. A sequence of 0 or more <otherObjective> elements
follows <objectivevValue>. If a solver provides objective results other than the objective
value, they should go inside these elements. As these non-standard results vary between
solvers, each <otherObjectiveResult> element has a required resultName and
value attribute. A description can go inside the <otherObjectiveResult> element for
further clarification.

2. The <multiObjectives> element is shown in Figure 6-24.

:
7-1 description !
.

--< multiobjectiveValue T}~ [T+ 17777777000
multiobjectives F}{—---— =} -

Figure 6-24: <multiObjectives> element in OSrL.

The <multiObjectives> element currently contains one predefined standard element
<multiObjectiveValue>. More standard multi-objective related elements may be added
in the future. Like the <objectiveValue> element, <multiObjectiveValue> is
optional. The <multiObjectiveValue> element has an optional value attribute if there
is a multi-objective function value. It can have an optional <description> element for
further elaboration. There are 0 or more <obj> elements after <description>, each
corresponding to one objective component of the multi-objective function. Each <obj> has a
required value attribute to specify the objective value. An <ob7j> element also has an
optional 1dx and objName attribute. The 1dx attribute is optional only if the <obj>
elements are listed in the same order as those in the OSiL input instance. Again objectives are
indexed from -1 downward; thus the i dx attribute is a negative number. If a solver provides

other multi-objective results, they should go in the <otherMultiObjectiveResult>

192

elements. As these non-standard results vary between solvers, each
<otherMultiObjectiveResult> element has a required resul tName attribute and an
optional <description> child for further elaboration.
<otherMultiObjectiveResult> also has an optional value for the specified result on
the entire multi-objective. The individual result for each objective component should go inside
the <obj> children, each having a required value attribute. <obj> also has an optional idx
and objName attribute, just like the <obj> elements in <multiObjectiveValue>.

3. The <variables> element is shown in Figure 6-25.

[t
-4~ description !

- wariableSolu
.

Figure 6-25: <variables> element in OSrL.

The <variables> element currently contains two predefined standard elements
<variableSolution>and <variableUnboundedDirection>. Each hasa
<description> element for further elaboration, following which are 0 or more <var>
elements to specify variable solutions, and/or unbounded directions. More standard variable
related elements may be added in the future. The corresponding variable values should go
inside the required value attributes of <var>. A <var> element also has an optional 1dx
and varName attribute. The idx attribute is optional only if the <var> elements are listed in
the same order as those in the OSiL input instance. Again variables are indexed from 0 on; thus
the idx attribute is a nonnegative number. If a solver provides other variable results, they
should go in the <otherVariableResult> elements. As these non-standard results vary
between solvers, each <otherVariableResult> element has a required resultName
attribute and an optional <description> child for further elaboration. The individual result
for each variable should go inside the <var> children, each having a required value attribute.
The <var> element also has an optional 1dx and varName attribute, just like the <var>

elements in the standard variable result elements.

193

4. The <constraints> element is shown in Figure 6-26.

__________________ - - 1" description !
;- constraintValue @_I o
P Tmmmeenmamnanaas T t-deen f
: s e
1 0.
I T —:E(Iescription
(B4 sonstraintbualValue B3-{—wf4 7T
o T e ttieon o
] . - x‘:y -1
i 0.0
e r -4 description |
-4 otherConstraintResult E]@_! e ——
_____________________________________ g Lo &
1. i}
0. o g
0.

Figure 6-26: <constraints> element in OSrL.

The <constraints> element currently contains two predefined standard elements
<constraintValue> and <constraintDualValue>. Each hasa <description>
element for further elaboration, following which are 0 or more <con> elements to specify
constraint values or dual values. More standard constraint related elements may be added in the
future. The individual constraint values should go inside the required value attributes of
<con>. A <con> element also has an optional 1dx and conName attribute. 1dx is optional
only if the <con> elements are listed in the same order as those in the OSiL input instance.
Again constraints are indexed from 0 on; thus the idx attribute is a nonnegative number. If a
solver provides other constraint results, they should go in the
<otherConstraintResult> elements. As these non-standard results vary between
solvers, each <otherConstraintResult> element has a required resultName attribute
and an optional <description> child for further elaboration. The individual result for each
constraint should go inside the <con> children, each having a required value attribute. The
<con> element also has an optional idx and conName attribute, just like the <con> elements

in the standard constraint result elements.

6.5 Optimization Services option Language (OSoL)

The OSoL schema is located at http://www.optimizationservices.org/schemas/OSoL.xsd.
OSoL is a general optimization option format specification mainly for solver algorithm
directives. OSoL is probably the instance least able to be standardized as different solvers have
different options and even if the optional names are the same, they are used differently. An

OSoL instance is usually sent to a solver along with an OSiL instance. If the OSoL instance is

194

missing, default options are assumed by the solvers. OSoL can potentially be used to discover a
solver in the OS registry if a user requires a solver to support a specified option.

Figure 6-27 shows the root element <OSoL> of the OSoL schema.

(=

o= I
- other !
e At

Figure 6-27: OSoL Schema at the root level <OSoL>.

Options can be specified in an appropriate child of the 7 types of children of <OSoL>:
<general>, <objective>, <multiObjectives>, <variables>,
<constraints>, <coefMatrix>, and 0 or more <other> elements.

1. The <general> element is shown in Figure 6-28.

________________ .
! r;

- -:EmaximumTime]
all (no sequence required) ===ssmssnnnsnas :

Figure 6-28: <standard> element in OSoL.

The <general> element currently has three predefined options, all optional. No sequence of
the child options is required. The <general> element has an optional serviceName and an
optional serviceAddress attribute. The service name and address should be the same as those
published in the OS registry. The <jobID> element contains a job ID that has previously been
assigned by the service. Solver client can, for example, use the job ID to retrieve intermediate
(if supported by the solver) or final optimization results. The <1icense> element contains a
license key that may be required by commercial services. The <maximumTime> element is
the maximum amount of time in minutes for an optimization job.

2. The <objective> element is shown in Figure 6-29.

195

@B (|

i- -:EotherDI}iec‘liveOption E-'

Figure 6-29: <objective> element in OSoL.

The <objective> element currently contains three predefined standard options:
<initialObjectiveValue>,<initialObjectiveUpperBound>, and
<initialObjectiveLowerBound>. Option values should be specified in the required
value attribute of each element. An option description can be put in the elements. More
standard objective options may be added in the future. Nonstandard options can be specified in
the subsequent of 0 ore more <otherObjectiveOption> element. Each
<otherObjectiveOption> has arequired optionName attribute besides the value
attribute.

3. The <multiObjectives> element is shown in Figure 6-30.

multiObjectives -] ==

Figure 6-30: <multiObjectives> element in OSoL.

The <multiObjecitves> element currently contains one predefined standard option
<initialMultiObjectiveValue>. The <initialMultiObjectiveValue>
element has an optional value attribute if there is an initial value for the entire multi-objective
function. <initialMultiObjectiveValue> can have 0 or more <obj> elements, each
corresponding to one objective component of the multi-objectives. The individual initial
function value for each objective component is specified in the required value attribute of
<obj>. An <obj> element also has an optional idx and objName attribute. idx is optional
only if the <ob3j> elements are listed in the same order as those in the OSiL input instance. If
there are other multi-objective options, they should go in the
<otherMultiobjectiveOption> elements. As these non-standard results vary between

solvers, each <otherMultiobjectiveOption> element has a required optionName

196

attribute and an optional <description> child for further elaboration.
<otherMultiobjectiveOption> also has an optional value for the specified option on
the entire multi-objective function. The individual option for each objective component should
go inside the <obj> children, each having a required value attribute. <obj> also has an
optional 1dx and objName attribute, just like the <obj> elements in
<initialMultiObjectiveValue>.

4. The <variables> element is shown in Figure 6-31.

- v |
i description !
1

0. 1..00

Figure 6-31: <variables> element in OSoL.

The <variables> element currently contains one predefined standard option
<initialVariableValues>.The <initialVariableValue> element can have 0 or
more <var> elements, each having a required value attribute for an initial variable value. A
<var> element also has an optional idx and varName attribute. i dx is optional only if the
<var> elements are listed in the same order as those in the OSiL input instance. If there are
other variables options, they should go in the <otherVariableOption> elements. As
these non-standard results vary between solvers, each <otherVariableOption> element
has a required opt ionName attribute and an optional <description> child for further
elaboration. The individual option for each variable should go inside the <var> children, each
having a required value attribute. <var> also has an optional idx and varName attribute,
just like the <var> elements in <initialVariableValues>.

5. The <constraints> element is shown in Figure 6-32.

-+ initialConstraintValue @-:Econ "
R P e gl

1. 0.

- inftialConstraintDualValue [Feon | 5

oo mute B e
________________________ .---:Etlesniption
t -4 otherConstraintOption E = —i '_'_'_'_'_'_ """"

e —— 0 _':;;f_' t-Teon

- - [, g =

0.m

Figure 6-32: <constraints> element in OSoL.

197

The <constraints> element currently contains two predefined standard options
<initialConstraintValue>and<initialConstraintDualValue>. Eachhas0
or more <con> elements to specify initial constraint values or dual values. More standard
constraint related options may be added in the future. The individual constraint options should
go inside the required value attributes of <con>. A <con> element also has an optional idx
and conName attribute. The 1dx attribute is optional only if the <con> elements are listed in
the same order as those in the OSiL input instance. If there are other constraint options, they
should go in the <otherConstraintOption> elements. As these non-standard options
vary between solvers, each <otherConstraintOption> element has a required
optionName attribute and an optional <description> child for further elaboration. The
individual option for each constraint should go inside the <con> children, each having a
required value attribute. The <con> element also has an optional i dx and conName
attribute, just like the <con> elements in the standard constraint option elements.

6. The <coefMatrix> element is reserved for future use. Currently there are no
coefficient matrix related options.

7. The <other> elements are for options that do not belong to the above categories. The
<other> element has a required optionName attribute and a required value attribute. A

description can be put in the <other> element.

6.6 Optimization Services analysis Language (OSaL)

The OSaL schema is located at http://www.optimizationservices.org/schemas/OSal.xsd.
OSalL is a general optimization analysis format specification, mainly outputted by analyzers.
The role of analyzer and its output standardization is discussed in detail in §2.6.

As discussed in §6.4, when solving an optimization problem, a solver may gather
additional analysis on the problem. Thus an <analysis> element can be embedded in the
Optimization Services result Language (OSrL). The <analysis> element is exactly of the
OSaL format. On the other hand, if an optimization model is easy enough, it can potentially be
solved by an analyzer without sending to a solver. In this situation, the analyzer should return
an OSrL instance with an embedded <analysis> element of OSaL.

OSaL, an analysis output format, can be thought of as another counterpart (besides OSrL)
to the input format OSiL. The structure and contents of OSaL is based on and driven by the

198

OSiL design. But compared with OSiL, OSaL is more straightforward. Figure 6-33 shows the

root element <OSal> of the OSaL schema.

Figure 6-33: OSaL Schema at the root level <OSaL>.

The <OSaL> element has two children, <programDescription> and
<programDataAnalysis>. The <programDescription> element conveys the basic
analyses of an optimization instance. All its children are shown in Figure 6-34 and are self-
explanatory. The last element <specific> is of mapType which is briefly explained in the
OSgL section (§6.1). Basically it is an array of <e 1> elements each with a name and a value
attribute. The <speci fic> element is for analyzers to output nonstandard analyses and is

used at many places in the <programDataAnalysis> element too.

< numberlionzeros

-4 specific

'
Lo
h

Figure 6-34: <programDescription> element in OSaL.

The <numberObjectives>, <numberConstraints>, and <numberVariables>
child elements of <programDescription> are required. Each of the three elements has a
nonnegative integer num attribute and each has a break down of children as shown in Figure
6-35. For example we can have sub-counts of linear constraints, quadratic constraints and
(general) nonlinear constraints under <numberConstraints>. For linear constraints, we

can have a further break down of equality constraints, inequality constraints (one-sided), and

199

range constraints (two-sided). All these count numbers play important roles for the OS registry

to find an appropriate solver.

[mberovjecives 2

range
numberConstraints CH —~— = quadratic G~
o B
—[frange]

Figure 6-35: <numberObjectives>, <numberVariables>, and <numberConstraints>
elements in OSaL.

numberVariables [=

The actual program data analysis is in <programDataZAnalysis> (Figure 6-36).

(prugraml]atannalysis [7'} —:';;-_-_—\|1:_|- -
Rt 1
0. H

- reserved

Figure 6-36: <programDataAnalysis> element in OSaL.

The <programDataAnalysis> element is very similar to the <programData> element

in OSiL (Figure 6-8). The only additional child element is the <constraintRegion>

200

element for such analyses as constraint region convexity. The similarity is because all the
analyses are done based on the OSIiL input, so analysis results can be viewed as the metadata
from the OSiL data in different sections. For example, in the first child <constraints> of
<programDataAnalysis> (Figure 6-37), we can have analyses on each constraint
(<con>). Each <con> element has attributes such as type, priority, linearity and
convexity. If there are other analyses not specified by an attribute, they can be put in a

sequence of <specific> elements as children of the <con> element.

Figure 6-37: <constraints> element in OSaL.

Here is an analysis example of the constraints:

<constraints>
<con idx="0" type="geq" linearity="linear" convexity="linear" regionEffect="linear"/>
<con idx="1" type="leq" linearity="quadratic" convexity="concave" regionEffect="convex"/>
<con idx="2" type="leq" linearity="nonlinear" convexity="nonconvex" regionEffect="nonconvex"/>
</constraints>
Analyses on other parts more or less follow the same pattern. In Table 6-15 we list the
common analyses that can be put in OSaL. There can be endless analyzes, but in Optimization

Services, we emphasize on those that can facilitate matching between instances and appropriate

solvers.
Data Part Common Analyses and Descriptions
constraints type: geq, leq, eq, geqLeq (constrained on both sides) etc.

linearity: linear, quadratic, (general) nonlinear, closeToLinearity etc.

convexity: linear, convex, concave, almostConvex, etc.

regionEffect: whether the constraint makes the constrained region linear, convex, etc.
effectiveness: fraction of the variable space that each constraint eliminates
redundant: whether the constraint is redundant and should be eliminated

variables type: C (continuous), I (integer), B (binary), S (string)

priority: for pivoting in integer programming

init: suggested initial variable values

fixed: whether the variable should be fixed at the initial value (or Ib = ub)

objectives Ib and ub : lower and upper bound

shape: linear, convex, concave, etc.

steepness: objective slope at the current point

objectiveEffect: whether the objective is likely to be a global optimum or local optimum

coefMatrix Density: or sparsity of the coefficient matrix
type: listMatrix, coefMatrix, sparseSDPA or mixture
constraintRegion convexity: linear, convex, almostConvex, etc.
nl numberQuardratic: number of quadratic terms in each nonlinear function

numberLogic: number of logic operators

numberRelational: number of relational operators in each nonlinear function
numberSimulations: number of simulations in each nonlinear function
numberComplementarity: number of complementarity (0 or 1) in each nonlinear function

201

numberXPath: number of XPath nodes in each nonlinear function
cones (reserved)
stochastic (reserved)
networkAndGraph (reserved)
userFunctions rowIn: which rows (constraints or objectives) the user functions are in
userVariables rowln: which rows (constraints or objectives) the user variables are in
simulations rowsIn: which rows the simulations are in

time: an estimated time a simulation may take
xmlData numberData: number of data in the xml data

numberLevel: height of the xml tree

Table 6-15: Typical data analyses on different optimization parts in OSaL.

6.7 Optimization Services simulation Language (OSsL)

The OSsL schema is located at http://www.optimizationservices.org/schemas/OSsL.xsd.
Simulations are explained in 2.8 and OSsL facilitates enables objective or constraint functions
to incorporate simulations, which may be located in places other than the solver. An OSsL
instance is usually transmitted between a solver and a simulation engine. From the
Optimization Services framework point of view, if a simulation is to be invoked by an OS-
compatible solver, its input and output have to be put in the standard OSsL format.

As explained in the OSiL section (§6.2), the definition of a simulation is specified in the
<simulations> element of OSiL. Each simulation consists of the simulation’s address
using the <uri> child and its input and output using the <OSsL> child. Figure 6-18 is a good

illustration, which we show below again.

b _| simpleSimulation | £1
input "l ihidden) output
a 1 = 100 (b-2%)? — {2
f2 =a + b
URI

http:/fwww optimizationservices orglosfossimulation/SimpleSimulationService jws

Figure 6-38: simpleSimulation with two inputs (a, b), two outputs (f1, f2) and an address at
http://www.optimizationservices.org/os/ossimulation/SimpleSimulationService.jws.

The definition of simpleSimulation looks like:

<simulation name="simpleSimulation">

<uri value="http://www.optimizationservices.org/os/ossimulation/SimpleSimulationService.jws"/>
<OSsL>
<input>
<el name="a">1</el>
<el name="b">MSFT</el>
</input>
<output>
<el name="f1"/>
<el name="f2"/>

202

</output>
</OSsL>
</simulation>

As explained in the OSnL section (§6.3), to construct a nonlinear expression that contains

simpleSimulation, we use the <simInput> and <simOutput> nodes:
<nl idx="-1">

<plus>
<sim name="simpleSimulation">
<simlInput inputName="a"> <var idx="0"/> </simInput>
<simlInput inputName="b"> <var idx="1"/> </simInput>
<simOutput outputName="f1"/>
</sim>
<number value="2"/>
</plus>
</nl>

In Figure 6-39 below, we list the entire OSsL schema.

all (sequence is not imposed) 0.

<xs:complexType name="0SsL">
<xs:all>
<xs:element name="input" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="el" type="ioType" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="output" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="el" type="ioType" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:all>
</xs:complexType>

<xs:complexType name="ioType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:ID" use="required"/>
<xs:attribute name="type" type="type" use="optional" default="string"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

<xs:simpleType name="type">
<xs:restriction base="xs:string">
<xs:enumeration value="string"/>
<xs:enumeration value="link"/>
</xs:restriction>
</xs:simpleType>

Figure 6-39: <OSsL> root element.

203

As illustrated in the above figure, the OSsL schema is very simple, but still general enough to
accommodate to any existing simulations. The <OSsL> element has two optional children
<input> and <output> and it does not matter which comes first. The two child elements
are very similar, which is why we don’t have a separate schema for each. Both elements have 0
or more <e1> elements. This corresponds to the notion that simulations in general can take any
number of inputs and generate any number of outputs. An <el> element is of ioType; it
takes a required name attribute for the input or output name and an optional type attribute.
The input or output values go inside the elements. By default the t ype attribute is “string”
which is the most general an input or output value can be. The other type is “1ink” which
indicates that the value inside the <el> element is a pointer and the actual data is to be obtained

from the specified link address. For instance, in the following example:
<simulation name="simpleSimulation">

<uri value="http://www.optimizationservices.org/os/ossimulation/SimpleSimulationService.jws"/>
<OSsL>
<input>
<el name="a" type="string">1</el>
<el name="b" type="link">http://www.optimizationservices.org/data/stock.htmli</el>
</input>
<output>
<el name="f1">
<el name="f2"/>
</output>
</OSsL>
</simulation>

input “a” is a string (= “1”) and input “b” is a link. The value of b (e.g. “MSFT”) should be

obtained from the address http://www.optimizationservices.org/data/stock.html.

6.8 Optimization Services transformation Language (OStL)

The OStL schema is located at http://www.optimizationservices.org/schemas/OStL.xsl.
OStL is an XML-based Extensible Stylesheet Language (XSL). XSL is covered in §4.4. XSL
offers a convenient way to specify translations of XML documents. For example if an
optimization solution is formatted in Optimization Services result Language (OSrL), XSL can
be applied to the solution instance to easily produce an HTML document that transforms the
raw result data into a user-friendly form. Other OSxL representations that can use the OStL
style sheet are OSaL (for displaying analysis results), OSeL (for publishing solver entity
descriptions) and OSiL (for presenting optimization instances).

Since different users have different tastes of what looks the nicest, OStL is mostly

provided as an optional alternative for data transformation. A modeling language environment

204

(MLE), for example, is not recommended to use OStL to display the OSrL results, because the
input instance may have been pre-processed and the OSrL result instance needs to be post-
processed before it is presented to the user. The MLE can display the data in what the user
thinks is the best way, with much more flexibility than a style sheet; for example MLE can
allow analyzing the result interactively or displaying values of any expression in the result. In
situations where post-processing of OSrL is necessary, names and indexes of the original model
may be different from those in the instance, so OStL may not be appropriate to use.

On the other hand, if a service is registered in the OS registry and the service provider
wants to publish the standard service information (OSeL) on his own Web site, it is required
that he publishes the information using the OStL, that is at the beginning of his OSeL document
specify the following OStL style sheet location:
http://www.optimizationservices.org/schemas/0OStL.xsd.

Another purpose for such a requirement is that the Optimization Services registry can
advertise the latest news and information by changing the OStL at the above link, so that the
revised information is automatically shown on the individual Web sites of those who registered.
Unlike most other style sheets such as CSS (cascading style sheet), the XSL based OStL can
not only control font weight, style, size and color but can also rearrange the structure of a
document, add new contents, tags and attributes.

As an example, the following section of OStL. xs1 is used to present the objective value,

variable solutions and constraint values in OSrL:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmins:xsl|="http://www.w3.0rg/1999/XSL/Transform"
xmlIns:os="o0s.optimizationservices.org" exclude-result-prefixes="0s">
<xsl:output method="html" version="1.0" encoding="UTF-8" indent="yes"/>
<xsl:template match="/">
<html>
<body>
<h1>Result</h1>
objective: <xsl:value-of
select="/0s:0SrL/os:result/os:objective/os:objectiveValue/@value"/>
<p/>
<table>
<td colspan="2" align="center">
Variables
<table border="2" width="10">
<tr><td>variable </td><td>solution</td></tr>
<xsl:for-each select="/0s:0SrL/os:result/os:variables/os:variableSolution/os:var">
<tr>
<td><xsl:value-of select="@varName"/></td>
<td><xsl:value-of select="@value"/></td>
</tr>
</xsl:for-each>
</table>
</td>
</table>
<table>

205

<td colspan="2" align="center">
Constraints
<table border="2" width="10">
<tr><td>constraint</td><td>value</td></tr>
<xsl:for-each select="/0s:0SrL/os:result/os:constraints/os:constraintValue/os:con">
<tr>
<td><xsl:value-of select="@conName"/></td>
<td><xsl:value-of select="@value"/></td>
</tr>
</xsl:for-each>
</table>
</td>

</table>
</body>

</html>

</xsl:template>

</xsl:stylesheet>

Suppose the OSrL looks like:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="http://www.optimizationservices.org/schemas/OStL.xsI|"?>
<OSrL xmins="os.optimizationservices.org" xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/OSrL.xsd">

<result>

<status type="optimal"/>

<objective>

<objectiveValue value="4.5"/>
</objective>
<variables>
<variableSolution>
<var varName="x1" value="2.1"/>
<var varName="x2" value="3.5"/>
<var varName="x3" value="3.5"/>
</variableSolution>
</variables>
<constraints>
<constraintValue>
<con conName="con1" value="-3.4"/>
<con conName="con2" value="0.0"/>
</constraintValue>
</constraints>

</result>
</OSrL>

Notice the second line includes a link to where the OStL. xs1 file is. The OSrL example is

presented as:

Result
objective: 4.5
Variables

variable solution

x1 2.1

x2 3.5

x3 35
Constraints

PROSERSRE NR

206

conl -34
con2 0.0

Note if in the above OStL example, we (designers of OS protocols) change the heading part

(<body><h1>Result</body></hl>)in <xsl:template match="/"> to:

<xsl:template match="/">

<htmlI>
<body>
<h1>Result found by Optimization Services</h1>
objective: ...

</body>
</html>
</xsl:template>

The display will automatically change to:
Result found by Optimization Services

objective: 4.5
Variables

variable solution

x1 2.1

x2 35

x3 3.5
Constraints

constraint [value
conl -34
con2 0.0

In this way by changing OStL.xs1 at ://www.optimizationservices.org/schemas/OStL.xsl,
we can have a control over various publications (at least those required to include the

0StL.xsl link) over the entire decentralized OS network.

CHAPTER 7 OPTIMIZATION SERVICES COMMUNICATION

In this chapter, we present the instance communication part of Optimization Services
Protocol (OSP). OS communication is about the exchange of a set of low-/evel data instances
between different Optimization Services components. (The difference between low-level
instances and high level models is explained in Chapter 2).

Communication sub-protocols deal with the general areas of optimization access,
operations and flows. All but one communication sub-protocol deals with optimization access
and operations which are specified using the WSDL documents (§4.7). The only exception is
the Optimization Services flow Language (OSfL, §7.3), which defines flow orchestration in the
XML-based BPEL (Business Process Execution Language [91]) format.

All the OS communication WSDL documents have three main parts: interface, protocol
(binding & encoding), and service address. The Interface part varies between different WSDL
documents as different #ypes of services have different functions and methods. The protocol
part is exactly the same for all the WSDL documents as we currently require all the services on
an OS network use exactly the same communication binding and message encoding
mechanisms. So we will only illustrate the protocol part in the first OS communication protocol
that we introduce, namely OShL in the next section. The service address part of all the generic
OSxL WSDL documents is empty (not specified), as addresses of the individual services are
different. So technically speaking, OS communication protocols standardize the interface
(operations, messages, parts) and protocol (binding, encoding) parts of the WSDL documents
of all the OS services. All the OS services have their own addresses listed in their individual
WSDL documents and the rest of the WSDL documents should be exactly the same as
specified by the OS communication protocols.

No mechanisms such as encoding and security are addressed in OSP. OSP leverages the
mechanisms provided by its underlying protocols such as SOAP and HTTP. All the registry
related OSxL communications are covered in Chapter 8. We provide open-source libraries
(Appendix B) for sending and receiving all the instances to simplify exchange of information.
Some of the examples illustrated in this chapter demonstrate the use of communication agents
in the OS libraries. All the communication documents (WSDL, BPEL) and libraries are

available at www.optimizationservices.org [92] and www.optimizationservices.net [93].

207

208

Standards for optimization instance communication over distributed systems are new. But
the standardization is technologically timely. Distributed technologies such as Web services
(Chapter 4) are growing rapidly in importance in today’s computing environment and are
already widely accepted as industrial standards. It is our vision that by combining Operations
Research and modern distributed technologies, Optimization Services will make a wider
audience able to easily access and benefit from the increasing number of OR software
packages.

Through standardization of communication, the OS framework provides an open
infrastructure for all optimization system components to communicate with each other as
shown in §5.3. The goal is that all the algorithmic codes will be implemented as services under
this framework and customers will use these computational services like utility services.
Special knowledge of optimization algorithms, problem types, and solver options required of
users should be minimized. Everything that involves finding the right solver, invoking the
software, providing the computing resources and presenting the solution is automatically taken
care of by Optimization Services infrastructure.

The Optimization Services framework does not standardize local interfacing. As
mentioned in the previous chapters, related projects such as COIN [23] and derived research
from Optimization Services such as the Optimization Services instance Interface (OSil),
Optimization Services option Interface (OSol) and Optimization Services result Interface
(OSrI) are intended to do this job. The COIN project includes the OSI (Open Solver Interface)
library which is an API for linear programming solvers, and NLPAPI, a subroutine library with
routines for building nonlinear programming problems. Another proposed nonlinear interface
by Halldorsson, Thorsteinsson, and Kristjansson is MOI (Modeler-

Optimizer Interface [60]) that specifies the format for a callable library. This library is based on
representing the nonlinear part of each constraint and the objective function in post-fix (reverse
Polish) notation [2] and then assigning integers to operators, characters to operands, integer
indices to variables and finally defining the corresponding set of arrays. The MOI data structure
then corresponds to the implementation of a stack machine. A similar interface is described in
the LINDO API manual [74].

The Optimization Services framework is complementary to the standardization of local
interfaces. The connection between Optimization Services and local interfacing is illustrated in

Figure 7-1.

Modeling
Language
Erndranment

ModekData

Interface f——-t—ymy

Compile

Lecal Interface

OS5 Communication Standardiz=fion

Standardization

Figure 7-1: Relationship between OS Communication and local interface standardization.

In the figure, the Modeling Language Environment generates an instance (OSiL) and
delegates a communication agent (solver agent) to send the instance to the remote solver
service. OS communication standardizes this distributed process. After the solver service
receives the instance from the network, the local solver uses an instance parser to parse the
instance into a set of standard objects/data structures that are held in the data structure interface
(e.g. COIN-OSI). As the instance is a standard instance, only one parser needs to be written to
read the instance and as the local interface is also a standard interface, both can be provided in
one library. All that a solver developer needs to do is to include this library to resolve all
interface or format issues.

The success of Optimization Services will promote the work of local interface
standardization and in turn the wide acceptance of the standard local interfaces will allow more

solvers to be easily hooked into the Optimization Services system.

7.1 Optimization Services hookup Language (OShL)

The OShL document is at http://www.optimizationservices.org/schemas/OShL.wsdl.
In the above Figure 7-1, a (solver) agent is delegated to contact the (solver) service.
Communication is always between two components; therefore both the agent and the service
have to follow certain rules. The rules are specified in the OShL.wsdl document. Figure 7-2
shows the first half (interface part) of a simplified version of the WSDL document. This part
varies between different fypes of services. All the solver services and analyzer services are

required to follow the interface specification of OShL.

210

<definition= [=7l version="1.0" encoding="UTF-8"7=
roat | =vwadl definitions xmins:oz="http: Aoy optimizationzervices org"
and 7y zming zoapenc="http echemas xmizoap orgfsoapfencading xmins wadl="ntp: fzchemas xmlzoap orghd)”
heading | =minswadlizoap="hitp fechemas xmizoap.orgivedizoap ming s sd="rttp Mo w3 orgl2000 LS chema”
H_targetMamespasu:e=”|'1i‘l|:3::J'J'«.-v\n.ﬂm.f.u:u|:3’cimizautiu:unservices.org”:-

«wsdmessage name="solveRequest"s - Nmei ,
ewsdlpart name="osil type="xsd string"ts part = argErnent {input or output)
=yvgdlpart name="0g0l" type="xsd string" /= Meshage ~n el argumarjls
3 * operation = method or function
=il messages
iyl message name="solveResponse -
ayysdl part name="osrl" type="xed stringf= i
Interface < «hwedlmessages
ayvadl por Type names"OptimizationSalvarService"s f
«wsdl operation names"solve" parameterOrcera"osis String salve(String osil, String osol)
ayvzdlinput names"zolveReguest’ messagea"og solveRequest"/s
=yyadoutput name="zolveResponse” message="0% salveResponse" =
aMvvzdl operations Operations
hyzdl port Types -
" swadibinding .= S5 M
i = B4 Input oz sohveRequest
SE'E: =hwsd:bindings part: asil xad:string
ﬁ;ﬁ:e] =wadl service = pait: osol ks sting
pee = B Output: oz:solveResponse
| <hwsdlservice> pait: osrl wsd-sting
=Mvesdl defintions=

Figure 7-2: Illustration of a simplified OShL (interface part).

The most important part of Figure 7-2 is the <wsdl : portType> element. The
portType element can have one or more <operation> elements. In this simplified
example, we only list one operation whose name is solve. Each operation corresponds to
a method or function in a programming language. So there are usually two parts to an
operation: the input element and the output element. The format of both elements is
controlled by the message attribute. In the solve operation, we require its input to be of
message type “solverRequest” and its output to be of message type
“solverResponse.” The solverRequest message has two part elements, osil and
osol, both of string types. A part corresponds to an argument of a function or method. So we
can regard a message as a sequence of arguments to be passed to the function or method.

Simply put, the WSDL document in Figure 7-2 specifies the following operation for each
solver:

String solve(String osil, String osol);
that is, every solver service is required to have a method called “solve” that takes two input
strings and returns one string. The first input string should be an OSiL optimization instance,

the second input string should be an OSoL option instance, and the returned string should be an

211

OSrL result instance. OShL, as well as other OS communication protocols, does not specify
how the strings should look inside. This is the responsibility of OS representation protocols
discussed in Chapter 6. So without the OS representation protocols, a client can still transmit
any junk strings to a solver service successfully. Of course, all the OS-compatible components
are required to validate input and output instances, so no invalid instances will be ever
transmitted onto the network. WSDL documents and XML schemas are two key technologies
to ensure the high quality of an entire OS network. In Table 7-1, we list the operations currently

specified in the OShL WSDL document.

Operation Description
String getJobID() No input.
Output string is a unique job id.
String solve (String, String) 1™ input is an OSiL instance for optimization problem.

2" input is an OSoL instance for solver option.
Output is an OSrL instance for an optimization.

String solve (String) 1™ input is an OSiL instance for optimization problem.
Solver options are assumed to be default.
Output is an OSrL instance for an optimization.

String retrieveResult (String) 1™ input is a job id.
Output is an OSrL instance for an optimization
String analyze(String) 1" input is an OSiL instance for optimization problem.

Output is an OSaL instance for analysis.

Table 7-1: Operations in OShL.

The getJobID and retrieveResult operations will be explained in the OSfL section
(§7.3, Figure 7-8). For the one-argument solve operation that does not take options, the
solver should use its default options. Many solvers may not do analysis. In this case solver
services can just implement a dummy analyze operation, which returns an empty analysis
result (e.g.) <OSaL/>. Conversely, analyzers may do dummy implementations for the solver-
related operations.

Figure 7-3 shows the other half (protocol & address part) of the OShL WSDL document.
The hard-coded service address part should be empty and is only shown for the purpose of a
complete illustration. The generic OShL WSDL document does not specify where the service
is. In reality, the service location is dynamically discovered in the OS registry (Chapter 8).
Each individual solver or analyzer service has exactly the same OShL WSDL document
following the OShL protocol except that it has an extra location specified in the
<wsdlsoap:address> element under <wsdl:service>. In Figure 7-3, this is illustrated
with an example address as:

http://www.optimizationservices.org/os/SampleSolverService.jws.

212

=7xml version="1 0" encoding="UTF-8"?=
=wyadl defintions xmins: os="httpc /A optimizationsenvices org™ xming: soapenc="hitp.fschemas xmisoap orgizoapiencoding
siming:vwsdl="hitp: Hechemas xmisoap orgfwsdl® ominswadisoap="hllp.fschemas xmisoap orghwadlizoap
sming: xad="http: M w3 orgl2001 SKMLSchema™ targelilamespace="hittp: v optimizationservices org™>
» wsdimessage | s
prauiiiz J fwedl messages
figure awsdipotType =

 efwsidl portTypes

¢ @wsdlbinding name="0ptimizationSolverServiceSoapBinding” type="0s OptimizationSakver Service"s
=yvadizoaphinding style="rpc" transport="hitp: fschemas xmisoap orgisoapiiip”/>

[=wadlopersfion name="solve™>] — !,

sofva” operation is wrapped in a soap envelope

:xijﬁﬁ:&:permmh# over the hitp pratocol and using rpe style
mﬁ eysdlsoap body usen'encoded” encodingStylesThilp fschemas xmisoap orgisoapfencading
and 4 namespacesThip hananw optimizetionservices org"/»
encoding) L
gl outputs
swvzdlsoap body use="encoded” encodingStyle="tllp: fschemas xmisoap org/soapiencoding”
namespace="hip: harww optimizationservices org"f>
shwad! output=
:M;dl:ppera’cionb The element should be empty.
. afwzdl binding= Read the comments in </ comments --=
ayvsdlzervice name-“OptimmhmﬁdvewSewm“:
sl port locations, e, Ser &5, are lo be found chrmmically inthe 05 registry
Ser'-'ice T|'Il: should MOT L.'
Addrass 4 The following is just o Codet

=yl port name-"Opﬂnumtmr;dee;Smmce ixmur:g—-“nsmnuaiuﬁuhmraewmeSaapﬁlndlng"::
=yvzdlzoap:address location="http: hrwoe oplimizationservices orglos/SampleSolver Service jws'f=
=hvzdl part=
\ ahwvadl services
=hvsdl defintions=

Figure 7-3: Illustration of a simplified OShL (protocol and address part).

The most important part of Figure 7-3 is the protocol part represented by the
<wsd:binding> element. The protocol part of any other OSXL WSDL document is exactly
the same as the OShL WSDL document here. Currently we require all the services on an OS
network use exactly the same communication binding and message encoding mechanisms. So
in this thesis this is the only section that we illustrate the protocol part of all OSxL. WSDL
documents.

The binding element contains one or more operation elements for each operation
specified in Figure 7-2. Each operation can potentially be called using a different protocol
binding. All the operations in Optimization Services, however, use the same protocol binding.
In this simplified example, we only have the String solve (String,

String) operation. As for any other operation, the solve operation is required to be of rpc
style (remote procedure call, Chapter 4), which is the most typical request and response calling

style, or a blocking call. So the request client that invokes the solve operation from a solver

213

service has to wait for the response. Of course, the client application can launch a separate
process or thread to issue this solve operation and let the thread wait there for the response,
so that the user of the application can go on with other tasks. Depending on the application
settings, the solve operation and its argument instances can either be directly sent to the
solver service or first submitted to a queue server. On the solver service side, when the solve
operation is received, it can either solve it directly, or launch a separate process or thread to
solve the instances, or it can put the instances in its own queue. Thus the request and response
rpc style specified in all the OSxL WSDL documents is general enough for all the current
needs, while developers can have their own innovative implementations that fit their users the
best.

As for any other operation, the solve operation and its arguments are required to be
packaged in a SOAP envelope which is transported over the HTTP protocol. This is specified
by the transport=http://schemas.xmlsoap.org/soap/http attribute of the
<wsdl:binding> element. Like the “RPC” style, the “SOAP over HTTP” transport binding
is general enough for all the current needs. As Optimization Services evolves, more transport
binding (SOAP over other protocols) may be added.

Each <operation> element has a <wsdl:input> element and a <wsdl:output>
element in which we specify the encoding styles. In Optimization Services, we use leverage on
the standard soap encoding: “http://schemas.xmlsoap.org/soap/encoding.” This makes the input
and output arguments platform and programming language independent.

The protocol part of an OSxL WSDL document is technically complex to implement.
These are all taken care of by the libraries provided. On the modeler (client) side, the agent
hides all the networking details, such as encoding the operation arguments, packing the
operations in a SOAP envelope, transmitting the SOAP envelope over the HTTP protocol and
handling the HTTP response. On the service (server) side, the OS Server that hosts the service
takes care of reading the HTTP request, extracting the SOAP envelope, decoding the operation
arguments invoking the service interface, and sending back the result. So as long as the service
interface follows the OS communication standards (e.g. Figure 7-2), the entire call should be
completed successfully.

We illustrate the process using the OS library below.

Imagine we formulate the problem (7-1) in AMPL (7 _1.mod) as it would be under the

Optimization Services framework and AMPL uses the Knitro solver service hosted at

214

http://www.ziena.com/os/KnitroSolverService.jws to solve the problem. Assume that we

already found this address in the OS Registry (Chapter 8).
minimize (1-x,)* +100(x, — x,>)’ (7-1)

subjectto x, +x, —100<0

At the modeler side, to solve the problem, the user would type the following commands
at the AMPL prompt:

ampl: model 7 1.mod;

ampl: option OptimizationServices on;

ampl: solve;

Underneath, AMPL first translates the model (7_1.mod) to an OSiL instance:

<OSiL xmlns="os.optimizationservices.org" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/OSiL.xsd">

<programDescription>
<maxOrMin>min</maxOrMin><numberObjectives>1</numberObjectives>
<numberConstraints>1</numberConstraints><numberVariables>2</numberVariables>

</programDescription>

<programData>
<constraints><con ub="0.0"/></constraints>
<variables><var |b="0" name="x1" type="C"/><var |b="0" name="x2" type="C"/></variables>
<nl idx="-1"><plus><power><minus><number type="real" value="1.0"/><var coef="1.0"
idx="1"/></minus><number type="real" value="2.0"/></power><times><number type="real"
value="100"/><power><minus><var coef="1.0" idx="0"/><power><var coef="1.0" idx="1"/><number
type="real" value="2.0"/></power></minus><number type="real"
value="2.0"/></power></times></plus></nl>
<nl idx="0"><minus><plus><var coef="1.0" idx="0"/><var coef="1.0" idx="1"/></plus><number
type="real" value="100"/></minus></nl>

</programData>

</OSiL>

It is AMPL’s job to make sure this string validates against the OSiL schema. Suppose this
instance is stored in the St ring variable:

sOSiL.

Next AMPL instantiates a communication agent provided in the OS library (Appendix B):
OSSolverAgent osSolverAgent = new OSSolverAgent() ;

Suppose we already found the solver address and the address is stored in a St ring variable:
sSolverAddress (=http://www.ziena.com/os/KnitroSolverService.jws)

AMPL then tells the address to osSolverAgent and delegates osSolverAgent to send
and solve the problem. For simplicity, we will not pass the solver options and from Table 7-1
we choose to use the simpler operation: String solve (String), which takes as input an

OSIiL instance and return as output an OSrL instance:

215

osSolverAgent.solverAddress = sSolverAddress;
String sOSrL = osSolverAgent.solve (sOSilL) ;
In the solve operation, the agent contacts the solver service at the given solverAddress

and gets back an OSrL result instance stored in the String variable:
sOSrL

which looks like:

<OSrL xmins="os.optimizationservices.org" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="o0s.optimizationservices.org http://www.optimizationservices/schemas/OSrL.xsd">

<result>
<status type="optimal"/>
<objective><objectiveValue value="0.000"/></objective>
<variables><variableSolution><description/>
<var idx="0" varName="x1" value="1.0"/><var idx="1" varName="x2" value="1.0"/>
</variableSolution>
</variables>
</result>
</OSrL>

On receiving the OSrL result, AMPL parses the result and presents it to its user. Notice that on
the client side, we do not worry what language the solver service is implemented in and what
platform the solver service is installed on.

The major step in the entire process is the code below:

String sOSrL = osSolverAgent.solve (sOSil) ;
AMPL itself does not need to know how the solve operation is implemented; the
0SSolverAgent class from the OS library hides all the networking complexities from the
modeling language environment. In 0SSolverAgent’s solve operation, four steps are
taken:
Solver agent step 1: Encoding

0SSolverAgent encodes the sOSiL input string into the following encoded string,
according to the soap encoding style specified in the OShL WSDL document; most distinctly

all the “<” and “>” signs are repectively encoded as “s1t;” and “>”.

&It;OSiL xmins="os.optimizationservices.org" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/OSiL.xsd">
<programDescription>
<maxOrMin>min</maxOrMin> <numberObjectives> 1</numberObjectives>

<numberConstraints> 1</numberConstraints><numberVariables>2&It;/numberVariables>
</programDescription>
<programData>
<constraints><con ub="0.0"/></constraints>
<variables> <var Ib="0" name="x1" type="C"/><var Ib="0" name="x2"
type="C"/></variables>
<nl idx="-1"><plus> <power><minus><number type="real" value="1.0"/>
<var coef="1.0" idx="1"/></minus><number type="real"
value="2.0"/></power><times> <number type="real"

216

value="100"/><power><minus><var coef="1.0" idx="0"/><power><var coef="1.0"
idx="1"/><number type="real" value="2.0"/></power></minus>&It;number type="real"
value="2.0"/></power> </times></plus> </nl>
<nl idx="0">&It;minus><plus> <var coef="1.0" idx="0"/><var coef="1.0" idx="1"/>
</plus><number type="real" value="100"/></minus></nl>
</programData&agt;
</0SiL>

Solver agent step 2: Constructing SOAP envelope
According to the OShL WSDL document, we should use the “SOAP over “HTTP”
transport, so OSSolverAgent packs the operation String solve (String) and the

above encoded sOSiL input string argument into a SOAP envelope, which looks like this:

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<ns1:solve soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmins:ns1="http://www.optimizationservices.org/os/ossolver/KnitroSolverService.jws">

1t;0SiL xmIns="os.optimizationservices.org" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"

&It;/0SiL>
</ns1:solve>

</soapenv:Body>
</soapenv:Envelope>
Solver agent step 3: Sending and receiving

Again according to the OShL WSDL document, we should send the above constructed
SOAP envelope over the HTTP networking protocol using RPC style, so 0SSolverAgent
constructs the following HTTP POST header. Since this is an HTTP POST, we attach the
POST data — the SOAP envelope — at the end of the HTTP header with a line separation (i.e.

two new line characters):
POST /os/ossolver/KnitroSolverService.jws HTTP/1.0

Content-Type: text/xml; charset=utf-8

Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.2beta3

Host: http://www.ziena.com

Cache-Control: no-cache

Pragma: no-cache

Content-Length: 2488

<soapenv:Envelope ...>

</soapenv:Envelope>

217

The HTTP POST method is itself of RPC style and waits until it receives the result from the
remote server. When the Knitro solver service sends back the result, it should be a string and
the string should be of the OSrL format. The returned result is a SOAP envelope encoded under

an HTTP response header:

HTTP/1.1 200 OK

Set-Cookie: JSESSIONID=A8AF406536A271018100F64CFA462FAQ; Path=/os
Content-Type: text/xml;charset=utf-8

Date: Sun, 20 Mar 2005 21:28:40 GMT

Server: Apache-Coyote/1.1

Connection: close

<soapenv:Envelope xmlIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<ns1:solveResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmins:ns1="http://www.optimizationservices.org/os/ossolver/LindoSolverService jws">
<solveReturn xsi:type="xsd:string">
&It;OSrL xmins="os.optimizationservices.org"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="o0s.optimizationservices.org
http://www.optimizationservices/schemas/OSrL.xsd">
<result>
<status type="optimal"/>
<objective><objectiveValue value="0.000"/></objective>
<variables><variableSolution>
<description/>
<var idx="0" varName="x1" value="1.0"/>
<var idx="1" varName="x2" value="1.0"/>
</variableSolution></variables>
</result>
</OSrL>
</solveReturn>
</ns1:solveResponse>
</soapenv:Body>
</soapenv:Envelope>

Solver agent step 4: Decoding
On getting the encoded result, 0SSolverAgent then extracts out the SOAP envelope
attached at the end of the HTTP response header and decodes the result into:

<OSrL xmins="os.optimizationservices.org" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org http://www.optimizationservices/schemas/OSrL.xsd">

<result>
<status type="optimal"/>
<objective><objectiveValue value="0.000"/></objective>
<variables><variableSolution><description/>
<var idx="0" varName="x1" value="1.0"/><var idx="1" varName="x2" value="1.0"/>
</variableSolution>
</variables>
</result>
</OSrL>

The AMPL modeling language only sees the above decoded result in the St ring variable

sOSrL. AMPL then post -processes the sOSrL string and waits for further user instructions

(e.g. display).

218

At the solver side, to solve the problem, the solver service also has to follow the OShL
WSDL document as communication always involves two parties. The simplified Knitro solver
service code looks like:
public class KnitroSolverService {

public String solve(String osil){
//read OSIL
OSiLReader osilReader = new OSiL.Reader();
OSil inputInterface = osilReader.getStandardInputInterface(osil);

//solve
KnitroSolver knitro = new KnitroSolver();
OSrlI outputlnterface = knitro.solve(inputInterface);

/fwrite and return OSrL
OSrLWriter osrlWriter = new OSiLWriter();
String osrl = osrlWriter.getOutputInterface (outputInterface);
return osrl;
Ylisolve

public String solve(String osil, String osrl){

return osrl;

}

public String getJobID(){

return jobID,;
}

public String retrieve(String jobID){

return osrl;

¥
public String analyze(String osil){

return osal;

}

}//class KnitroSolverService

As we can see, the Knitro solver service implements all the operations required in the OShL
WSDL document (listed in Table 7-1). We only briefly show the implementation of the
String solve (String). There are mainly 3 steps in this operation:

1. Reading

OSiLReader osilReader = new OSiLReader();
OSil inputInterface = osilReader.getStandardInputInterface(osil);

219

The Knitro solver service gets the OSiL string and use the 0SiLReader class provided
in the OS library to parse the OSiL instance into a set of in-memory data structures that are held
in a standard input interface (0S1i1T).

2. Solving
KnitroSolver knitro = new KnitroSolver();
OSrl outputlnterface = knitro.solve(inputlnterface);

The Knitro solver engine (KnitroSolver) is instantiated. The solver takes the
optimization problem input interface (0S11T), solves the problem and outputs the result into a
standard optimization output interface (OSrI).

3. Writing and returning
OSrLWriter osrlWriter = new OSiLWriter();

String osrl = osrlWriter.getOutputInterface (outputInterface);
return osrl;

The Knitro solver service uses the OSrLWriter class provided in the OS library to write
the OSrL instance from the in-memory result data structures held in the OSr T output interface.
The Knitro solver service then simply returns the OSrL result instance. Of course the Knitro
solver service has to make sure the OSrL instance is valid. By using the OS library to construct
the OSrL instance, the result should be automatically validated.

In the above 3 steps, we see that the Knitro solver service does not need to worry about
how the input OSiL instance received from the internet (using SOAP over HTTP) should be
decoded. Neither does it need to worry about how to encode and send back the OSrL output
instance (again using SOAP over HTTP) to the client. This is because the Knitro solver service
is hosted by instance our OS Server software. The OS Server hides all the networking
complexities from the solver service. Our OS Server can be downloaded from the Optimization

Services Web site at http://www.optimizationservices.org or

http://www.optimizationservices.net. The Knitro solver developers simply put the above

Knitro solver service code in a file called KnitroSolverService. jws and put the file in
the os sub-directory relative to the OS Server’s public root directory. Since in our example, we

host the Knitro solver service at http://www.ziena.com, thus the service address is at

http://www.ziena.com/os/KnitroSolverService.jws (i.e. http://domain name + directory +

service, just like a regular Web page address). What the OS Server does is more or less the
opposite of what the client’s communication agent does, again in 4 steps:

Solver server step 1: Decoding

220

On getting the “SOAP over HTTP” request (sending part of Solver agent step 3) from the
client, the OS Server extracts out the SOAP envelope attached at the end of the HTTP request
header, gets the operation name and decodes the operation input into a regular OSiL instance.
This is similar to any Web server in handling a regular HTTP request with POST message (e.g.
HTML form data).

Solver server step 2: Invoking

The OS Server loads the KnitroSolverService. jws file and compiles the class
only if it is the first time the service is called and loaded. The OS Server then invokes the
operation with the decoded input according to what is specified in the SOAP envelope; in our
example itis String solve (String). Upon invocation, the Kniro solver service starts
the optimization process. This is similar to any Web server in locating and loading an html page
from its file system.

Solver server step 3: Encoding

The OS Server then waits for the Knitro solver service to return the optimization result,
which is in plain OSrL format. Upon getting the OSrL instance, the OS Server encodes the
OSrL instance and packs the encoded result instance into a SOAP envelope. This step has no
equivalent in a usual Web server, as a Web server does not need to encode an html file.
Solver server step 4: Returning

The OS Server prepares an HTTP response header, attaches the constructed SOAP
envelope at the end with a line separation (i.e. two new line characters), and sends the HTTP
response header with SOAP attachment back to the client. This is what the client agent sees in
Solver agent step 3 when the agent receives the response from the OS Server. This step is
similar to any Web server preparing an HTTP response and return a plain HTML page back to
the calling browser.

This completes the entire solver “hook up” process according the Optimization Services
hookup Language. All the networking complexities are hidden and taken care by the OS
library. The OS library also provides parsers to read and write standard instances. All that a
modeling language environment does is to use the OS parser library to write standard OSiL
instances and read standard OSrL instances after delegating an OS communication agent to
contact the solver service. All that a solver service does is to expose the standard interface,
implement all the required operations in the interface listed in OShL, let the OS Server take
care of the underneath networking, and use the OS parser library to read OSiL instances and

write OSrL instances.

221

7.2 Optimization Services call Language (OScL)

The OScL document is at http://www.optimizationservices.org/wsdl/OScL.wsdl. OScL is
mainly used to call simulation services. Theoretically, any client or user on the network can call
the simulation service just like a regular Web Service. But under the Optimization Services
framework, the main purpose to standardize simulation services is to provide extension to
simulation optimization. Therefore in the OS practice, the client that calls the simulation is
usually a solver service.

Simulations are fully explained in 2.8. From the Optimization Services framework point of
view, if a simulation is to be invoked by an OS-compatible solver, its input and output first
have to follow the standard OSsL schema (§6.7).

To make the communication, both the solver agent and the simulation service have to
follow the rules specified in the OScL.wsdl document, just as the communication between a
modeler and a solver follows the OShL WSDL document. Figure 7-2 shows the interface part
of the OScL WSDL document. The other part (protocol & address part) of the WSDL
document, like all other OSxL WSDL documents, uses the same specifications as in OShL
shown in Figure 7-3; the reason is explained in the beginning of this chapter and also in the
OShL section (§7.1). Briefly the networking protocol has to be “SOAP over HTTP” with an
RPC style call; the input and output encoding has to be the standard SOAP encoding; the
address is empty and to be dynamically found in the OS Registry if unknown.

=%aml wersion="1 0" encoding="UTF-8"7=
=w sdhdefingions smins os="ttipcheweiy optimizionservices, org”
cminszogpenc="hitp. Fechemas <misoap.orgisoapencoding!” wmins wad="Htp fzchemas <mlisoap.orgfasdlr

ximinswEdlsoap="rpdschemas. smisosg orgdvsdlizoap®™ xmins cso="fp Moy w3 .org2001 KMLScheme!
largethlame space="htp: Mewe optimizaticnservices arg™s

=wsdlmessage name="calRequest's Operations
ayysdipart name="ossl" type="xsd string"'f= p——— m
. =
=hesdl messages X
<w/sdimezsage nomes="callResponse"= =B Input Drcallﬂeq:ue*.tt
=wsdipart name="ossl" type="xsd siring"f> part 0%l wed:sting
<hvzdl nessages = Output ozcallHesponse
wad po Type neme="0ptimizationSimustionService"= < park calPReturn xsd:sting

«<wsdi operation name="call” parameterOrder="ozsl"=
exvsclinput name="calRequeast” message="0s calfequest™t>
=w2cl output names"calResponze” meszage="os callRezponsa'i=
=hvadl nperation=
Fovsdl portType=
=wwadl binding neme="0ptimizetionSimuationService Soap8inding” type="os OptimizetionSimulstionService"=
=l-= all operation binding zame az OZhL wedl.-»
=kl binding=
=wsdhsarvice name="0OptimizationSimulationServica'l=
<hzdl defintions=

Figure 7-4: Illustration of OScL (interface part); other parts are the same as OShL in Figure 7-3.

222

The <wsdl:portType> element in Figure 7-4 has only one operation whose name is
call. The call operation’s input is required to be of message type “callRequest” and its
output is required to be of message type “callResponse.” The callRequest message
has one part element (i.e. one argument), oss1, which is of string types. Simply put, the
WSDL document in Figure 7-4 specifies the following single operation for each simulation:

String call (String ossl);
that is, every simulation service is required to have a method called “call” that takes one
input string and returns one string. Both the input and the output strings have to follow the
OSsL schema (§6.7). No invalid OSsL instances should be transmitted by the solver onto the

network. In Table 7-2, we list the operations specified in the OShL WSDL document (currently

only one).
Operation Description
String call (String) 1* input is an OSsL instance for simulation input.
Output is an OSsL instance for simulation output.

Table 7-2: Operations in OScL (currently only one).

We continue the example in the above OShL section, to illustrate the process of calling a
simulation using the OS library below.

Imagine the entire objective function in problem (7-1) function is now calculated by a
simulation called sampleSimulation shown in Figure 7-5. Note that it is also possible to
have part of an objective or constraint function calculated by a simulation; thus the simulation
becomes one internal tree node in an entire expression tree rather than the tree root. As
explained in §2.8, three things have to be specified for the simulation: input, output, and the
simulation’s address. The simulation definition is specified in OSiL. This was discussed in

detail in the OSIiL section (§6.2) and the OSnL section (§6.3).

— sampleSimulation
{hidden)
y={1-b)*+100 (a-k*)"

Input |,y output

URI
hitpfiwww. ziena.comfos/SampleSimulationService. jws

Figure 7-5: sampleSimulation with two inputs (a, b), one output (y) and an address
(http://www.ziena.com/os/SampleSimulationService.jws).

Notice the sampleSimulation engine can provide more “services” than just calculating the

output y from the two inputs a and b .

223

sampleSimulation can be represented using the OSiL <simulation> element:

<simulation name="sampleSimulation">

<uri value="http://www.ziena.com/os/SampleSimulationService.jws"/>
<OSsL>
<input>
<el name="a"/>
<el name="b"/>
</input>
<output>
<el name="y"/>
</output>
</OSsL>
</simulation>

With the sampleSimulation definition, we can write down the objective (idx = -1)
and the constraint (idx = 0) of (7-1) as described in the OSiL instance (§6.2, §6.3). In the
example below we pass x, to the simulation input @ and x, to the simulation input b .

<OSiL...>

<nl idx="-1">
<sim name="sampleSimulation">
<simInput inputName="a"><var idx="0"/></simInput>
<simlInput inputName="b"><var idx="1"/></simInput>
<simOutput outputName="y"/>
</sim>
</nlidx="0">
<minus>
<plus><var idx="0"/><var idx="1"/></plus>
<number value="100"/>
</minus>
<simulation name="sampleSimulation">

<l--definition--> ...
</simulation>

</OSiL>
When the Knitro solver service gets the OSiL instance, it uses the OS library to parse the input
and output instances with no difference and solve the optimization problem as usual:

public class KnitroSolverService {
public String solve(String osil){
/Iread OSIiL
OSiLReader osilReader = new OSiLL.Reader();
OSil inputlnterface = osilReader.getStandardInputInterface(osil);

//solve
KnitroSolver knitro = new KnitroSolver();
OSrI outputInterface = knitro.solve(inputInterface);

/Iwrite and return OSrL

OSrLWriter osrlWriter = new OSiL Writer();

String osrl = osrlWriter.getOutputInterface (outputlnterface);
}//solve

}//class KnitroSolverService

224

As the Knitro solver is a nonlinear solver, at each iteration, it uses the OS library to
calculate the function value for the objective (idx = -1) and constraint (idx = 0) functions.

Knitro does not care how the function values are obtained; at each iteration, it passes the

variable values [x,, X,] to the OS library to get the function values of indexes -1 and 0. So

nothing changes for the solver either. What has changed are the function calculations inside the
OS library. Below are some snippet examples of how the OS library does the function
calculations. The OS library adopts the Objective-oriented philosophy using information
hiding, inheritance, and most importantly polymorphism as described in detail in §4.1.2.

First Knitro calls the following method in the OSiLReader class:

public double calculateFunction(int rowldx, double x[]){

double dResult = calculateLinearFunction(rowldx, x) + calculateNonlinearFunction(rowlIdx, x);
return dResult;
}//calculateFunction in OSiLReader

Khnitro passes in the variable array x[] and the rowIdx, -1 for the objective and 0 for the

constraint. In the calculateFunction method, there are two parts:
calculatelLinearFunction and calculateNonlinearFunction.

In the above OSiL example, we list both functions using only nonlinear expressions (<n1>), so
calculatelLinearFunction returns 0. calculateNonlinearFunction then uses
the a expression tree structure to further calculate the nonlinear function:

public double calculateNonlinearFunction(int rowldx, double x[]){

getNonlinearExpressions();
OSExpressionTree exTree = (OSExpressionTree)(m_expressionTrees.get(rowldx+""));
return exTree.calculateFunction(x);

}//calculateNonlinearFunction in OSiLReader

The OSExpressionTree is a tree of operation nodes all of abstract type OSnLNode, including
the root node: m_treeRoot. All concrete nodes that extend the abstract OSnLNode,
implement the method calculationFunction(double x[]). The line
exTree.calculateFunction (x) invokes the calculateFunction method on the
m_treeRoot, which is from the class OSExpressionTree:

public double calculateFunction(double x[]){

return m_treeRoot.calculateFunction(x);
}//calculateFunction in OSExpressionTree

In the constraint function the root is minus. The concrete OSnT.Node that corresponds to
minus is OSnLNodeMinus. Them treeRoot.calculateFunction (x) function

calls the calculationFunction in OSnLNodeMinus:

225

protected double calculateFunction(double[] x){

m_dFunctionValue = m_mChildren[0].calculateFunction(x) -
m_mChildren[1].calculateFunction(x);

return m_dFunctionValue;
}//calculateFunction in OSnLNodeMinus

OSnLNodeMinus subtracts the value of its second child (of type OSnLNode) from the value
of its first child (again of type OSnLNode). What happens next is basically a recursive tree
invocation using the polymorphism idea from Object-oriented Programming (OOP). A similar
example on polymorphism is also explained in detail in the OOP section (§4.1.2).

In the objective function the root is sim. The concrete OSnLNode that corresponds to
simis OSnLNodeSim. The m treeRoot.calculateFunction (x) function calls the
calculationFunction in OSnLNodeSim, which is more complex than
OSnLNodeMinus:

protected double calculateFunction(double[] x){

//1. get simulation inputs from each <simInput> child of <sim>

for(int i = 0; i < m_mChildren.length - 1; i++){
OSnLNodeSimInput simInput = (OSnLNodeSimInput)(m_mChildren[i]);
String sInputName = simInput.getInputName();

}

//2. construct the OSsL simulation service input
String sOSsLInput = XMLUtil.write XMLElementToString(m_ossIReader.getRootElement());

//3. instantiate an OS simulation agent to contact the remote simulation at the URI address

//and get the result from the simulation service output (in OSsL)

OSSimulationAgent osSimulationAgent = new OSSimulationAgent();

osSimulationAgent.simulationAddress = m_sURI;

String sOSsLOutput = osSimulationAgent.call(sOSsLInput);

// 4. construct the result according to <simOutput> (last child) of <sim> from the returned
OSsL.

//We know the result has to be in OSsL format as we called an OS simulation service.

OSnLNodeSimOutput simOutput = (OSnLNodeSimOutput)(m_mChildrenfm_mChildren.length -
1D);

OSsLReader osslReader = new OSsLReader();

osslReader.readString(sOSsLOutput);

m_dFunctionValue = simOutput.calculateFunction(x);

//5. return function value from the constructed simulation result.
return m_dFunctionValue;
}//calculateFunction in OSnLNodeSim

Five steps are involved in OSnLNodeSim to get the value from the simulation services:
1. OSnLNodeSim gets simulation inputs from each <simInput> child of <sim>. The value of
the simInput ais x, and the value of the simInput b is x;:

<simInput inputName="a">

226

<var idx="0"/>
</simInput>
<simlnput inputName="b">
<var idx="1"/>
</simInput>

2. 0SnLNodeSim constructs an OSsL input for the sample simulation service using
the OSsLWriter provided in the OS library. Suppose Knitro Solver passes in
x, =1.2 and x, =3.4, the OSsL would look like:

<OSsL>
<input>
<el name="a">1.2</el>
<el name="b">3.4</el>
</input>
</OSsL>

3. 0SnLNodeSim instantiates an OS simulation agent to contact the remote sample simulation
service at the URI address. The simulation service output is in OSsL.

This step is the only step that involves communication. The communication should be
carried out according to the OScL WSDL documents. 0SnLNodeSim delegates an OS
simulation agent to make the contact to the remote simulation service. The agent hides all the
networking complexities. When OSnLNodeSim calls the method:

String sOSsLOutput = osSimulationAgent.call (sOSsLInput);

four communication steps are involved, which is similar to the 4 solver agent steps described in
the above OShL section (§7.1). Briefly simulation agent step 1 is encoding of the above
constructed OSsL input (in 2.); simulation agent step 2 is packing the encoded input and the
call operation specified in OShL into a SOAP envelope; simulation agent step 3 is sending
the SOAP envelope over HTTP to the remote simulation service and wait for a response; and
simulation agent step 4 is decoding the result from the simulation service into a plain OSsL
format.

4. 0SnLNodeSim retrieves the result according to <simOutput> (last child) of <sim> from the
decoded OSsL using the OSsLReader provided in the OS library:

<simOutput outputName="y"/>

5. 0SnLNodesSim returns function value from the constructed simulation result.

At the simulation side, the simulation service also has to follow the OScL WSDL
document. The sample simulation service code looks like:

public class SampleSimulationService {

public String call(String ossl){
/lread OSsL
OSsLReader osslReader = new OSsLReader();
double a = Double.parseDouble(ossIReader.getInputByName("a"))

227
double b = Double.parseDouble(ossIReader.getInputByName("b"))

//run simulation
double y = Math.pow((1-b), 2) + 100 * Math.pow(a — b * b);

/Iwrite and return OSsL
OSsLWriter ossIWriter = new OSsLWriter();
String[] outputNames = {“y”};
String[] outputValues = {y+""};
String ossl = osslWriter.setOutput({outputNames, outputValues);
return ossl;
Yieall
}//class SampleSimulationService

As we can see, the sample simulation service implements all the operations required in the
OShL WSDL document (listed in Table 7-2). There are mainly 3 steps in this operation:

1. Reading

OSsLReader osslReader = new OSsLReader();

double a = Double.parseDouble(ossIReader.getInputByName("a"))
double b = Double.parseDouble(ossIReader.getInputByName("b"))

The sample simulation service gets the OSsL string and use the OSsLReader class provided
in the OS library to parse the OSsL instance into a set of input values (double a, b).

2. running simulation

double y = Math.pow((1-b), 2) + 100 * Math.pow(a —b * b);

The sample simulation basically calculates the function (1—b)* +100(a —b*)*.

3. Writing and returning

OSsLWriter osslWriter = new OSsLWriter();

String[] outputNames = {“y”};

String[] outputValues = {y+""};

String ossl = oss|Writer.setOutput({outputNames, outputValues);
return ossl;

The sample simulation service uses the OSsLWriter class provided in the OS library to write
the OSsL result instance from an array of output names and output values. In our example the
array sizes are 1, as there is only one output name “y” and one output value y+””. The sample
simulation service then returns the OSsL result instance. Of course the sample simulation
service has to make sure the OSsL result instance is valid. By using the OS library to construct
the OSsL instance, the result should be atomically validated.

In the above 3 steps, we see that the sample simulation service does not need to worry
about how the input OSsL instance received from the internet should be decoded. Neither does
it need to worry about how to encode and send back the OSsL output to the client. This is

because the sample simulation service is hosted by an OS Server in the same way that all other

228

OS services are hosted. The OS Server hides all the networking complexities from the solver
service. We simply put the above sample simulation service code in a file called
SampleSimulationService. jws and put the file in the os sub-directory relative to the
OS Server’s public root directory. Since in our example, we host the sample simulation service

at http://www.ziena.com, thus the service address is

http://www.ziena.com/os/SampleSimulationService.jws). What the OS Server does is similar

to the four solver server steps described in the above OShL section (§7.1). Briefly Simulation
server step 1 is decoding the “SOAP over HTTP request” from the solver client that contains
the call operation and the OSsL input; Simulation server step 2 is invoking the sample
simulation service on the call operation with the decoded OSsL input; Simulation server
step 3 is encoding the OSsL output returned by the sample simulation service into a SOAP
envelope; and Simulation server step 4 is returning the SOAP envelope over the HTTP
transport to the client solver.

This completes the entire simulation “call” process according the Optimization Services
call Language. All the networking complexities are hidden and taken care by the OS library.
The OS library also provides parsers to read and write standard instances. All that a solver does
is to use the OS parser library for reading and writing OSsL instances, delegate the simulation
agent to call the simulation and get the function value. All that a simulation service does is to
expose the standard interface, implement all the required operations in the interface listed in
OScL, let the OS Server take care of the underneath networking, and use the OS parser library

to read and write OSsL instances.

7.3 Optimization Services flow Language (OSfL)

The OSfL document is at http://www.optimizationservices.org/wsdl/OSfL.bpel. In §5.3,
we described various Optimization Services processes. OSfL is used to predefine certain
standard process flows. Unlike most other communication related OSxL’s, OSfL is an XML
document written in BPEL (Business Process Execution Language [91]). OSfL is an optional
non-binding specification that is provided as a reference and guidance to facilitate
implementation of OS components by the developers. Developers do not have to use the
predefined flows in the OSfL BPEL document. Either they can define their own flow logic or it
is not even necessary for them to use any flow languages, as the logic of invoking various
Optimization Services can just be hard coded. It is, however, highly recommended that

developers look into the BPEL standard when building a state-of-the-art Optimization Services

229

component (e.g. modeling language environment, solver services). Implementing an industry
standard for orchestrating Optimization Services will not only speed up the development and
deployment of new optimization processes but will also make the current processes easily
maintainable. This section gives an overall description with some simple examples. As BPEL
itself is still a new standard, OSfL will be evolving along with the development of BPEL.

The business motivation behind a standard Web service flow orchestration is the same
motivation behind the use of any proprietary EAI (Enterprise Application Integration) [19][76]
solution: to increase productivity, to reduce costs, and to improve service levels through
automation. Traditionally the process integration is achieved by hard coding extra embedded
logic inside of heterogeneous applications such as CRM (Customer Relationship Management),
ERP (Enterprise Resource Planning) or SCM (Supply Chain Management) and modifying the
interfaces to make the applications work with each other (Figure 7-6). The development,
testing, and deployment efforts required for the changes make the entire integration process

very complex and expensive.

Traditional Process Integration

Prpvided by Yendor C
wntten in C and used

Provided by Vendor A ‘»illl—»
written in VB and

usedonWindows_____ -

n_nvide_d by Vendor B

used on UNIX
modified modified
proprietary PleliBl_al_l,l
interfacing interfacing

Figure 7-6: Traditional process integration.

230

The BPEL specification [90] recently released by OASIS is positioned to be the Web
services standard for process flow composition. It is the result of a cross-company initiative that
includes IBM [61], Microsoft [80] and Oracle [94]. In terms of language features, BPEL is a
convergence of IBM’s Web Service Flow Language (WSFL [63]) and Microsoft’s XLANGE
[83], which is the orchestration language for Microsoft’s BizTalk server [81]. Both WSFL and
XLANG are now superseded by BPEL. Many major companies are starting to provide BPEL
process engine software that handles flow logics specified in any standard BPEL document.

Figure 7-7 shows an example of Oracle’s BPEL process engine [94].

BPEL Input

EFEL c;l

W5DL Bindirg Euilt-in | rtegration Senice s
neb Senrice
JIAG
dCh

o Core GREL Engine
Email

JZEE spplication Server
[Wieblagics, Crstle A5, JBass, WebsSphene)

M AR ASE

Figure 7-7: Oracle’s BPEL process engine.

Optimization Services process orchestration is not as complex as the enterprise business
process orchestration. Therefore it is much easier for Optimization Service developers to hard
code and maintain various process logics in their software. But still some, especially the
commercial developers, can benefit significantly from the standardized integration interface
and standardized language for integration and process automation. Optimization processes
exported to BPEL will be able to execute in a variety of standards-compliant process engines,
offering customers more choices and the ability to mix and match tools.

A typical Optimization Services process flow chart that corresponds to the BPEL Input in
Figure 7-7 is shown in Figure 7-8. The flow chart in the figure corresponds to a flow of solving

an optimization problem that starts and ends at the modeler’s application side.

231

Discover
W analyzer in
OS registry

}

Call analyzer
{ lop analyze
the problem

Know
analyzer

instance
alyza?
start (0SiL) Analyza? Y

Discover
Solver in 05 l4———N
registry Y

Contact solver
to get jobiD

Teed a job |D for late
result retrieval?

Call solver to
solve the
problem

Fy

result
[O5rL)

Figure 7-8: A typical Optimization Services process flow chart.

There can be other kinds of flows. For example, a flow can be as simple as one process. If
all that a solver service provides involves one single optimization process that receives an OSiL
input and returns an OSrL output, there is still an advantage in writing the process in a BPEL
document and letting the BPEL process engine execute the optimization job. The biggest
advantage is probably that the solver service can use the queuing service provided by the BPEL
engine. Almost all the BPEL engines provide queuing management service that is independent
of the queue server implementation the process engines use. The queuing logics as well
everything else specified in BPEL is language and platform neutral.

The flow chart of Figure 7-8 would be written in the Optimization Services flow Language
BPEL document. BPEL provides an open programming abstraction for Optimization Services
developers to create complex optimization processes, such as service discovery, instance
analysis, solver hookup, and simulation invocation into an end-to-end process flow. The
programming abstraction is platform and language independent and fully supports features such
as Web services invocation, data manipulation, exception handling, activity nesting and

sequencing, process parallelization and job termination.

232

Another noticeable mechanism in BPEL is its built-in support for asynchronous
interactions. Early in this section we specified that all the OS communications should use the
RPC style invocation style. Although RPC is a blocking call based on the request and response
model, we described how the actual implementation can launch a separate process or thread to
issue the RPC call so that the user of the application can go on with other tasks. But as a much
better alternative, the application can build on a BPEL process engine to do the entire job more
effectively and efficiently. All that the application does is to pass the BPEL process engine the
standard OSfL BPEL document. As the BPEL language is a universally accepted standard, any
BPEL process engine, whether from Microsoft or IBM or anywhere else, can take and handle
exactly the same OSfL input. Different companies may use their own proprietary message
queuing software to manage the underlying asynchronous interactions, for example MSMQ
[82] from Microsoft and MQSeries [65] from IBM, but this is all hidden away from the
standard BPEL input that is passed in.

Technologically, BPEL leverages on other Web Services standards such as SOAP and
WSDL for communication interface description. BPEL describes the process interfaces in
WSDL so that they can be easily integrated into other processes or applications. From a user’s
point of view, BPEL is just a meta-process that is no different from other single processes and
it can be invoked like any Web service as shown in Figure 7-9.

@ = Common Wab service
interface technalogy (SOAP, .
Lvsn?_? e BPEL Process Engine

QOSfL BPEL
document

e —ostma—(ve @ SRR

Appli"‘ation i ke

Bkl
Internet
0SrL Output -t

Figure 7-9: Calling BPEL process engine as a Web service, which in turn calls various
Optimization services according to the OSfL. BPEL document in Figure 7-8.

233

Figure 7-10 is a simple anatomy of OSfL shown in BPEL. In reality BPEL documents are
constructed graphically by BPEL designers such as Microsoft’s Office charting tool Visio.

=l wersion="1 0" encoding="JTF-5"7=

=process name="05SfL" xmins="http: fzchemas xmlzoap.orghe 2003053 0usiness-process
wimins: ="kt ey e 3 orgr2001 LS chema-instance”
xaischemalocation="http: Mechemas xmizoap orghys200303business-process! bpel xsd"
wiming: oz="http: faewewy optimizstionservices org”
targethlamespace="http: foewewy optimizationservices org"=
2l-- include ©5xLWEDL defintions--=
e) Include WSDL definitions
=l-- Partner Links --=

=partnerLinks=
=partnerLink name="modlerLink" partnerLlinkType="os:modlerLinkType" partnerRole="os: solverService"l=
=partnerLink name="solverLink" partnerLinkType="os:solverLinkType" myRole="0z: solverService"i=

2 partnerlinkss PartnerLink
<l-- Partners--» References to the Optimization
:par:u;z:ts;er s ™ services participating in the process
=partnerLink name="modlerLink" = flow and ther rolefport types
=lpartner=
=partner name="salver"= > Partners
=partnerLink name="gokverLink"f= Component Optimization Services that
=lpartner interact with this process
=ipartnerss _/
<l-Yariables --= Variables
=variabless

List of messages exchanged between the
optimization process and each of the
participating Optimization Services

=wvariable name="ozil" messageType="0z solveRequest! "=
=variahle name="ostl" messageType="0s solveResponse"f=

=Mhvariables=
=l-- Structure of the optimization process --=
=seqUence name="salve"=
=invoke name="invokeSolver" partnerLink="salverLink" pod Type="oz: OptimizationSalverService”

operation="os: solve! " inputtariable="osil" outputyariable="osr"= Optimization
sreceive name="receivefesull” partnerLink="solverLink" portType="0s: OptimizationSolverService" - Services
operation="os:s0lve!" variable="osrl" crestelnstance="yes"'= Flow Logic
=izefuences=

ﬁfprléll.il.issb
Figure 7-10: Anatomy of the OSfL BPEL document.

The BPEL language defines a process by composing a set of existing services that are
described as a collection of WSDL definitions. The composition (<process> root element)
indicates how each service interface fits into the overall flow. The <partner> elements are
basically the component services with which the process interacts. They can either be invoking
(or client) partners and/or invoked (or server) partners. After defining the <partner>
elements, we need to logically tie a BPEL process to an existing Web service via the
<partnerLink> element. Every Web service used in a BPEL process requires a

<partnerLink> describing which set of Web service operations (<portType> elements)

234

is used in the BPEL process. After all the logic links are specified, <partner> elements are
then used in the activities (e.g. <invoke>, <receive>). the <variable> elements are
used to specify the list of messages that are exchanged between the BPEL processes and any
participating.

Each step in the process is called an activity. Activities can include invoking a service
(<invoke>, Figure 7-10), receiving a message from a client (<receive>, Figure 7-10),
generating a reply to the client (Kreply>), waiting for some time (<wait>), copying data
(<assign>), throwing an exception (<throw>), catching and handling exceptions
(<scope>, <faultHandlers>, <catch>), handling events (<eventHandlers>),
compensating actions for certain irreversible actions (<compensation>), terminating a
process (<terminate>) or doing nothing (<empty>). These are called primitive activities as
they can be combined into more complex activities through some structure elements such as
<sequence> for ordering, <switch> for branching, <whi le> for looping, <pick> for

selection, <f1ow> parallelization, and <11ink> for parallelization order constraints.

CHAPTER 8 OPTIMIZATION SERVICES REGISTRY

The address of the OS registry service is:

http://www.optimizationservices.org/os/OSRegistryService.jws.

To locate services in a decentralized serviced-oriented distributed system, software agents
coordinate with each other and with registries. Some registries are general ones that keep
information of all kinds of Web services, such as Universal Description, Discovery and
Integration (UDDI, §4.8). Others are specialized ones like the Optimization Services registry
that only serves registration and discovery of Optimization Services.

The OS registry knows all the registered services (solvers, analyzers, simulations) on the
OS network by keeping their metadata information. “Metadata” means that the registry contains
information about the software, but not the software itself. The OS registry can be viewed as a
“light” weight server in that no registered services are actually executed by this registry; instead

clients directly contact the services in a peer-to-peer mode (Figure 8-1).

Optimization

Thick Cliant :
Registry

{modeling
language
environment)

Figure 8-1: The optimization registry architecture.

The fundamental differences between an optimization server and the OS registry have
been explained in §2.5. The advantages of a decentralized Service-oriented architecture (§4.6)
have been elaborated throughout the thesis. It is our vision that a decentralized architecture can
better promote research and development in optimization.

The Optimization Services registry serves the function of a search engine. But unlike the
Internet search engines, there has to be a unique registry on the entire OS network to ensure
Quality of Service (see §1.2.4). The OS registry operators make sure (e.g. through
advertisement) that all communication agents know or can easily find out where the OS registry
is. When a certain query is sent to the OS registry from a client, the OS registry returns the
locations of the matched OS services and the client contacts each service directly at the

provided location. On the opposite side of the “discovery” process is the “join” process. It is the

235

236

OR software developer’s responsibility to submit the required information to, and get approved
by, the OS registry, possibly through a mixture of automatic and manual procedures. The
fundamental differences between Internet search engines and the OS registry have been
explained in §1.2 and §2.5.

In terms of standardization, OS-registry related protocols do not face as much imminent
pressure of universal acceptance as the non-registry related protocols. There is only one public
registry on the entire Internet and there are much fewer registry developers compared with the
other OS developers. In the following sections, we more descriptively illustrate the registry-
related protocols using an example of the “Impact” solver service in order to give a general idea
of how we designed our OS registry. There are mainly two categories of registry-related OSP
protocols; one deals with representation (OSeL, OSpL, OSbL, OSyL, OSqL, OSul.) and the
other deals with communication (OSjL, OSkL, OSdL, OSvL); all the 10 sub-protocols are
explained in the following sections of this chapter.

To ensure that the OS registry only sends addresses of the services (especially solvers) that
are of reasonably high quality, regulations are imposed when an OS-compatible service is to be
registered in the OS registry. The following three OSP protocols are designed to make sure a
solver is and continues to be well-described, live, reliable, and robust. Information about
registered services in the OS registry includes three main categories:

1. Entity information that is reported by service developers at registration, e.g. service and
owner information, solver or simulation types and service locations. We call this category
of information “entity” information to emphasize the information is relatively static. This is
addressed by the Optimization Services entity Language (§8.1).

2. Real-time process information that is either reported by the registered service (“push”) or
detected by the OS registry (“pull”), e.g. how many optimization jobs are at the service
server. We call the information “process” information to emphasize the information is
dynamic. This is addressed by the Optimization Services process Language (§8.2).

3. Benchmark information that is gathered separately by auxiliary benchmarker tools
designated by the OS registry, e.g. general solver ratings and performance profiles. This is
addressed by the Optimization Services benchmark Language (§8.3).

All the three types of information are kept in an XML database of the OS registry. As the OS

registry is an open registry, to facilitate communication (especially discovery) with the registry,

the structure and contents of the OS database are made public just like a yellow pages directory.

The structure and contents in the OS database are addressed by Optimization Services yellow-

page Language (§8.4). The other sections deal with various interactions with the OS registry.

237

8.1 Optimization Services entity Language (OSeL, representation)
The OSeL schema is located at http://www.optimizationservices.org/schemas/OSeL.xsd.
OSeL is an XML specification of entity information used to describe the static information of
an optimization service. However, to register a service, the registrant usually goes to the
Optimization Services registry Web site to fill out the form shown in Figure 8-2. Of course the

registrant can also submit the OSeL description directly.

‘2l Optimization Services Registration - Microsoft Internet kxplorer

" Fle Edt View Favarites Todls Help | hddress hittp: e, optimizationservices orgjos/register html
Optimization Services Registration
Setvice Infonmation Ownerlnformation)
. .| education
[URIL: Name: Hame: Trpe:
[Category: solver O analyzey O sinmalation O Web Page: Logo Link:
Type: | Blucation ¥
i [Description:
fLogo ' Contact
[Weh Page: Name: Tide: | Mr. ¥
[WSDL Location:
|Absiract: Address:
[Keywords: Phone: Fax: Email: Weh Page:

Fill oty one of the following brpes
Optimization Type (solver and analyze \) wﬁon T}'y

Objective Type: | SiNGIE Dhjective ¥ Variahle Type: | CONtNUQus %

(Constraint Type: G2naral range (with b andfor ub) v Description:
Ohjective Function Linearity: | linear ¥

Constraint Function Linearity: | linear M Input Size:
Objective Function Differentiahility : | twice differentiable v

Consiraint Funetion Differentiability : | Wwice difierentiable v putputsize:

[Parameter Type: real O stm’go random O domness: detemministic @ stochastic O

coefficients only ~
statistic functions Optimization Services simulation L {O8sL)
probability functions for simvulation input and swiput format:

[Nonlinear OperatorFunction Type: | CONstaint logicfunclions v

Special Siructures: | SEMidefinite program =
dhynarmic programming
Special Algorithms: |Jl0b&l optimization v

Service Access

Accese Type: commercial D ftee ancess free reqult License Type: required I:l Lirense Description:

Limit: max # variables max # binary variables max # integer varighles max # constraints max # chjectives

Software Option Publication:
Optimization Services option L

{050L) for software options and their default values

h link should be of the form: =link uri="... "=description=links=, & z. <livk wi="http S optindzationservices orgfindex html"=Optimization Services</link=]

Beferences: Oiher se: Oiher links:

Figure 8-2: Optimization Services registration form.

238

Notice the 6 main categories are circled in the figure: service information, owner information,
optimization (or simulation) type, service access, service options (e.g. algorithm directives) and
links to other places. When the registrant clicks the submit button, the entered data is organized
into an OSeL file and sent to the OS registry using the communication specified by the OSjL
(Optimization Services join Language, §8.5) WSDL document.

An OSeL XML example of a hypothetical “Impact” GMIP solver service looks like the
following, with the 6 major categories highlighted:

<?xml version="1.0" encoding="UTF-8"?>

<0SelL xmins="o0s.optimizationservices.org" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSeL.xsd">
<service>
<uri>http://www.impactservice.net/impactGMIP.jws</uri>
<name>Impact Generalized Mixed Integer Solver</name>
<category>solver</category>
<type>education</type>
<publicationDate>2005-04-06</publicationDate>
<abstract>Generalized mixed integer nonlinear convex solver</abstract>
<description>
<general>ImpactGMIP is a generalized mixed integer nonlinear convex solver</general>
<software>Impact </software>
<hardware>Pentium Intel 4, Dell, Linux Enterprise </hardware>
<algorithm>natural heuristic way of geenerating braching hyperplanes</algorithm>
<other>developer: Wayne Sheng</other></description>
<webPage>http://www.impactservice.net/impactGMIP.html</webPage>
<wsdlLocation>http://www.impactservice.net/impactGMIP.jws?wsdl</wsdILocation>
<logolmagelLink uri="http://www.impactservice.net/images/impactGMIP.jpeg">impact
GMIP</logolmageLink>
<keyWords><key>mixed integer nonlinear programming</key><key>Interior Point
Methods</key></keyWords>
</service>
<owner>
<name>Impact</name>
<primaryType>education</primaryType>
<mainWebPage uri="http://www.impactservice.net">Impact</mainWebPage>
<description>Impact is for Inegrated Math Programming Advanced Computational Tool</description>
<logolmagelLink uri="http://www.impactservice.net/images/impact.jpeg">Impact</logolmageLink>
<contact>
<name>Sanjay Mehrotra</name><title>Professor</titie>
<address>IEMS, Northwestern University, 2145 North Sheridan Road, Evanston, IL 60208-3119
</address>
<phone>8474913155</phone><fax>8474918005</fax><email>mehrotra@iems.northwestern.edu
</email>
<webPage uri="http://users.iems.nwu.edu/~mehrotra/">Mehrotra's Web page</webPage>
</contact>
</owner>
<optimizationType>
<objective Type>singleObjective</objectiveType>
<variableType>mixedInteger</variable Type>
<constraintType>generalRange</constraintType>
<linearity><objective>convexNonlinear</objective>
<constraints>convexNonlinear</constraints></linearity>
<differentiability>
<objective>twiceDifferentiable</objective>
<constraints>twiceDifferentiable </constraints></differentiability>
<parameterType><real/></parameterType>

239

<functionType><general/></functionType>
<specialStructure/>
<specialAlgorithm/>
</optimizationType>
<serviceAccess commercial="false" freeAccess="true" freeResult="true">
<licenseType licenselDRequired="false"/>
<limit><maxVariables>1000000</maxVariables>
<maxBinaryVariables>1000</maxBinaryVariables>
<maxIntegerVariables>500</maxIntegerVariables>
<maxConstraints>1000000</maxConstraints><maxObjectives>1</maxObjectives>
</limit>
</serviceAccess>
<serviceOptionsAndDefaultValues>
<general serviceName="Impact Generalized Mixed Integer Solver"
serviceAddress="http://www.impactservice.net/impactGMIP jws">
<maximumTime value="6000"/>
</general>
<other optionName="preprocess" value="true">preprocessing before solving it</other>
<other optionName="arbitraryPreciseness" value="false">Algorithm based on arbitrary precise
numbers</other>
</serviceOptionsAndDefaultValues>
<links>
<people>
<link uri="http://users.iems.nwu.edu/~maj/">Jun Ma</link>
<link uri="mailto://h-sheng@northwestern.edu">Wayne Sheng</link>
</people>
<references><link uri="http://www.optimizationservices.org">Optimization Services</link></references>
<otherServices><link uri="http://www.impactservice.net/impactLP.jws">Impact
LP</link></otherServices>
</links>

</OSelL>

The OSeL schema of the example and its 6 children are shown in Figure 8-3.

i e

service | [menats | |

[l
e 1
owner |

ErEie N — == |
L :

linearity [

optimizatior

i

(0seL B3

differentiability =}

serviceAccess -|

H serviceAccess [H ! = |

i' e ol
links

vpe |

—h)rimaryTy]Je :
—FmainWel)Page |

Figure 8-3: <OSeL> root element in OSeL and it 6 main category elements.

The 6 major “category” elements are listed around the <OSeL> element schema in the figure.
The <service> element gives the information about the registered Optimization Service.
Each OSeL document is identified by a unique uri, the first child element of <service>;
this is where the service should be invoked. <owner> provides information about the people
or companies who register the service. The <optimizationType> (or
<simulationType>) element provides optimization (or simulation) related descriptions.
Notice OSeL does not categorize an optimization solver by a specific type; rather it breaks
down the type into several subtypes that include objectiveType, variableType,
constraintType, linearity, parameterType, functionType,
specialStructure, and specialAlgorithm. OSeL does not intend to combine the
various sub-types into a specific type (e.g. mixed integer, linear, deterministic solver). As each
subtype contains many values, the number of combinations can be extremely large and leads to
poor scalability in practice. The <simulationType> element is relatively simple, and

contains information about a simulation’s input and output size and format (in OSsL, §6.7) and

241

whether it is deterministic or stochastic. The <serviceAccess> element contains
information about whether the service is commercial, whether it is free to access, and whether
the result is free to retrieve. It also contains the limits (if any) of using the service in terms of
the problem size (e.g. maximum variable number). The
<serviceOptionsAndDefaultValues> element lets the service registrant list the
software options and default values in Optimization Services option Language (OSoL, §6.5).

The <1inks> element allows linking to relevant people, references and other services.

8.2 Optimization Services process Language (OSpL, representation)

The OSpL schema is located at http://www.optimizationservices.org/schemas/OSpL.xsd.
Besides static OSeL entity information, the Optimization Services registry also keeps dynamic
process information (such as number of jobs being solved) using Optimization Services process
Language. Unlike the OSeL information that is submitted at registration, OSpL information is
collected at run time. During runtime, the Optimization Services registry periodically “knocks”
on the registered services (Optimization Services knock Language, §8.6) to make sure they are
live and running and to collect the OSpL information. It is also possible that the services
themselves push the OSpL information to the OS registry.

The decentralized Optimization Services system leaves open the question of how
optimization “jobs” are scheduled to run on available solver services. Centralized schemes,
such as that used by the NEOS server, may maintain one queue for each solver/format
combination, along with a list of the workstations on which each solver can run. In
Optimization Services, we want to maintain this scheduling control, while at the same time
making the scheduling decisions more distributed. Optimization Services process Language can
play an important role in dynamic optimization scheduling in a decentralized environment.

An OSpL example of the “Impact” GMIP solver service looks like the following:
<?xml version="1.0" encoding="UTF-8"?>

<OSpL xmins="o0s.optimizationservices.org" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSpL.xsd">
<serviceURI>http://www.impactservice.net/impactGMIP jws</serviceURI>
<serviceName>Impact Generalized Mixed Integer Solver</serviceName>
<time>2004-04-17T15:50:04Z</time>
<status busy="true" accepting="true">The server is currently busy but can still accept new jobs</status>
<statistics>
<totalJobs>3</totalJobs>
<timeLastJobSolved>2004-04-17T15:32:12Z</timeLastJobSolved>
<timeLastJobTaken>13.5</timeLastJobTaken>
</statistics>

</OSpL>

242

The OSpL schema of the example and its 6 children are shown in Figure 8-4.

= servicellame

B

FtotalJobs

“timeLastJobSolved

“timeLastJobTaken

Figure 8-4: <OSpL> root element in OSpL.

In an <OSpL> element, <serviceURI> and <serviceName> should be the same as
those listed in the registry. As OSpL is about dynamic information, the <t ime> element shows
how recent the process information is. The time should be of the XML schema xs :date
format. We require using the standard UTC time (Coordinated Universal Time, or sometimes
called “Greenwich Mean Time”) as services can be distributed all over the world. In the above
“Impact” example (2004-04-17T15:50:042), we append the letter “Z” at the end according to
the xs : date format to show that the time is UTC time. The <status> element has two
boolean attributes, busy and accepting. In the above example, although the Impact solver
service is busy, the service still accepts new optimization jobs. Currently the <statistics>
element contains three children, <totalJobs>, <timeLastJobSolved> and
<timeLastJobTaken>. The <totalJobs> element is the total number of jobs currently
at the service that are being solved or waiting to be solved. timeLastJobSolved is the time
the last job is solved, again using UTC time in the xs : date format. timeLastJobTaken is
the time in minutes the last job took. The OS registry collects the status and statistics
information for various purposes such as service benchmarking, better scheduling and future

research.

8.3 Optimization Services benchmark Language (OSbL,

representation)
The OSbL schema is located at http://www.optimizationservices.org/schemas/OSbL.xsd.
OSbL is a specification of benchmark information on each optimization service. OSbL is the

third and last piece of information (along with OSeL and OSpL in the previous two sections)

243

that the OS registry keeps. The OS registry publishes all the three pieces of information on its
corresponding Web site.

The availability of more than one service (especially solvers) for many classes of problems
makes the OS registry an obvious choice as a benchmarking facility. It can potentially be useful
both in choosing a solver for a particular application and in comparing solvers generally. One
certain thing is that the benchmarking should be independent of any claims or statistics made
by individual service providers.

There are significant barriers to achieving these potentials, however, which motivate some
derived research. Someone who has developed a new model, but who is not sure which of the
several applicable solver services to apply, is often advised that the only way to be sure is to
carry out some test runs on typical problem instances. The straightforward way to do this is to
send several test instances to each candidate solver service. But benchmarking on only a few
related instances can be misleading. Furthermore, if different services are not on comparable
machines under comparable conditions, the results may say little about the relative efficiency of
the solver algorithms. The results may say more about the reliability of the solver services, but
even so they may be distorted by differences in the memory available on the workstations
devoted to different solver services, or by differences in limits imposed by the providers of
services. There is not necessarily any obvious way to compensate for the differences between
runs, moreover, because in general each solver service may be selected by the OS registry
according to the load at the time a job is submitted. Deciding on an appropriate benchmarking
methodology is related to other concurrent researches at NEOS; see [30] [31] and the NEOS
benchmark solver at:

http://www-neos.mcs.anl.gov/neos/solverss MULTI:BENCHMARK-AMPL/
The Performance World Forum from GAMS World at

http://www.gamsworld.org/performance/ is also good site for discussion and dissemination of

information and tools about all aspects of performance testing of solvers for mathematical
programming problems. Possible collaboration on Optimization Services benchmarking can be
established with these concurrent project.

For all the aforementioned issues, OSbL uses a relatively safe rating system based on a set

of performance scores on the base of 100 as shown in the OSbL schema in Figure 8-5.

= serviceURI

- servicelame

—E
Cseores B-(

1T

expertAssessment |

—{ userAssessment |

= computation

= software
= reputation

~popularity

- .
- averageJobs !
]

L {EaverageWai'tTime

Cowtes B o 1

Figure 8-5: <OSbL> root element in OSbL.

244

In an <OSbL> element, <serviceURI> and <serviceName> should be the same as

those listed in the registry. There is a general <comment> given by the OS registry for extra

explanation. Besides the first <overall> child score element, the <scores> element also

contains scores on a set of sub-criteria, such as software, hardware, and support. Besides the

scores, the <statistics> element is for extra references; the data on averageJobs and

averageWaitTime are based on the totalJobs, timeLastJobSolved and
timeLastJobTaken data in the OSpL information (Figure 8-4). An example of the

“Impact” solver service is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<OSbL xmlins="o0s.optimizationservices.org" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemal.ocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSbL.xsd">

<serviceURI>http://www.impactservice.net/impactGMIP jws</serviceURI>
<serviceName>Impact Generalized Mixed Integer Solver</serviceName>

<comment>An outstanding solver service!</comment>

<scores>
<overall>90</overall>

245

<expertAssessment>100</expertAssessment>
<userAssessment>95</userAssessment>
<service>85</service>
<owner>100</owner>
<computation>100</computation>
<hardware>50</hardware>
<software>100</software>
<reputation>95</reputation>
<popularity>75</popularity>
<support>83</support>

</scores>

<statistics>
<averageJobs>1.34</averageJobs>
<averageWaitTime>1.5</averageWaitTime>

</statistics>

</OSbL>

8.4 Optimization Services yellow-page Language (OSyL,
representation)

The OSyL schema is located at http://www.optimizationservices.org/schemas/OSyL.xsd.
At the core of our Optimization Services registry is a database, and we use a more expressive
XML-based native database as versus a relational database. The organization of the native
XML database is specified by Optimization Services yellow-page Language (OSyL).

One immediate benefit of using a native XML database is that we do not have to worry
about mapping XML to some other data structure. We just insert the data (e.g. OSeL) as XML
and retrieve it as XML. We also gain a lot of flexibility through the semi-structured nature of
XML and the schema independent model used by all of the XML-enabled database engines.
Most of the native XML databases are also open source and of production quality. The OS
registry, by its nature as storage for registered Optimization Services, is much smaller
compared with large enterprise databases used in daily production and operations, therefore a
native XML database should fit the OS registry both in terms effectiveness and efficiency.

Another main advantage is that the database information of the OS registry, i.e. the OSyL
file, can easily be made open and published on the OS registry’s Web site for public reference.
Since the OSyL file is in XML, the client can use the standard XQuery language discussed in
§4.4 to retrieve any information, specifically the location of a desired service. Using XQuery to
query the database is a built-in function in the Optimization Services query Language (OSqL,
§8.7). For more overview of XML databases, see [6][36].

With the information of OSeL, OSpL, and OSbL discussed in the previous three sections,
the schema of OSyL looks extremely simple as shown in Figure 8-6. After the first

<description> element for a general database description and the second <news> element for

246

latest OS registry database news, OSyL is then a sequence of [0SeL, OSpL, OSbL] triplets,
with each triplet corresponding to a service. OSeL (entity, required) is submitted at
registration time; OSpL (process, optional) is collected at run time, and (OSbL, optional) is

inserted after benchmarking by the OS registry or its designated benchmarker.

description
| news EH~——F{et |

=

1.0

|— 1;L_ _i

service [
—|

1.0

|'___|

Figure 8-6: <OSyL> root element in OSyL.

A rough sketch of the OSyL is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<l--Sample XML file generated by XMLSPY v2004 rel. 3 U (http://www.xmlspy.com)-->
<OSyL xmIns="os.optimizationservices.org" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="o0s.optimizationservices.org http://www.optimizationservices.org/schemas/OSyL.xsd">
<description>
OS registry is a native XML data base.
It contains a sequence of service, each consisting of a triplet (OSeL, OSpL, OSbL).
</description> o
<news> beginning
<el date="2005-04-06">Impact Generalized Mixed Integer Solver joins the OS registry</el>
<el date="2005-03-29">Ziena Knitro Service joins the OS registry</el>
<el date="2005-02-27">Lindo MINLP Service joins the OS registry</el>
</news>
<service>
<0OSelL>
<service>
<uri>http://www.impactservice.net/impactGMIP.jws</uri>
<name>Impact Generalized Mixed Integer Solver</name>

</service> services
</OSel>

247
<OSplL>... </OSpL>
<OSbL> ...</OSbL>
</service>
<service>
<0Sel> ...</OSelL>
<OSpL> ... </OSpL>
<OSbL> ... </OSbL>
</service>
<service>
<0SelL> ...</OSelL>
<OSpL> ... </OSpL>
<OSbL> ... </OSbL>
</service>
</OSyL>
8.5 Optimization Services join Language (OSjL, communication)

The OSjL document is located at http://www.optimizationservices.org/wsdl/OSjL.wsdl.
OSjL is a WSDL description of how an optimization service can join the OS registry. As
described from §8.1 to §8.3, there are three pieces of information the OS registry keeps. But
service providers only need the OSeL (entity) information to join the OS registry. The OSpL
(process) information and the OSbL (benchmark) information are collected later.

But as discussed in §8.1, to register a service, the registrant usually goes to the
Optimization Services registry Web site to fill out the form as shown in Figure 8-2. When the
registrant clicks the submit button, the entered information is automatically organized into an
OSelL file and sent to the OS registry using the communication specified by the OSjL WSDL
document. The registrant can also directly submit the OSeL using the OSjL communication.

To make the join communication, both the client registrant and the OS registry have to
follow the rules (operations, protocols, etc.) specified in the OSJL.wsdl document. The
communication is just like the communication between a modeler and a solver using the OShL
WSDL document discussed in §7.1. The OS registry is just another Optimization Service based
on Web services and the SOAP protocol. It is hosted by an OS Server in the same way that all
other OS services are hosted by their individual OS servers. So the underlying networking
process includes the similar four client steps (encoding, SOAP envelope construction,
sending/receiving, and decoding) and the similar 4 server side steps (decoding, invoking,
encoding, and returning), as detailed in the OShL and OSsL sections in Chapter 7.

Figure 8-7 shows the interface part of the OSjL WSDL document. The other part (protocol) of
the WSDL document, like all other OSxLL. WSDL documents, uses the same specifications as

OShL shown in Figure 7-3; the reason is explained in the beginning of Chapter 7 and also in

248

the OShL section (§7.1). Briefly the networking protocol has to be “SOAP over HTTP” with an
RPC style call; the input and output encoding has to be the standard SOAP encoding. The

service address of the OS registry is shown at the beginning of this chapter.

=7xml wersion="1 0" encoding="UTF-5"7=
=wezdl defintions xmins="hitp: fzchemas xmlzoap orgiesdl™ xmins os="http: Seewewe optimizationservices org”
wimnins: zoapenc="hitp: fzchemas xmizoap.orgizoapencoding” xminswadi="http: fzchemas xmlzoap orghsdlr
wminzwwedlzoap="http: Fzchemas xmlizoap orghwsdlizoaps mins xsd="htp M e 3 orgi2001 KL Schema'
targethlamespace="http: hoewewy optimizationservices org"=
=meszage name="joinReguest"=
=part name="ozel" type="xsd: string" = Operations
=imessages —... =
dmessagge name="jpinResponze"= pn M S
) —-BE4 Input ozjoinfequest
=part name="ostl" type="xsd: string"r- .
part: ozel #ed:sting

=lmessages e
=portType name="OptimizationRegistryService"= =B Output: osjoinFesponse
zoperation name="join" parameterOrder="osel"= part: ostl xsd:sting

=input name="jpinRequest" message="os:joinReqguest"r=
=output name="joinResponze" message="oz joinResponze"i=
=ioperation=
=ihortTypes=

=hinding name="OptimizationRegistryServiceSoapBinding” type="oz: OptimizationRegistryService"=
=l--All operation binding same az OShL wadl--=

=shinding=

=zervice name="OptimizationRegistryService"=
=piort name="0ptimizationRedistryService” binding="oz:OptimizationRegistryServiceSoapBinding"=

=wadlzoap address location="http: feewewy optimizationservices orgiosiOSRegistry Service jws"i=

=iport=

=fzervices

=i zdl defintions=

Figure 8-7: Illustration of OSjL (interface part); other parts are the same as OShL in Figure 7-3.

The <wsdl:portType> element in Figure 8-7 has only one operation whose name is
join. The join operation’s input is required to be of message type “joinRequest” and its
output is required to be of message type “joinResponse.” The joinRequest message
has one part element (i.e. one argument), osel, which is of string types. Simply put, the
WSDL document in Figure 8-7 specifies the following single operation:

String join(String osel);
that is, the OS registry service has a method called “join” that takes one input string and
returns one string. The input string has to follow the OSeL schema (§8.1). The output string has
to follow the OStL schema (§6.8), which is a transformation style sheet returned by the OS
registry. If a service is registered in the OS registry and the service provider also wants to
publish the standard service entity information (OSeL) on his own Web site, it is required that

he publishes the information using the OStL style sheet for uniform look and feel on the OS

249

network. In Table 8-1, we list the operations specified in the OSjL WSDL document (currently

only one).
Operation Description
String join (String) 1™ input is an OSeL instance for service entity information.
Output is an OStL style sheet for individual publication.

Table 8-1: Operations in OSjL (currently only one).

The OS]jL process is exactly what happens when the registrant clicks the submit button of
Figure 8-2. The OSeL information, however, may not be immediately published by the OS
registry, as the joining process may involve manual processes, such as human review and

approval for quality assurance.

8.6 Optimization Services knock Language (OSKL, communication)

The OSKL document is located at http://www.optimizationservices.org/wsdl/OSkL.wsdl.
OSKkL is a WSDL description of how the OSpL (process) information (§8.2) is collected at run
time by the OS registry. When the OS registry “knocks” on an Optimization Service, the
Optimization Service is required to respond with the current run time process information.

To make the knock communication, both the client (the OS registry) and the service
(usually a solver service) have to follow the rules specified in the OSkL.wsdl document. The
communication is just like the communication between a modeler and a solver using the OShL
WSDL document discussed in §7.1 and any other OSxL client-service style communication on
an OS network, with the same underlying networking process described in the previous
sections and chapters.

Figure 8-8 shows the interface part of the OSKL WSDL document. The other part
(protocol) of the WSDL document, like all other OSxL. WSDL documents, uses the same
specifications as OShL shown in Figure 7-3; the service address of the OS registry should be
empty.

250

=7xml wergion="1.0" encoding="UTF-8"¢=

=wyzdl definitions xmins="Htp: fzchemas xmlzoap orghyzdl™ <mins os="http: Maewesy optimizationservices org"
wimins zoapenc="hitp: Mzchemas xmizoap.orgizoapencoding? <minsswsdi="http: fzchemas xmlsoap.orghsdlr
wming wwsdlzoap="http: Fschemas xmizoap.orghysdlisoaps <minsxed="http Moy a3 orgi2001 HMLSchema”

largethlamespace="http: ihvewewe optimizationservices .org"» Dperatiuns
=message name="knockRegueast"i= =
=meszage name="knockResponze"= = - w
=part name="ozpl" type="xsd: string" /= g Input: os:knockRequest
=imessages - Output; oz knockResponze
=portType name="0ptimizationSolverService"= part: ozpl #ed: gtring

=aperation name="knock"=
=input name="knockReguest" message="os:knockRequest"’=
=output name="knockResponse" message="os:knockResponse'’=
=loperation=
=iportTypes=
=hinding name="CptimizationSalverServiceSoapBinding” type="oz: Optimization=olverservice"=
=l--All operation binding same as OShL wsdl--=
=hinding=
=zervice name="CptimizationSolverService" =
=My zdl defintions=

Figure 8-8: Illustration of OSKL (interface part); other parts are the same as OShL in Figure 7-3.

The <wsdl:portType> element in Figure 8-8 has only one operation whose name is
knock. The knock operation’s input is required to be of message type “knockRequest”
and its output is required to be of message type “knockResponse.” The knockRequest
message does not have any part (no arguments). Simply put, the WSDL document in Figure 8-8
specifies the following single operation:

String knock () ;

that is, all the services are required to implement a method called “knock” that takes no
arguments and returns one string. The output string has to follow the OSpL schema (§8.2).
When a client agent “knocks” on a service, the service is required to return the current process
information. In Table 8-2, we list the operations specified in the OSkL WSDL document

(currently only one).

Operation Description

String knock () No input.
Output is an OSpL string for process information.

Table 8-2: Operations in OSKL (currently only one).

So a solver or analyzer service should not only implement all the methods required by
OShL (§7.1), such as String solve(String osil) and
retrieveResult (String JjobID), but also add the extra method String knock ()
required by OSKL.

251

8.7 Optimization Services query Language (OSqL, representation)

The OSqL schema is located at http://www.optimizationservices.org/schemas/OSqL.xsd.
OSqL is a specification of the query language format used to discover the optimization services
in the OS registry. The OS registry returns the locations of the solvers that match the OSqL
query in OSuL (Optimization Services uri Language, §8.8).

In the OS registry implementation, an OSqL query is converted to an XQuery (§4.4) that is
executed against the XML database (OSyL, §8.4) in the registry. The OSyL based XML
database is open and published on the OS registry’s Web site for public references. Since the
OSyL file is in XML, the client can directly use the XQuery language to retrieve any
information. Using XQuery language to query the database is a built-in feature of OSqL. The
second feature OSqL provides is support for Optimization Services analysis Language (OSaL,
§6.6). If the query client has already had an OS analyzer analyze the problem instance and
obtained the analysis result in OSaL, the client can embed the OSaL in the OSqL instance and
the OS registry will try its best in trying to find the most appropriate solver services. The third
feature OSqL provides is some predefined standard information structured according to the
entity information (OSeL, §8.1), process information §8.2) and benchmark information (§8.3).

The OSqL schema is shown in Figure 8-9.

252

————

entity |

SR |

|' =i
process |

T s P
-=+ standard E]—E:EF-!—--I process | = |
| A SR e e T e e |-

———————y]

benchmark |

i --<4 benchmark = = |
, L
:

Gan (e

no sequerice
imposed

Figure 8-9: <OSqL> root element in OSqL and descriptions of its immediate children.

The three children (<standard>, <analysis>, and <XQuery>) of <OSqL>
correspond to the three ways of query discussed above and they can be mixed with each other.
The following is an example using XQuery to discover the URIs of solver services that solve

optimization problems with convex nonlinear objective functions:

<?xml version="1.0" encoding="UTF-8"?>
<OS8qL xmlIns="os.optimizationservices.org" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="o0s.optimizationservices.org http://www.optimizationservices.org/schemas/OSpL.xsd">
<XQuery>
for $a in OSeL where $a/optimizationType/linearity/objective = 'convexNonlinear' return $a/service/uri
</XQuery>
</OSqlL>

The next example mixes the above XQuery with an OSaL analysis element:

253

<OSqL xmlIns="os.optimizationservices.org" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSpL.xsd">
<XQuery>
for $a in OSeL where $a/optimizationType/linearity/objective = 'convexNonlinear' return $a/service/uri
</XQuery>
<0OSalL>
<programDescription>
<numberObjectives num="1">
<linear num="0"/>
<quadratic num="0"/>
<nonlinear num="1"/>
<networkAndGraphProblem num="0"/>
</numberObjectives>
<numberConstraints num="12">
<linear num="4">
<equality num="1"/>
<inequality num="1"/>
<range num="2"/>
</linear>
<quadratic num="8">
<equality num="0"/>
<inequality num="0"/>
<range num="0"/>
</quadratic>
<nonlinear num="8">
<equality num="3"/>
<inequality num="4"/>
<range num="1"/>
</nonlinear>
</numberConstraints>
<numberVariables num="12">
<continuous num="3"/>
<integer num="9"/>
<binary num="0"/>
<string num="0"/>
</numberVariables>
</programDescription>
<programDataAnalysis> . . . </programDataAnalysis>
</OSalL>
</OSqL>

Since there are some nonlinear constraints and some integer variables in <analysis>, the OS
registry will likely find a mixed integer nonlinear solver’s location for the client.

The third feature OSqL provides is some predefined query structures under the
<standard> child. As can be seen in Figure 8-9, the <standard> element contains three
elements, <entity>, <process>, and <benchmark>. Each element schema is listed in
the same figure as the <OSgL> element. Compare them with the OSeL (Figure 8-3), OSpL
(Figure 8-4) and OSbL (Figure 8-4) schemas. They are very similar; basically the predefined
elements under <entity>, <process>, and <benchmark> are a subset of those in OSeL,
OSpL, and OSbL with some modifications.

For example the following example mixes the above XQuery with the <standard>
element to find a service that contains the keyword “interior point methods” and “convex

programming” and whose variable type is “mixedInteger.”

254

<OSqL xmIns="os.optimizationservices.org" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSpL.xsd">

<standard>
<entity>
<service>
<keyWords><key=>interior point method</key><key>convex programming</key></keyWords>
</service>
<optimizationType>
<variableType>mixedInteger</variable Type>
</optimizationType>
</entity>
</standard>
<XQuery>
for $a in OSeL where $a/optimizationType/linearity/objective = 'convexNonlinear' return $a/service/uri
</XQuery>
</OSqL>

However the elements under <entity>, <process>, and <benchmark> are not
without modifications from those in OSeL, OSpL, and OSbL. For example, the “relation”

attribute is added on several elements to define matching types. For numeric data, the relation

LIS

can be “geq”, “leq”, or “eq.” For string data (especially long ones like descriptions), the relation
can be “contains” or “same.” For example the following example finds all the services whose
publication date are before (relation="1eq”) 2005-03-14 and whose abstract contains

(relation="contains”) each of the three words “interior point method.”

<OSqL xmlIns="os.optimizationservices.org" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemal.ocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSpL.xsd">

<standard>
<service>
<publicationDate relation="leq">2005-03-14</publicationDate>
<abstract relation="contains"> interior point method</publicationDate>
</service>
</standard>
</OSqL>

8.8 Optimization Services uri Language (OSuL, representation)

The OSuL schema is located at http://www.optimizationservices.org/schemas/OSuL.xsd.
OSulL is a specification of the discovery result (in URI) sent back from the OS registry. OSuL.
is the opposite of the OSqL query (§8.7) in the discovery process. Based on the OSqL instance,
the OS registry returns the locations of the services that match the query.

The OSuL schema is shown in Figure 8-10 .

255

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="os.optimizationservices.org" xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmins="os.optimizationservices.org"
elementFormDefault="qualified">
<xs:element name="0OSuL" type="OSuL"/>
<xs:complexType name="OSulL">
<xs:sequence>
<xs:element name="uri" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="match" use="optional" default="exact">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="exact"/>
<xs:enumeration value="moregeneral"/>
<xs:enumeration value="approximate"/>
<xs:enumeration value="guess"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:schema>

Figure 8-10: <OSuL> root element in OSpL.

<0OSulL> is simply a sequence of 0 (if no matches) or more <uri> children. Each <uri>
has an optional ma tch attribute and by default it is an “exact” match of the services. The OS
registry may return service locations of other match types such as “moreGeneral,”
“approximate,” and “guess.” An example of the “moreGeneral” case is a nonlinear
solver service for a linear program. An example of the “approximate” case is a convex
nonlinear solver service for an almost convex nonlinear program. An example of the “quess”
case is when there is not enough information in OSqL. In general the OS registry returns the
URI locations ordered by fitness, with the best and exact matches in the beginning. An example

of the OSuL discovery result may look like the following:

<?xml version="1.0" encoding="UTF-8"?>

<OSuL xmIns="os.optimizationservices.org" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSulL.xsd">
<uri>http://www.abc.com/Ipsolver.jws</uri>
<uri match="exact">http://www.edf.net/Ipsolverservice.vb</uri>
<uri match="moreGeneral">http://www.ghij.org/mpservice.cs</uri>
<uri match="approximate">http://www.klmn.gov/os/nlpsolver.jws</uri>
<uri match="guess">http://www.klmn.gov/os/minlpsolver.py</uri>
</OSuL>

256
8.9 Optimization Services discover Language (OSdL,

communication)

The OSdL document is located at http://www.optimizationservices.org/wsdl/OSdL.wsdl.
OSdL is a WSDL description of how a client sends the OSqL (query) information (§8.7) to the
OS registry and discovers matched registered Optimization Services.

To make the discover communication, both the client and the OS registry have to follow
the rules specified in the 0SdL.wsd1l document. The communication is just like any other
OSxL client-service style communication on an OS network, with the same underlying
networking process described in the previous sections and chapters.

Figure 8-11 shows the interface part of the OSdL. WSDL document. The other part (protocol)
of the WSDL document, like all other OSxL WSDL documents, uses the same specifications as
OShL shown in Figure 7-3. The service address of the OS registry is shown at the beginning of
this chapter.

=7xml werzion="1.0" encoding="UTF-2"¢=

=wesdldefintions xminz="Http: Yachemas xmlizoap.orgfvsdl <mins oz="http: Meewewe optimizationservices org"”
wimins zoapenc="hitp: Mzchemas xmizoap orgizoapiencoding =minzwesdl="http: Szchemas xmlsoap.orgfesdlr
wimins wedlzoap="http: Fzchemas xmizoap orgivsdlizoaps <minz xsd="rttp: M w3 orgl2001 HMLSchema"
targetMamespace="http: Moewewe optimizationzervices arg™=

=meszage name="dizcoverRequest"= Operations
=part name="osql" type="xsd: string'""= = : E

=lmessage=) - B4 Input; oz discoverReguest
=meszage name="discoverResponse"=) .
=patt name="dizcoverReturn" type="x=zd string"i= part: osql Hgd.stnng
=fmessages =B Output: ox:dizcoverResponze
=porType name="OptimzationRegistryServices part: discoverRetum xed: sting
=operation name="discover" parameterCrder="osgl"=
zinput name="dizcoverRequest" message="os: dizcoverRequest"i=
zoutput name="dizcoverResponse" meszage="oz: discoverResponse"l=
=foperation=
ot Types=
=hinding name="0ptimizationRegistryServiceSoapBinding” type="o0z: OptimizationRegistry Service"=
=l--All operation binding same as OShL wadl--=
=hinding=
=zervice name="0ptimizationRegistryService"=
=pott name="CptimizationRegistryService" binding="o=: OptimizationRegistryServiceSoapBinding=
ayezdlzoap address location="http: faewewe optimizationzervices orgioziOSRegistryService jws"l=
=jfort=
=/zervices
=hwvsdldefinitions=

Figure 8-11: Illustration of OSdL (interface part); other parts are the same as OShL in Figure 7-3.

The <wsdl:portType> element in Figure 8-11 has only one operation whose name is
discover. The discover operation’s input is required to be of message type

“discoverRequest” and its output is required to be of message type

257

“discoverResponse.” The discoverRequest message has one part element (i.e. one
argument), osgl, which is of st ring type. Simply put, the WSDL document in Figure 8-11
specifies the following single operation:

String discover (String osqgl) ;
that is, the OS registry service implements a method called “discover” that takes one input
string and returns one string. The input string has to follow the OSqL schema (§8.7). The
output string has to follow the OSuL schema (§8.8). In Table 8-3, we list the operations
specified in the OSAL WSDL document (currently only one).

Operation Description
String discover (String) 1™ input is an OSqL query instance.
Output is an OSuL for service URI locations.

Table 8-3: Operations in OSdL (currently only one).

8.10 Optimization Services validate Language (OSvL, communication)

The OSvL document is located at http://www.optimizationservices.org/wsdl/OSvL.wsdl.
Besides the “join” (OSjL, §8.5) service for service providers and the “discover” (OSdL, §8.9)
service for service clients, the OS registry also provides a validation service through OSvL for
any client on the OS network. OSvL is a WSDL description of how the OS registry is used to
validate any OSxL instance. The OS registry returns an error message if there is any warning or
error in the OSXL instance submitted. Otherwise it returns a null or empty string.

To make the validate communication, both the client and the OS registry have to follow
the rules specified in the OSvL.wsd1l document. The communication is just like any other
OSxL client-service style communication on an OS network, with the same underlying
networking process described in the previous sections and chapters.

Figure 8-8 shows the interface part of the OSdL WSDL document. The other part (protocol) of
the WSDL document, like all other OSxL WSDL documents, uses the same specifications as
OShL shown in Figure 7-3. The service address of the OS registry is shown at the beginning of
this chapter.

258

=7xml wersion="1 .0" encoding="UTF-3"¢=

=vwsdldefinitions xmins="kttp: Yechemas xmlzoap.orgivsdl <mins os="http: Meewewe optimizationservices org"
ximinz: zoapenc="http: Yzchemas xmlzoap.orgfzoapiencoding” <mins: wadl="http: Yechemas xmlzoap.orgiesdl™
wininz wedlsoap="http: Fzchemas xmizoap orgivsdlizoaps <minz xsd="rttp: Maewes w3 orgl2001 HMLSchema"
targetMamespace="http: Mfoaewewy optimizationservices arg™=

message name="validateReguest"s Operations
=part name="ozlnztance" type="xsd: string" /= - 2
=Imessages —-B4 Input; oz validateR equest

=meszage name="validateResponze"=

) part; ozlnstance xed:sting
=patt name="errorteszage” type="x=d:string"f=

=B Output: os:validateR esponse

=imessages .
=porType name="OptimizationRegistryService™s part: enortessage red sting
=aperation name="validate" parameterorder="osInstance">
=input name="validateRequest" message="os validateRequest"’-
=output name="validateResponze" message="osvalidateResponse"=
=loperation=
=fpot Types

=hinding name="CptimizationRegistryServiceZoapBinding” type="os: OptimizationRegistryService"=
=l--All operation binding same as OShl wadl--=
=hinding=
=zervice name="OptimizationRegistryService"=
=piort name="0ptimizationRegistryService" binding="o=: OptimizationRegistryServiceSoapBinding"=
=wadlzoapaddress location="http: Seewewy optimizationzervices orgfosiOSRegistryService jws"r=
=fport=
=fzervices
=hzdl defintions=
Figure 8-12: Illustration of OSvL (interface part); other parts are the same as OShL in Figure 7-3.
The <wsdl:portType> element in has only one operation whose name is validate.
The validate operation’s input is required to be of message type “validateRequest”
and its output is required to be of message type “validateResponse.” The
validateRequest message has one part element (i.e. one argument), osInstance,
which is of string type. Simply put, the WSDL document in Figure 8-12 specifies the
following single operation:
String validate (String osInstance);
that is, the OS registry service implements a method called “validate” that takes one input
string and returns one string. The input string can be any OSxL instance. The registry can
distinguish the type of the instance from its root element. The output string is an error message
if there is any warning or error in the OSxL instance submitted. Otherwise, the output is a null
or empty string. In Table 8-4, we list the operations specified in the OSvL WSDL document

(currently only one).

Operation Description

String validate (String) 1™ input is any OSXL instance.
Output is a string that contains an error or warning information; the string is
null or empty if there is no error or warning.

Table 8-4: Operations in OSvL (currently only one).

259

Along with the join operation from OSjL and the discover operation OSdL, the validate
operation from OSvL is the third operation offered by the OS registry service.

CHAPTER 9 OPTIMIZATION SERVICES MODELING
LANGUAGE (OSML)

OSmL is a computer modeling language for mathematical optimization. This language
allows mathematical model developers to formulate complex and large-scale optimization
problems in a concise and efficient way. OSmL is based upon the W3C XQuery standard and is
designed to convert raw data in XML format into problem instances that conform to the
Optimization Services instance Language (OSiL) standard. An optimization instance
represented in OSiL can be solved with any standard solver that is Optimization Services
compatible. Thus, OSmL is particularly well suited for optimization over distributed systems.
OSmL is an Optimization Services project designed to facilitate the adoption of Optimization
Services.

In this chapter we briefly describe the motivations behind designing the OSmL modeling
language. We list four paradigms of combining XML with optimization modeling. The OSmL
approach is the fourth paradigm. It takes raw data files in XML format and transforms them
using XQuery and XPath (a subset of XQuery since XQuery 2.0) into a single XML OSiL
instance. Notice that OSmL itself is not an XML dialect, but rather a customized
implementation of XQuery. XQuery provides a concise query language and unlike style sheets,
XQuery is not designed to transform the entire structure of an XML document. It is designed to
quickly and efficiently extract chunks of data — much like SQL for relational databases. Unlike
other OSxL languages, OSmL is not a low-level instance language. OSmL is a high-level user
friendly modeling language.

An advantage of the OSmL approach is that people can easily share and reuse OSmL
models regardless of computing platform. All of the required software is open source and
available on all major platforms. Also, this is the natural way to work with XML data, which is
becoming an increasingly popular standard for storing and transmitting data. After a brief
introduction, we describe four different paradigms of combining XML with mathematical
programming. At the end of this chapter, we show various features and some examples of the

OSmL modeling language.

9.1 Introduction and Motivation

As discussed in Chapter 4, XML is popular and powerful. Whether in the technical press

or mainstream business press, each day is filled with new articles about XML-related

260

261

technologies. XML is rapidly becoming an accepted format for transferring and storing data.
Currently almost all databases and spreadsheets are xml-enabled. This means that even if the
stored data are not in native XML form, they can at least be exported in XML formats. The
XML output can then be retrieved with the standard XPath and XQuery language (§4.4).

One might argue that mathematical modeling is also about data. Indeed, a mathematical
programming modeling language, and associated solver tools, will not be used unless they are
closely integrated with corporate data. One reason for the success of Excel based solvers is
their close integration with all the existing spreadsheet data.

This creation of the OSmL modeling language is based on two premises. First is the
ubiquity of XML and the existence of tools to easily transform the non-XML data into an XML
format if the data of interest are not in an XML format. Second is the availability of many
powerful open source platform independent tools for taking XML data stored in one format and
transforming it into another XML format (such as XPath, XQuery, XSLT; see Chapter 4). Since
we have already designed a set of XML standards for math program instance representation, we
can use the transformation tools to transform the raw XML data into the XML instance format.
In this respect, the OSmL approach is similar to the work of Atamtiirk et al. [7], where these
authors demonstrate that SQL is sufficient for generating linear programming problem
instances. Earlier, Choobineh [22] developed SQLMP, an SQL based modeling system for
linear programming. Figure 9-1 shows the OSmL GUI with the modified Rosenbrock problem
used throughout this thesis. We illustrate advanced features such as set, indices, loops and other

features in the following sections.

Fil= Run
The Madel] PreParsed Model] Query Resulk] OS5Il Inskance] PostFix Instance] Model Solution]

return S
=mathProgram=
=obj maxOrkdin="min" name="Rosenbrock''=
100% (32 - x 1292 + (1 - =1)2
<fobj=
=constraints=
=Con=
®1 +x2 == 100
=fCon=
=fconstraints=
fmathFrogram=

Figure 9-1: OSmL GUI with an OSmL model of the modified Rosenbrock problem.

9.2 Four Paradigms of Combining XML with Optimization

It is common practice to store data in a relational database system. Two aspects of

commercial relational database systems are 1) the data are stored in multiple tables or relations,

262

and 2) the files containing the data are typically binary files. XML data is 1) stored using a tree
structure, and 2) stored as a text file containing both tags and the data.

There are four paradigms to incorporating XML into mathematical modeling of
optimization problems:

Use XML to represent the instance of a mathematical program
Develop an XML modeling language dialect

Enhance modeling languages with XML features such as XPath

Use XML technologies to transform XML data into a problem instance

PODD =

9.2.1 Use XML to represent the instance of a mathematical program

The Optimization Services instance Language (OSiL, Chapter 6) is an example of the first
paradigm. Besides Optimization Services, several other projects also take this approach
([15][19] [53] [69D).

This approach differs from the rest of the three approaches in that it is incorporating the
XML technologies at the Jow level instances, whereas the rest are positioned at the modeling
language level (Figure 9-2). This approach requires no changes to current mathematical
programming modeling languages. It does require drivers to interface with various solvers and
modeling languages. The native format for representing a problem instance in each modeling
language must be converted to the XML instance. Then the XML instance must be converted to

the native format required by a solver; see §2.3 for more details.

/\ position of
approaches 2-4

Modeling ol 1
Language 1 /{ Sotver
Modeling Solver 2
Language 2 —
C \
Iy position of
Chent GUI M approach 1 Anabvzer N

_/

Figure 9-2: Using XML to represent the instance of a mathematical program (1** approach).

9.2.2 Develop an XML modeling language dialect

263

This approach represents the entire high level mathematical model in XML, by designing
tags for model constructs such as sets, indices, summation, and looping. The only current
research project that takes this approach comprises the Algebraic Markup Language (AML,
[34]) and Optimization Reporting Markup Language (ORML, [35]) by Ezechukwu and Maros.

With this approach, an XML input file contains both raw data and information about the
algebraic structure of the model. For example, sets and indices are defined within the XML
input file. This approach requires the development of a new XML based modeling language
syntax. Although feasible, this approach may require consensus on the syntax of such an XML
dialect. Currently there is a proliferation of various modeling languages and thus it is hard to
get everybody to agree with the XML tags. Moreover, as XML is wordy, this approach leads to
a verbose language. Indeed, one reason the Optimization Services project is only involved in
low-level instance representation, rather than an XML based modeling language, is that the
instance is the lowest common denominator and requires the least amount of agreement.

As AML/ORML is currently the only research project in this area, it is appropriate for us
to quote below the project’s own description and motivation from its Web site [35]:

... So how do you solve the problem [of model representation]. Well the first step is to ensure
that the solution doesn't require any form of support or compliance by vendors. Secondly ensure
that it is an open source initiative or at least is as widely and freely available as possible. Thirdly
and most importantly use established and widely supported software standards such as XML and
XSL.

This is exactly how the framework works. What we have done is taken a typical software
engineering approach to solving this problem. In the first place we invented the Algebraic Modeling
Language (AML) which is an abstract XML based representation of mathematical models.
Secondly we created the Optimization Reporting Markup Language (ORML) which is used to
represent optimization analysis and solution results. Finally we utilize a translation process such as
XSLT (or program constructs) to transform AML and ORML data to target formats. ...

This is basically what we view as a common-sense solution to the problem, because XML
solves the problem of varying formats, and XSL provides a means of converting the XML
representations to the appropriate target format. We have no intention of pushing for a new
standard, as that would only result in a lot more debate, and truth be told vendors of algebraic
modeling systems would probably view the idea with a great deal of hostility (not that we would
blame them for that), because it would obviously affect their marketing strategies. Not to mention
the fact that it may become more difficult to retain customers.

One view of the framework is not so much as a solution to the problem of model
representation but rather as a way to side-step the problem. However we would prefer to view it as
the former. Whichever view you adopt though, the bottom line is that it provides you with a
portable means of representing optimization models. ... There is no need for endless discussions on
standardization, neither is there any need for support from vendors. It is quite simply very easy to
use or plug in.

... Is it a modeling language? Absolutely and categorically not! ... Asking this question would
almost be the same as asking of XML itself is a programming language which very clearly it is not.
... The framework does not come with any modeling system or similar executable and at present, it
isn't actually possible to execute a model in the AML format directly i.e. it has to be ported to a
target/native format by translation in order to be executed. It is purely a representation format. ...

Figure 9-3 shows the sketch of a production planning model written in AML [34].

264

<7xml version="1.0" encoding="windows-1252'7= “objective objectiveld="Profit" target="MAX"=
<aml:optimizationMaodel modelld="ProductionPlanning” <function=
xmins:xsd="http://www.w3.org/ 2001/ XMISchema” “basicFunction=
xmins:aml="http:/www.doc.ic.ac.uk/~oce/elsinore/ 2003/ AML": <lhs=
<sats> “macroCall macrold="GrossRevenues"/=
e s menne e </|hs=
<set setld="clothing" alias="c <operator=-=/operator=
“rths=
</sels> “macroCall macrold="TotalCosts"/>
“parameters: </rths=>
<parameter parameterld="Price"= </basicFunction=
“index setld="product"/> </function=
- /objective=
~/paramelers= “constraints=
wvariables> <constraint constraintld="ProductionCapacity”
<varlable variableld="Produce” valueType—"real"~ comparator="less ThanOrEqualTo"=
<index setld ”[‘I'UdLIR‘l". = <index setld “|“.L‘l'-ll1d"':-
“index setld="period"/> Function=
</variable= <applySetFunction=
<setFunction functionfd="SUM"=
“/variahles= <index setld="produect" /=
“IMACTOS > sszs
=macro macrold="GrossRevenues"s <constraintRhs=

<function=

applySetFunction </constraint=

</macro=>
- </constraints>
</macros= <famloptimizationModel=

Figure 9-3: The sketch of a math programming model written in AML [34].

9.2.3 Enhance modeling languages with XML features such as XPath

Current algebraic modeling languages such AMPL, LINGO, and MPL provide capabilities
for interfacing with relational databases. This is usually done through ODBC [85] drivers that
are database specific. This third approach to using XML technologies is incorporating into
these modeling languages the ability to access data stored in XML format in a manner
analogous to the access of data stored in a relational database. With this approach we are not
suggesting changing the basic syntax of the algebraic modeling language used to represent sets,
loop, perform sums, etc.

We illustrate this approach with a multiproduct dynamic lot sizing model; seeWagner and
Whitin [118]. We assume that the input data for the model is in a single XML file. This
assumption is not necessary; it is made only for ease of exposition. Assume there are two
products with a four period planning horizon and that inventory holding cost, marginal
production cost, and fixed production cost depend on product but not time period. The model is
illustrated in Figure 9-4 and the corresponding XML data are represented in Figure 9-5 and

graphically illustrated in Figure 9-6 . The costs (fixedCost, holdCost, prodCost) are

265

depends on only productID. The demand data are functionally dependent on productID

and periodID. The capacity data are functionally dependent on only periodID.

min E E (('z‘{:.?'it + -;-'i.t .Ir;?z = _Jrityig :l -- minimization of the sum of the production, inventory holding
i £
s.t. E Tig = Qs Wi -- capacity constraint
i
‘I'z',t—l + x5 —]u = dﬁ‘ Vit -- conservation of flow or sources and uses requirement
Ta < My Yi.t -- fixed charge or set forcing constraint
Tt = 0, Y.t -- nonnegative constraint
Sets: it = {(). } Vit -- binary on open or not open of a facility
TIME=1..T
PROD={i}

LINKS = { (i, t) }

Parameters:
ds¢— demand for product ¢ in period ¢
[i— fixed cost associated with production of product 7 in period ¢
l1;:— marginal cost of holding one unit of product i in inventory at the end of period ¢
¢;;— marginal production cost of one unit of product i in period ¢
g+— production capacity available in period ¢
M;— an upper bound on the production of product i in time period ¢
Variables:
23— units of product i produced in period ¢

f:¢— units of product ¢ held in inventory at the end of period ¢

t:¢— @ binary variable which is fixed to | if there is nonzero production of product ¢ in period £, otherwise 00

Figure 9-4: Multiproduct dynamic lot sizing problem.

=7xml version="1 0" encoding="LITF-5"?=
=lotSizelata=
=product productiD="1" holdCost="1" prodCost="7" fixedCost="150"=
=period periodiD="1">
=demancd=G0=rfdemancd=
=fperiod=
=period period|D="2"=
=demand=100=/demanc=
=fperiod=
=period periodD="3"=
=demand=140=/demanc-
=feriod=
=period periodiD="4"=
=demand=200=/demanc=
=eriod=
=fproduct=
=product productiD=
=period period|C:
=demand=40=fdemancd=
=eriod=
=period periodiD="2">
=gemand=60=demancd=
=fperiod=
=period period|D="3"=
=demand=100=/demanc=
=fperiod=
=petiod periodD="4"=
=demand=40=/demand=
=feriod=
=dproduct=
=perindCapacity =
=capacity periodD="1"=200</capacity=
=capacity periodD="2"=200=/capacity=
=capacity periodD="3"=200=}capacity>=
=capacity periodD="4"=200=/capacity=
=heriodCapacity=
=lotSizelatas

" holdCost="2" prodCost="4" fixedCost="100"=

Figure 9-5: Dynamic lot sizing data (lotsizedata.xml)

266

I ZizeData

product node sg

product product

productl D="1" product|D="2"
holdCost="1" kol ogt="2" periodC apacity
prodCost="7" prodc ost="4"

fixedC ost="130" fixedCost="100"

period
period D=1

fperiod]
periodl D=4

period
petiod D=1

period
perodlD=4

frerion]
pefodl D=1 petiodi D=4

capacity Capacity
200 20m

Figure 9-6: Graphic illustration of the lot sizing data in Figure 9-5; two highlighted circles indicate

petiod

demand
B0

the product set.

As discussed in Chapter 4, XPath is used to locate data in an XML database. The function
of XPath is similar to the SELECT command in SQL. However, the syntax of XPath is similar
to the syntax used to locate files in a directory with a tree structure. The typical use of an XPath
command is a location path to locate a set of nodes in a tree. This is called the node-set. The
node-sets is manipulated (e.g. set difference, intersection, union) and used to generate indices.

For example, the location path, /1lotSizeData/product][(1, 2)], onthe XML
data shown in Figure 9-5, locates the node-set { <1 product>, <2™ product>}. XPath is also
used to perform set operations such as union, intersection, and set difference; these provide the
necessary language features to meet the requirements of modeling language design (see §2.2). .

For example, in the LINGO modeling language [74], one might declare a set of time
periods and a capacity for every time period. Denote the set of capacities by CAP. In LINGO,
this set of capacities is populated from an ODBC database in the DATA section. This is
illustrated below:

DATA:

CAP = @ODBC(’'capacitydata’, 'capacity’);
ENDDATA

267

However, if these data were in the XML file illustrated in Figure 9-5 we might instead

incorporate an XPath command in LINGO like:
DATA:

CAP = @XML(/lotSizeData/periodCapacity/capacity);
ENDDATA

A command is also needed to locate the XML file with the data. Developers of algebraic
modeling languages could also add features allowing the software to read and write an XML
instance based on an accepted W3C XML Schema. The following hybrid approaches and
suggestions may also be possible:

1. Making XQuery/XPath work in the same way as ODBC/SQL

2. Supporting the concept of a node set as an alternative to a relational database table

3. Adding XQuery syntax to an algebraic modeling language

A further level of standardization might be to have all algebraic modeling languages use a

common underlying syntax, based upon XQuery/XPath, for database access.

9.2.4 Use XML technologies to transform XML data into a problem instance.

The focus of this chapter and the Optimization Services modeling Language (OSmL) is
this 4™ approach. We show how to use XML technologies to generate math programming
models.

The OSmL approach is to take as input the XML files that contain the problem instance
data and then transform the input data files into an output file that is an instance of a math
program. The most natural way to do this is to use something expressly designed to transform
one XML file into another. OSmL uses XQuery (and XPath, a subset of the XQuery language
2.0) to generate instances from math programs. XQuery provides very powerful algebraic
modeling features, e.g. sets, for loops, if-then, union, intersection, and library modules. These
are already accepted W3C standards and are what makes the OSmL modeling language
symbolic, general, concise and understandable [45].

The output of any OSmL model is an OSiL instance. As long as all modeling languages
use OSIL, a total of only N software drivers are necessary, where N is the number of solvers.
For each of the N solvers, a driver is required to translate the XML data instance into a format
acceptable to the solver API. We illustrate in the next section various features and some

examples of this OSmL approach.

268
9.3 OSmL Features and Examples

9.3.1 Sets, indices and data

The first step in building an algebraic model using a modeling language is to identify the
primitive sets; see [57] for a discussion of sets and indices in mathematical programming
modeling. The primitive sets often correspond to the indices on the decision variables. In the
relational database world these are often attributes that correspond to keys in a relation.
Algebraic modeling languages have commands to create sets. Sets may be either primitive or
derived sets through such operations as Cartesian product or set union. In the dynamic lot
sizing example introduced in §9.2, primitive sets correspond to products and time periods. A
derived set is the Cartesian product of the product and time period sets. Here is an example of

set declarations in LINGO:

SETS:

product /1, 2/;

period /1..4/;

demand (product, period);
ENDSETS

The analogous concept in the XML world is the XPath node-set. Node sets corresponding
to product, period, and demand are:

/lotSizeData/product
/lotSizeData/periodCapacity/capacity[@periodID]
/lotSizeData/product/period/demand

In an algebraic modeling language, once the sets are identified, parameters and variables

are associated with the sets and referenced by indices. For example, considering only

parameters, in the lot sizing example we have in LINGO:

SETS:

product /1, 2/: holdCost, prodCost, fixedCost;
period /1..4/: capacity;

prodperiod (product, period): demand;

ENDSETS

For example, holdCost (1) is the holding cost of the first product. The holding cost node-set
is referenced in XPath by:

| lotSizeDatal product/ @ol dCost

The position() function in XPath is then used as an index. For example, the holding cost of the

first product is:

/lotSizeData/product[position()=1]/@holdCost

or, if we define Sproduct = /lotSizeData/product, we can write:
Sproduct [position()=1]/@holdCost

Similarly, the demand for product 2 in periods 3 and 4 is given by:

269

/lotSizeData/product[position()=2]/period[position()>2]/demand
or, in terms of $product, we can write:
Sproduct [position()=2]/period[position()>2]/demand

One advantage of nesting time period nodes within product nodes (Figure 9-5) over a more
traditional tabular approach is that we can use the position function to easily index both the
product and time periods. An important aspect of this approach is that we are using the input
XML for data only; the input files do not contain any information about constraints or variables.
The input XML files need only contain all of the model sets and parameters (or sufficient

information to generate them).

9.3.2 OSmL examples and comparison with other modeling languages

Figure 9-7 shows the dynamic lot sizing model introduced in § 9.2.3 in AMPL. AMPL
currently does not have built in support to retrieve the dynamic lot sizing XML data shown in
Figure 9-5, so the model is non-working. It is shown here for illustration and comparison with

the OSmL language.

270

#SET, PARAMETER, AND VARIABLE CONSTRUCTIONS
param T;

set PROD;

set LINKS = {PROD, 1..T};

param HC {PROD} ;

param FXC {PROD} ;

param CAP {1..T} ;

param DEM {LINKS};

param PCOST {PROD, 1..T} ;

#VARIABLE DECLARATION
varx {PROD, 1..T} >=0;

var {PROD, 0..T} >=0;

vary {PROD, 1..T}binary;

#OBJECTIVE CONSTRUCTION
minimize Total Cost:
sum {i in PROD} I[i, 0] + sum {i in PROD, tin 1..T} (PCOSTI[i, t]*x[i, t] + HC[i]*I[i, t] + FXC[i]*y[i, t]);

INITIAL INVENTORY CONSTRAINTS
subject to Init_Inv {i in PROD}:
I[i, 0] = 0.0;

DEMAND CONSTRAINTS
subject to Balance {i in PROD, tin 1..T}:
x[i, t] + I[i, t - 1] - I[i, t] = DEMi, t];

FIXED CHARGE CONSTRAINTS
subject to Fixed Charge {i in PROD, tin 1..T}:
X[i, t] <= CAP[t]*y[i, t];

CAPACITY CONSTRAINTS
subject to Capacity {tin 1..T}:
sum {i in PROD} x[i, t] <= CAP[t];

Figure 9-7: Dynamic lot sizing model in AMPL (nonworking with the dynamic lot size XML data).

Figure 9-8 shows the dynamic lot sizing model in OSmL and how it retrieves the data

shown in Figure 9-5. It is a working model.

271

(: SET AND PARAMETER CONSTRUCTIONS:)
let $capacity := doc("./lotsizeData.xml")/lotSizeData/periodCapacity/capacity
let $products := doc("./xml/ds800m.xml")/lotSizeData/product
let $N := count($products)
let $T := count($capacity[periodID])
let SFXC := data($products/@fixedCost)
let $HC := data($products/@holdCost)
let SPCOST := data($products/@prodCost)
let SCAP := data($capacity/text())
let SDEM := $products/period/demand
let SPROD := (1 to $N)
return <mathProgram>
(: VARIABLE DECLARATION :)
<variables>{ for $i in (1 to $N), $tin (1 to $T) return
(<var name="X[{S$i},{$t}]"/>,
<var name="I[{$i},{$t}]"/>,
<var name="Y[{$i},{$t}]" type="B" />) }
</variables>

(: OBJECTIVE FUNCTION :)

<obj maxOrMin="min" name="Total_Cost">

SUM(for $i in (1 to $N), $tin (1 to $T) return

{SPCOSTI[$i]} *X[{8i},{$t}] + {SFXC[$i]} *Y[{$i},{$t}] + {SHC[$i]} *I[{$i},{St}])

</obj>

<constraints>

(: INITTAL INVENTORY CONSTRAINTS :)

{for $i in $PROD return

<con name="inventory[{$i}]"> I[{$i},0] =0 </con> }

(: DEMAND CONSTRAINTS :)

{for $i in $PROD, $t in (1 to $T)

let $demand := ($products[$i]/period[@periodID=$t]/demand/text()) return

<con name="demand[{$i},{$t }]"> X[{S$i},{$t}] + [[{$i},{St- 1}] - [[{$i},{$t}]= {Sdemand} </con> }

(: FIXED CHARGE CONSTRAINTS :)
{for $tin (1 to $T), $iin (1 to $N) return
<con name="fixed_charge[{$i},{$t }]" > X[{$i},{$t}]-{SCAP[$t]} *Y[{$i},{$t}] <= 0</con> }

(: CAPACITY CONSTRAINTS 1)

{for $tin (1 to $T) return

<con name="capacity[{$t}]"> SUM(for $i in (1 to $N) return X[{$i},{$t}])<= {$SCAP[$t]} </con>}
</constraints> </mathProgram>

Figure 9-8: Dynamic lot sizing model in OSmL (working with the dynamic lot size XML data).

Table 9-1 gives a side-by side comparison between AMPL and OSmL on different constructs.

AMPL (no data retrieval) OSmL (and XML data retrieval)
Sets and param T; let $capacity :=
parameters, | set PROD; doc("lotsizedata.xml")/lotSizeData/periodCapacity/capacity
set LINKS = {PROD, 1..T}; let $T := count($capacity)
param HC {PROD} ; let $products := doc("lotsizedata.xml")/lotSizeData/product [(1, 2)]
param FXC {PROD} ; let $N := count($products)
param CAP {1..T} ; let SPROD := (1 to $N)
param DEM {LINKS}; let $HC := $products/@holdCost
param PCOST {PROD, 1..T} ; let SFXC := $products/@fixedCost
let SCAP := $capacity/text()
let SDEM := $products/period/demand
let $PCOST := data($products/@prodCost)

272

Variables varx {PROD, 1..T} >=0; <variables>{for $i in (1 to $N), S$tin (1 to $T) return

var I {PROD, 0..T} >=0; (<var name="X[{8$i},{$t}]"/>,

vary {PROD, 1..T}binary; <var name="I[{$i},{$t}]"/>,

<var name="Y[{$i},{$t}]" type="B" />) }
</variables>

Objective minimize Total Cost: <obj maxOrMin="min" name="Total Cost">

sum {i in PROD} IJij, 0] + SUM(for $i in (1 to $N), $tin (1 to $T) return

sum {i in PROD, tin 1..T} {$SPCOST]ISi]} *X[{$i},{$t}] +

(PCOSTi, t]*x[i, t] + {SEXCI[S$i]}*Y[{S$i},{$t}] +

HC[i]*1[i, t] + {SHCISi]}*I[{$i},{$t}])

FXCIil*y[i, tDs </obj>
Initial subject to Init_Inv {i in PROD}: { for $i in $PROD return
inventory 1[i, 0] = 0.0; <con name="inventory[{$i}]"> I[{$i},0] =0 </con>}
constraints
demand subject to Demand {i in PROD, t {for $i in $PROD, $tin (1 to $T)
constraints in1..T}: let $demand := ($products[$i]/period[@periodID=$t]/demand/text())
(or balance x[i, t] + I[i, t - 1] - I[i, t] = return <con name="demand[{$i},{$t }]">
constraints) DEM[i, t]; X[{$i},{St}] + I[{8i},{$¢t - 1}] - I[{$i},{$t}] = {$demand} </con>}
Fixed subject to Fixed Charge {for $tin (1 to $T), $iin (1 to $N) return
charge {iin PROD, tin 1..T}: <con name="Fixed_charge[{$i},{$t }]">
constraints x[i, t] <= CAP] t]*yli, t]; X[{8i},{$t}] <= {SCAP[St]}*Y[{$i},{$t}] </con>}
Capacity subject to Capacity {tin 1..T}: {for $t in (1 to $T) return
constraints sum {i in PROD} <con name="capacity[{$t}]"> SUM(for $i in (I to $N) return

x[i,] <= CAP[t]; X[{8i},{$t}]) <= {SCAP[$t]} </con>}

Table 9-1: Comparison between AMPL and OSmL.

The basic “set” in the XQuery-based OSmL language is an ordered sequence. All “XQuery
variables” begin with a “$” sign. An XQuery engine evaluates what is in { }. Decision variables
are declared in <variables> ... </variables>. OSmL, however, does not require
declaring variables; any variable not declared assumes certain default features (e.g.
type="C”, 1b="0"). An objective function is constructed in <obj> ... </obj>and
each constraint is added in <con> ... </con>. To make mathematical modeling easier, we
added several macros to the standard XQuery language. For example, the SUM function as we
use it is not provided by XQuery. A preprocessor inside the OSmL compiler converts the
macros into standard XQuery language.

Since OSmL is XQuery-based, we can automatically inherit many powerful features from
the XQuery language. For example, we can use built-in Java functions:
declare namespace math="java:java.lang.Math";
The objective function in OSmL with a “square root function” on fixed cost may look:

<obj maxOrMin="min" name="Total Cost">
SUM(for $i in (1 to $N), $tin (1 to $T) return
{$PCOST[Si]} *X[{S$i},{$t}] +
{math:sqrt(SFXC[$i])} *Y[{$i},{$t}] +
{SHC[Si]} *I[{$i},{$t}])

</obj>

273

We can also use many other built-in features of XQuery such as the “where” clause to

put conditions on sets or “if-then” logic for more complex data manipulation.

9.3.3 Model compilation, instance generation and auxiliary software

The OSmL model compilation and OSiL instance generation process are illustrated in
Figure 9-9. We could use the XQuery to transform the OSmL model into an instance that
validates against the OSiL Schema. However, the OSiL Schema is designed for minimizing file
size and for easy integration with solver APIs. So rather than use XQuery to directly generate
an instance file in the OSiL format, we generate an intermediate instance file that has a syntax
that makes the XQuery-based OSmL language very easy to construct. Then the intermediate
XML instance is transformed into a final OSiL instance file.

We have been emphasizing the fact that OSmL is XQuery based, but OSmL is not exactly
an XQuery language. OSmL has extra pre-built constructs tailored for optimization problems.
For example, the relational operators “<”, “<=", “>” and “>="" are represented in XQuery as
“sgt;”, “sgt;=",“s1t;” and “&1t;=""to avoid conflicts with the XML tags (< >). As the
relational operators appear very often in optimization, OSmL allows users to use “<”, “<=",
“>”and “>=" directly and it has a “preprocessor” to detect these operators and convert them to
the XQuery language specification. Also OSmL adds some macros such as the “SUM” function,
as again these macros provide extra convenience for mathematical modeling. The OSmL
preprocessor expands these macros to XQuery equivalents.

Of course if a modeler is sophisticated in the XQuery language, he can directly use the
standard XQuery representations to construct an optimization model and avoid using OSmL
macros. In this situation, OSmL is a pure XQuery language.

A pure XQuery (original or after preprocessing) is sent to an XQuery processor and is
compiled into an intermediate XML instance. The immediate instance is parsed and converted
into the standard OSiL instance and sent out to an Optimization Service using an OS

communication agent.

274

0Sml Hodel
// 7 3
Model

s A

4
//’ @ preprocessor Analyzer
I/I
! XQuery
',' query
i
- : - Solver 1
. #3 'me;{”;;fi'ate OSil XML o
ML > i Instance
Data dgll Instance
XQuery Parser Communication
Processor OSIL WWriter Agent
OSmL Engine
Solver N

Figure 9-9: The OSmL process.

Numerous auxiliary software packages are available that implement XQuery and XPath.
There are two major camps: Microsoft .NET and Java. The most recent release of the Microsoft
development tool, Visual Studio .NET [84], contains numerous classes for manipulating and
transforming XML data. These classes are available to all of the NET languages. Indeed, a
major advantage of using .NET software is that Microsoft has done such an excellent job of
integrating XML into Visual Studio .NET. The downside of .NET is that .NET software runs
on the Windows platform (although Ximian has announced the launch of the Mono project
[120] to create an open source implementation of the .Net development framework). However,
the actual XQuery files are platform independent. There is no problem with sharing model files
among users of different platforms.

A number of Java open source XQuery and XPath tools are also available. There is Saxon
(for XQuery and XPath) written by Michael Kay [18] and Xalan (for XSLT, a C++ version is
also available) by the Apache organization [3]. Both Saxon and Xalan can be used from the
command line or called from a Java Servlet or a standalone Java program. Both Xalan and
Saxon implement the Java API for XML Processing (JAXP). This makes it very convenient to
write portable software that can call either Saxon or Xalan to transform XML. There is also
XML Spy from Altova [1] and Stylus Studio from Progress Software [96], which are a
proprietary XML development environments. Both are equipped with some very nice graphical

tools for constructing XML-related files.

275

9.3.4 Getting data

XQuery and XPath are designed to work with input data in an XML format. In this section
we show that there are numerous tools for transforming non-XML data into XML data. Most of
the data used in a math program will reside in a
* spreadsheet
* desktop database (e.g. Microsoft Access)

» ASCII flat file
« enterprise database (e.g. DB2, Oracle, SQL Server)
* XML file

We discuss converting each source into XML. There are several options with a
spreadsheet or desktop database. If the spreadsheet or database is part of Microsoft Office 2002
(or later) it is possible to directly export each table in the database, or range in the spreadsheet,
as an XML file. If the desktop spreadsheet or database are ODBC or OLE-DB compliant, then
one can write a program in a procedural language such as C++ or Java to access the data using
ODBC or OLE-DB, read it into memory, and then use DOM (document object module) to
create an XML representation of the data. There is some overhead in creating the DOM and
storing it in main memory. An alternative approach is to write a custom SAX parser and feed
the information directly into a JAXP compliant XSLT processor. DOM and SAX are
alternative APIs for processing XML.

If the flat file is an ASCII flat file, several options exist. First, one could import the flat file
into a desktop database such as Microsoft Access and then save it as an XML file. A second
option is to write a C++ or Java program to parse the file and then use DOM or SAX create an
XML representation of the data.

Much of the data for large models is stored in enterprise corporate databases. Fortunately,
the major database vendors are adding features to their products that allow the user to submit an
SQL query to the database and get the result back in XML format. There are JDBC drivers for
the most widely used databases. Thus, one could write a Java program and use JDBC and SQL
to query the database, get the result as XML, and then transform the XML using a JAXP
transformation engine such XALAN or Saxon. This process is also easily carried out using
Visual Studio .NET. There are many classes available to any of the NET languages for reading
data in XML format from a relational database and then transforming it to XML.

Ideally, the input data is initially in XML format. However, some XML structures are

more amenable to transformation into a mathematical model than others. Of course most XML

276

transformation tools are designed to transform one XML file into another without much
difficulty.

There are products expressly for the purpose of accessing data stored in different formats
and viewing the data as XML. Two such products include BEA’s Liquid Data [8]and IBM’s
XPeranto [62]. The trend is obvious: make it easy to gather data from various sources and
convert it into XML. This makes the OSmL methodology we are proposing even more viable

over time.

CHAPTER 10 FUTURE WORK AND DERIVED RESEARCH
FROM OPTIMIZATION SERVICES

10.1 The Optimization Services Project

Optimization Services is a young research area that has potential for many benefits to
operations research and the optimization community. Motivated by a vision of the next
generation of optimization software and standards, Optimization Services deals with a wide
variety of issues that have accumulated over the past few decades in computing and
optimization. This work addresses design as well as implementation issues by providing a
general and unified framework for such tasks as standardizing problem representation,
automating problem analysis and solver choice, working with new Web service standards,
scheduling computational resources, benchmarking solvers, and verification of results — all in
the context of the special requirements of large-scale computational optimization. The criteria
required of Optimization Services must therefore be very high. Improving the quality of
Optimization Services related standards, tools and systems should be a constant effort for our
future work. Adapting to the new needs of researchers and developers and best serving the
ultimate users should always be the goal of Optimization Services, which should therefore be
highly scalable for future extensions and very simple to use. In the next sections, we briefly
describe the most imminent future work of the OS project and some of the derived research

projects and business models.

10.2 Standardization

Optimization Services involves a large set of standard protocols that need to be adopted
quickly and universally. The standardization process can start from working group notes, and
go through stages such as working drafts, candidate recommendations, and finally become
recommended as standards. Such a process not only requires further research efforts such as
new optimization problem extensions but also entails more organizational efforts that require

formal establishment of collaborations under the Optimization Services framework.

277

278

10.3 Problem Repository Building

With the standardization of various problem representations naturally comes the task of
building repositories of optimization problem instances using the standard schemas. Problem
repositories no longer need to be categorized by the format the problems are using. Rather they

are only classified by the different optimization types supported in the OS standards.

10.4 Library Building
The OS library and the OS server described in Appendix B are provided to facilitate the

adoption and use of the OS standards. Besides the original OS designers, other researchers and
developers are free to develop their own OS-compatible libraries, such as parsers (readers and

writers) of standard instances, and communication agents to transmit these instances.

10.5 Derived Research in Distributed Systems

A distributed system leaves open many questions in coordination, job scheduling and
congestion control. One distinct issue for example is how optimization “jobs” should best be
assigned to run on available registered services after the optimization types are determined. The
usual centralized scheme of an optimization server maintains one queue for each solver/format
combination, along with a list of the workstations on which each solver can run. In a
decentralized environment, we may still want to maintain this scheduling control, while at the
same time making the scheduling decisions more distributed, i.e. transferring some controls to
the solver service sides.

Further study is needed to better understand how categorization of optimization problem
instances together with statistics from previous runs can be used to improve scheduling
decisions. As just one example, an intelligent scheduler should not assign two large jobs to a
single-processor machine, since they will only become bogged down contending for resources;
but a machine assigned one large job could also take care of a series of very small jobs without
noticeable degradation to performance on either kind of job. Both the kind and size of
optimization instances must be assessed in order to determine which should be considered

“large” and which “very small” for purposes of this scheduling approach.

279

10.6 Derived Research in Decentralization

The central issue in a decentralized architecture is the design of a registration and
discovery mechanism for acting on service requests. For example the optimization registry
could assign requests based on some overall model of solver performance and resource
availability. Requests can be scheduled after they are matched to some services, or scheduling
could be made an integral part of the assignment process. Pricing could involve agent “rents” as
well as charges determined by various measures of resource use.

Besides keeping and maintaining information on optimization solvers and other services,
one critical and more complex role of an optimization registry in a decentralized environment is
a “more confident” determination of appropriate solvers. A relatively easy and straightforward
scheme can rely on a database that matches solvers with problem types they can handle.
Characteristics of a problem instance, determined from the analyzers, can be used to
automatically generate a query on the database that will return a list of appropriate solver
services. But how should solver recommendations deal with problem types (e.g. bound-
constrained optimization) that are subsets of other problem types (e.g. nonlinear optimization)?
Or how can recommendations be extended to solver options?

For these purposes, a straightforward database approach for a server or registry may not be
adequate. Developers will consider more sophisticated ways of determining recommendations,
such as through business rules systems. A more complicated and advanced scheme may

consider extensions to generate lists ranked by degree of appropriateness.

10.7 Derived Research in Local Systems

In §2.4, we listed the interface and communication agent as a distinct component in an
optimization system. The Optimization Services framework standardizes all the
communications between any two Optimization Services components on an OS distributed
system. The framework does not standardize local interfacing.

As mentioned in the previous chapters, related projects such as COIN [23] and derived
research from Optimization Services such as the Optimization Services instance Interface
(OSil), Optimization Services option Interface (OSol), and Optimization Services result
Interface (OSrl) are intended to do this job. The COIN project includes the OSI (Open Solver
Interface) library which is an API for linear programming solvers, and NLPAPI, a subroutine
library with routines for building nonlinear programming problems. Another proposed

nonlinear interface by Halldorsson, Thorsteinsson, and Kristjansson is MOI (Modeler-

280

Optimizer Interface [60]), which specifies the format for a callable library. This library is based
on representing the nonlinear part of each constraint and the objective function in post-fix
(reverse Polish) notation [2] and then assigning integers to operators, characters to operands,
integer indices to variables and finally defining the corresponding set of arrays. The MOI data
structure then corresponds to the implementation of a stack machine. A similar interface is
described in the LINDO API manual [74]. The Optimization Services framework is
complementary to all of the standardization of local interfaces. The connection between

Optimization Services and local interfacing is illustrated in Figure 7-1, shown again below.

Modeling
Language
Ernviranment

ModekData

Interface f——t—1my

Compile

Lecal Interface

OS5 Communication SEEEZAOn

Standardization

Figure 10-1: Relationship between OS Communication and local interface standardization.

10.8 Derived Research in Optimization Servers

Optimization Services is motivated by the current issues faced by many optimization
servers. More specifically Optimization Services is intended to provide the next-generation
NEOS [29]. As mentioned in §3.1.4, the effects of Optimization Services on NEOS are
multifaceted:

* The NEOS server and its connected solvers will communicate using the Optimization
Services framework, e.g. using standard representation for data communication.

* External optimization submissions can still be kept as flexible as possible and may become
even more flexible. At least one more networking mechanism will be provided, i.e. the
communication based on the Optimization Services Protocol (OSP). That means NEOS
will add an interface so that it can be invoked exactly as what’s specified by the
Optimization Services hook-up Language (OShL, Chapter 7). It will also accept OSiL as a

standard input, and may gradually deprecate the other formats.

281

* The entire Optimization Services system over the Internet can be viewed as a new
decentralized NEOS. In effect the old NEOS will become another OS-compatible solver in
the new system. The “NEOS server” can then solve more types of optimization by
delegating the job further to different solvers behind it. We therefore regard the old NEOS

as a “meta-solver” registered on the new Optimization Services system.

10.9 Derived Research in Computational Software

With the advent of Optimization Services and its standard OSP protocol, related software
developers may need to think about how to best adapt to the OS framework and be “OS-
compatible.” The issues are detailed in Chapter 2.

There have already been two immediate projects that are related to the Optimization Services
framework. One is the Optimization Services modeling Language described in Chapter 9 and the
other is the IMPACT solver development project that is under development by Professor Sanjay
Mehrotra’s group at the Industrial Engineering and Management Sciences department at
Northwestern University. The two projects are the two sides of Optimization Services: client and
service. Both are natively built for the Optimization Services framework and strictly follow the
Optimization Services Protocol.

There are existing modeling languages and solvers that are or will be adapted (by writing
wrapper classes) to the Optimization Services framework such as the AMPL modeling language
[49], the Lindo solver [74] and Knitro solver [121]. Solvers from the NEOS system [29] are the next

target of the Optimization Services project.

10.10 Derived Research in Computational Algorithms

The design of effective and efficient computational algorithms that fit the Optimization
Services design is important. Optimization Services immediately opens up the questions of how
to best utilize the available services on the OS network. Following are some of the potential
research areas in computational algorithms related to Optimization Services:

* Parallel computing where many registered services can simultaneously solve the same type
of optimization problems.

e Optimization via simulation where simulation services are located remotely from the
optimization solver service.

* Optimization job scheduling at the registry side and queuing at the service side.

* Analyzing optimization instances according to the needs of the OS registry.

282

Modeling and compilation that generates OSiL instances quickly and accurately.

Efficient OSxL instance parsing and preprocessing algorithms.

Effective Optimization Services process orchestration.

Also as the OS standards allow representations of various optimization types, optimization
algorithm development (e.g. in stochastic programming) that has been lagging due to lack

of good representations can hopefully get a boost.

10.11 Commercialization and Derived Business Models

Optimization Services, though itself an open framework, does not prevent registered

services and related business to be commercialized. Following are some of the related business

models:

Modeling language developers leverage on using Optimization Services to provide more
and better solver access to their customers and become more competitive.

Solver developers concentrate on developing better algorithms to increase their
competitiveness without worrying about representation, communication and interfacing
that are taken care by the OS standards.

Developers can commercialize the libraries that they build for the Optimization Services,
e.g. readers and writers of standard instances.

Registry/server developers can provide auxiliary services such as storage services, BPEL-
related flow orchestration services (§7.3), advertisement services and consulting services.
Auxiliary services and software such as analyzer services and benchmarkers may possibly
charge fees to involved parties.

Solver service owners may adopt a “computing on demand” model by charging the user for
using their solver services.

A solver service owner may also adopt a “result on demand” model by reporting the
objective results that his solver service has found but hiding the solutions that are only to be
revealed when the user agrees to pay. For example in the OSrL result instance (§6.4) that
the solver service returns, it may write out only the <objectivevValue> value and in
the <solverMessage> element it may provide the instructions for obtaining the

<variableSolution> values.

REFERENCES

[1] Altova XML Spy, http://www.altova.com/ (2005).

[2] Aho, A.V., R. Sethi, J.D. Ullman, Compilers: Principles, Techniques and Tools, Addison-
Wesley, Reading, MA (1986).

[3] Apache Software Foundation, http://www.apache.org/ (2005).

[4] Apache Software Foundation, Apache Jakarta Tomcat, http:/jakarta.apache.org/tomcat/
(2005).

[5] Apache Software Foundation, Axis, http://ws.apache.org/axis/ (2005).

[6] Apache XML Project, Apache Xindice, http://xml.apache.org/xindice/ (2005).

[7] A. Atamtiirk, E.L. Johnson, J.T. Linderoth, and M.W.P. Savelsbergh., A relational modeling

system for linear and integer programming. Operations Research (2000) 4:263-283.
[8] BEA Inc. BEA Liquid Data forWebLogic,
http://www.bea.com/products/weblogic/liquiddata/index.shtml (2005).

[9]J. Bigus and J. Bigus, Constructing Intelligent Agents with Java, John Wiley & Sons (1997).

[10] J.R. Birge, M.A.H. Dempster, H.I. Gassmann, E.A. Gunn, A.J. King and S.W. Wallace, A
Standard Input Format for Multiperiod Stochastic Linear Programs. COAL Newsletter 17
(1987) 1-19.

[11] J.R. Birge, F. Louveaux, Introduction to stochastic programming, Springer Series in
Operations Research, Springer Verlag, New York (1997).

[12] J.J. Bisschop and A. Meeraus, On the Development of a General Algebraic Modeling
System in a Strategic Planning Environment. Mathematical Programming Study 20 (1982) 1-
29.

[13] R.E. Bixby, Solving Real-World Linear Programs: A Decade and More of Progress.
Operations Research 50 (2002) 3-15.

[14] S. Brin, L. Page, Anatomy of a Large-Scale Hypertextual Web Search Engine, Proceeding
7™ International World Wide Web Conference (1998).

[15] Bradley, G., Network and graph markup language (NaGML) — data file formats. Tech.Rep.
NPS-OR-04-007, Department of Operations Research, Naval Postgraduate School, Monterey,
CA, USA. Available from the author, bradley@nps.navy.mil. (2004).

[16] A. Brooke, D. Kendrick and A. Meeraus, GAMS: A User’s Guide, Release 2.25. Scientific

Press/Duxbury Press (1992). See also http://www.gams.com.

283

284

[17]T. Berners-Lee, etc., W3C, http://www.w3c.org (2003).

[18] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Scientific American (05 2001).
See also http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809ECS588EF21&catlD=2.

[19] Business Integration Journal Online, http://bijonline.com (2005).

[20] Chang, T.-H., Modeling and presenting mathematical programs with xml:lp. Masters thesis,
Department of Management, University of Canterbury, Christchruch, NZ (2003).

[21] J.W. Chinneck, Analyzing Mathematical Programs Using MProbe. Annals of Operations
Research 104 (2001) 33-48.

[22] J. Choobineh, SQLMP: a data sublanguage for representation and formulation of linear
mathematical models. ORSA Journal of Computing (1991) 3:358-375.

[23] COmputational INfrastructure for Operations Research (COIN-OR), http://www.coin-or.org
(2005).

[24] A. R. Conn, N. I. M. Could and Ph. L. Toint, LANCELOT: A FORTRAN Package for

Large-Scale Nonlinear Optimization. Springer Verlag (1992).

[25]J. Czyzyk, M.P. Mesnier and J.J. Mor¢, The NEOS Server. IEEE Journal on Computational
Science and Engineering 5 (1998) 68-75.

[26] G. B. Dantzig, Linear Programming and Extensions. Princeton University Press, Princeton,
NJ (1963).

[27] E.D. Dolan, NEOS Server 4.0 Administrative Guide. Technical Memorandum ANL/MCS-
TM-250, Argonne National Laboratory, Argonne, IL (2001).

[28] E.D. Dolan, R. Fourer, J.-P. Goux and T.S. Munson, “Kestrel: An Interface from Modeling
Systems to the NEOS Server. Technical report, Mathematics and Computer Science
Division, Argonne National Laboratory (September 2002).

[29] E.D. Dolan, R. Fourer, J.J. Moré and T.S. Munson, “Optimization on the NEOS Server.”
SIAM News 35, 6 (2002) 4, 8-9.

[30] E.D. Dolan and J.J. Moré, Benchmarking Optimization Software with Performance Profiles.
Mathematical Programming 91 (2002) 201-213.

[31] E.D. Dolan, J.J. Mor¢ and T.S. Munson, Measures of Optimality for Constrained
Optimization. Technical report, Mathematics and Computer Science Division, Argonne
National Laboratory (April 2002).

[32] elipse.org, Eclipse IDE, http://www.eclipse.org (2005).

[33] Ezechukwu, O., I. Maros, OOF: open optimization framework. Tech. Rep. ISSN 1469-4174,

Department of Computing, Imperial College of London, London, UK (2003).

285

[34] Ezechukwu, O., I. Maros, AML: Algebra Markup Language. Tech. Rep. ISSN 1469-4174,
Department of Computing, Imperial College of London, London, UK (2003).

[35] Ezechukwu, O., I. Maros, what is the Open Optimization Framework (Elsinore),
http://www.doc.ic.ac.uk/~oce/elsinore/introduction.htm, Department of Computing, Imperial
College of London, London, UK (2003).

[36] eXist, Exist Open Source Native XML Database, http://exist.sourceforge.net (2005).

[37]1B. Dominguez-Ballesteros, G. Mitra, C. Lucas and N.-S. Koutsoukis, Modeling and Solving
Environments for Mathematical Programming (MP): A Status Review and New Direction.
Journal of Operational Research Society 53 (2002) 1072-1092.

[38] M.D. Ferris, M. Mesnier and J.J. Moré, NEOS and Condor: Solving Optimization Problems
over the Internet. ACM Transactions on Mathematical Software 26 (2000) 1-18.

[39] T. Finin and Y. Labrou, eds., UMBC agentWeb, http://agents.umbc.edu (2003).

[40] L. Foster, Designing and Building Parallel programs, Addison Wesley (1994).

[41] LFoster and C. Kesselman, eds., Open Grid Services Architecture (OGSA),
http://www.globus.org/ogsa/ (2003).

[42] LFoster and C. Kesselman, eds., The Globus Alliance, http://www.globus.org (2003).

[43] LFoster and C. Kesselman, eds., Open Grid Services Architecture (OGSA),
http://www.globus.org/ogsa/ (2005).

[44] R. Fourer, Next Generation Servers for Optimization as an Internet Resource,

http://users.iems.nwu.edu/~4er/NEOSprop.pdf (2003).

[45] R. Fourer, Modeling Languages Versus Matrix Generators for Linear Programming. ACM
Transactions on Mathematical Software 9 (1983) 143-183.

[46] R. Fourer, Optimization Frequently Asked Questions. Optimization Technology Center of
Northwestern University and Argonne National Laboratory, www-unix.mcs.anl.gov/otc/
Guide/faq/ (2003).

[47] R. Fourer and D.M. Gay, Extending an Algebraic Modeling Language to Support Constraint
Programming. Technical Report, Department of Industrial Engineering and Management
Sciences, Northwestern University (2001).

[48] R. Fourer, D.M. Gay and B.W. Kernighan, A Modeling Language for Mathematical
Programming. Management Science 36 (1990) 519-554.

[49] R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathematical
Programming, 2™ edition. Duxbury Press, Pacific Grove, CA (2002). See also

www.ampl.com.

286

[50] R. Fourer and J.-P. Goux, “Optimization as an Internet Resource.” Interfaces 31, 2 (2001)
130-150.

[51] R. Fourer and L. Lopes, A management System for Decompositions in Stochastic
Programming. Under revision for Annals of Operations Research (2002).

[52] R. Fourer and L. Lopes, A filtration-Oriented System for Modeling Stochastic Programming.
Draft Paper, Department of Industrial Engineering and Management Sciences, Northwestern
University (2003).

[53] R. Fourer, L. Lopez, K. Martin, FMLLP: A W3C XML Schema for Linear Programming.
Draft Paper, Department of Industrial Engineering and Management Sciences, Northwestern
University (2003).

[54] Robert Fourer, Jun Ma, Kipp Martin, Optimization Services, www.optimizationservices.org
(2005).

[55] Robert Fourer, Jun Ma, Kipp Martin, Optimization Services, www.optimizationservices.net
(2005).

[56] D.M. Gay, Hooking Your Solver to AMPL. Technical report, Bell Laboratories, Murray
Hill, NJ (1997); http://www.ampl.com/REFS/abstracts.html#hooking2.

[571 AM. Geoffrion. Indexing in modeling languages for mathematical programming,
Management Science, (1992) 38:325-344.

[58] H.J. Greenberg, A functional Description of ANALYZE: A Computer-Assisted Analysis
System for linear programming Models. ACM Transations on Mathematical Software 9
(1983) 18-56.

[59] W. Gropp and J.J. Mor¢, Optimization Environments and the NEOS Server. In
Approximation Theory and Optimization, M.D. Buhmann and A. Iserles, eds., Cambridge
University Press (1997) 167-182.

[60] B.V. Halldorsson, E.S. Thorsteinsson and B. Kristjansson, A modeling Interface to
Nonlinear Programming Solvers — An Instance: xMPS, the Extended MPS Format. Technical
report, Department of Mathematical Sciences and Graduate School of Industrial
Administration, Carnegie Mellon University (2000).

[61] IBM Inc., BPEL http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

(2005).
[62] IBM Inc., Xperanto, http://www.almaden.ibm.com/software/dm/Xperanto/index.shtml
(2005).

[63] IBM Inc., Web Services flow Language (WSFL), http://www-
306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf (2001).

287

[64] IBM Inc., Web Services Inspection Language (WSFL), http://www-
106.ibm.com/developerworks/webservices/library/ws-wsilspec.html (2001).

[65] IBM Inc., WebSphere MQSeries, http://www.ibm.com/software/mgseries (2005).

[66] M. Kay. Saxon the XSLT processor, http://saxon.sourceforge.net/ (2005).

[67] W K. Klein Haneveld, Duality in Stochastic Linear and Dynamic Programming, Lecture
Notes in Economics and Mathematical Systems, Vol. 274, Springer-Verlag, Berlin (1986).

[68] T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning. Springer-
Verlag (2001).

[69] Kristjansson, B., Optimization modeling in distributed applications: how new technologies
such as XML and SOAP allow OR to provide web-based services, http://www.maximal-
usa.com/slides/Svna01Max/index.htm (2001).

[70] C.A.C. Kuip, Algebraic Languages for Mathematical Programming. European Journal of
Operational Research 67 (1993) 25-51.

[71] D. Lange and M.Oshima, Programming and Deploying Java Mobie Agents with Aglets,
Addison-Wesley (1998).

[72] M. Litzkow, M. Livny, and M.W. Mutka, Condor — A Hunter of Idle Workstations.
Proceedings of the 8th International Conference of Distributed Computing Systems (1998)
104-111.

[73] J.P.Lewis and Ulrich Neumann, Performance of Java versus C++,

http://www.idiom.com/~zilla/Computer/javaCbenchmark.html (2004).
[74] Lindo Systems, Inc., API user’s manual, Tech. Rep., Lindo Systems, Inc.
http://www.lindo.com/lindoapi_pdf.zip (2002).

[75]1 M.S. Lobo, L. Vandenberghe, and S. Boyd, Application of second-order cone programming,
Linear Algebra Application, 284 (1998) 193-228.

[76] Boris Lublinsky, An Introduction to Business Process Execution Language, Business
Integration Journal, October Issue (2004) 58-60.

[77] Markowitz, H., Portfolio Selection, Efficient Diversification of Investments. John Wiley &
Sons, New York (1957).

[78] Marriott, K. and P. Stuckey, Programming with Constraints An Introduction. The MIT Press,
Cambridge, MA (1957).

[79] David Megginson, Simple API for XML (SAX), http://www.saxproject.org (2003).

[80] Microsoft Inc., BPEL, http://msdn.microsoft.com/library/en-us/dnbiz2k2/html/BPEL1-1.asp
(2005).

[81] Microsoft Inc., BizTalk server, http://www.microsoft.com/biztalk/default.mspx (2004).

288

[82] Microsoft Inc., MSMQ,

http://www.microsoft.com/windows2000/technologies/communications/msmg/ (2000).

[83] Microsoft Inc., XLANG, http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
(2001).

[84] Microsoft Inc., Visual Studio .NET,
http://msdn.microsoft.com/library/default.asp?url=/vs/techinfo/Default.%asp (2002).

[85] Microsoft Inc., ODBC, http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/odbc/htm/dasdkodbcoverview.asp (2004).

[86] B.A. Murtagh, Advanced Linear Programming: Computation and Practice, McGraw-Hill
(1981).
[87] Napster.com, P2P Technology, http://www.napster.com.

[88] NEOS Server for Optimization, http://www-neos.mcs.anl.gov/neos/ (2005).

[89] NEOS Server: SDPA, http://www-neos.mcs.anl.gov/neos/solvers/SDP:SDPA/ (2005).
[90] OASIS, http://www.oasis-open.org (2005).

[91] OASIS, BPEL, http://www.oasis-open.org/committees/wsbpel/charter.php (2005).

[92] Optimization Services, www.optimizationservices.org (2005).

[93] Optimization Services, www.optimizationservices.net (2005).

[94] Oracle Inc. http://www.oracle.com/bpel (2005).

[95] M.J.D. Powell, An efficient method for finding the minimum of a function of several
variables without calculating derivatives, Computer J. 7 (1964) 155-162.
[96] Progress Software Stylus Studio, http://www.stylusstudio.com/ (2005).

[97] Rosenbrock, H.. An automatic method for finding the greatest or least value of a function.
Comp. J. 3 (1960) 175-184.

[98] P. Sandhu, The MathML Handbook, Charles River Media, MA (2003).

[99] Aaron Skonnard and Martin Gudgin, Essential XML Quick Reference, Pearson Education
(2002).

[100] Sun Microsystems, Jini Network Technology, http://www.sun.com/software/jini/ (2005).

[101] T. Tirpak, L. Lach, J. Lopez, J. Ma, W. Xiao, Virtual Prototyping, Motorola Inc.,
http://www.motorola.com/content/0,3306.,263.00.html (2003).

[102]1UDDI.org, Universal Description, Discovery, and Integration (UDDI), http://www.uddi.org
(2003).

[103] E. Van der Vlist, XML Schema. O’Reilly & Associates (2002).

[104] W3C, http://www.w3.org (2005).

[105] W3C, Document Object Model (DOM), http://www.w3.0org/DOM (2003).

289

[106] W3C, Namespaces in XML, http://www.w3.org/TR/REC-xml-names (1999).
[107] W3C, XML, http://www.w3.org/XML (2003).

[108] W3C, XML Link Language (XLink) http://www.w3.org/TR/xlink (2001).
[109] W3C, Mathematical Markup Language (MathML) http://www.w3.org/Math/ (2005).
[110] W3C, XML Path Language (XPath) http://www.w3.org/TR/xpath (1999).

[111] W3C, XML Pointer Language (XPointer) http://www.w3.org/TR/xptr (2002).
[112] W3C, XML Query Language (XQuery) http://www.w3.org/TR/xquery (2005).
[113] W3C, XML Schema, http://www.w3.org/XML/Schema.html (2004).

[114] W3C, XSL, http://www.w3.org/TR/xsl (2001).

[115] W3C, XSLT, http://www.w3.org/TR/xslt (1999).

[116] W3C, Web Services, http:/www.w3.0rg/2002/ws/ (2005).

[117] Woflfram Research In.c. Multivariate ARMA Models,

]
]
]
]
]
]
]
]
]
]
]
]

http://documents.wolfram.com/applications/timeseries/UsersGuidetoTimeSeries/1.2.5.html

(2002).

[118] H. M.Wagner and T. M. Whitin, Dynamic version of the economic lot size model,
Management Science (1958) 5:89-96.
[119] P.Walmsley, Definitive XML Schema. Prentice-Hall (2001).

[120] Ximian, Inc. Ximian and the Mono Project, http://developer.ximian.com/projects/mono/

(2002).

[121] Ziena Optimization Inc., Kintro Solver, http://www.ziena.com (2005)

APPENDIX A OPTIMIZATION SERVICES REPRESENTATION
EXTENSIONS

The optimization services representation extensions in this appendix are mostly at a
very early development stage and are changing constantly. They are described for
initial reviews and complete references. But the primary design philosophies and main

features of these extension should remain approximately the same over the time.
A.1 <cones> for cone programming

The cone programming extension in OSiL (Chapter 6) mainly addresses second-order
cone programming (SOCP). SOCP is usually solved with some kind of primal-dual interior
point method. The objective function is usually linear, while the constraints are an intersection
of an affine set and the direct product of quadratic cones; see [75] for more details. In general,
an SOCP can be expressed as

minimize cx
i (A-1)
subjectto Ax =b
xeK

where K is a closed and convex cone. The second order cone K is more formally defined as a

direct product K = K "x K*x..x K" where K'canbe any type of quadratic cones. There
are different types of cones used in the literatures. Currently we define three widely used cones:
1). K’ (nonnegativeCone) =
R ={x' € R|x>0).Ifevery K' is a nonnegativeCone, then (A-1) is basically a regular
linear program that can be simply expressed as (A-2). Including nonnegativeCone is for the
purpose of completeness.

miniinize cx

subject to Ax=b (A-2)

x>0

2). K' (quadraticCone) =
K" ={x" e R"||| x5, [’<(x])*,x] 20)

3). K' (rotatedQuadraticCone) =
KrotatedQuad :{xi ER”‘|||X§M ||2S lelx;)Z’xlt’xtz 20)

290

291

As OS representations are a set of evolving standards, more cone types may be added in
the future. With the standard cone definitions, the <cone s> element can simply be expressed

as shown in Figure A-1.

Figure A-1: <cones> element in OSIiL.

<Cones> can have a sequence of different child cones defined above. Each type of cone is
similarly defined. For example <quadraticCone> can appear 0 or more times as shown
below:

<xs:element name="quadraticCone" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence minOccurs="0">
<xs:element name="el" minOccurs="2" maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:nonNegativelnteger">
<xs:attribute name="mult" type="xs:positivelnteger" use="optional" default="1"/>
<xs:attribute name="incr" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="startindex" type="xs:nonNegativelnteger" use="optional"/>
<xs:attribute name="endIndex" type="xs:nonNegativelnteger" use="optional"/>
</xs:complexType>
</xs:element>

Each <quadraticCone> can have 2 or more <e 1> child elements representing the variables
that belong to the quadratic cone. Each <e1> element is a nonnegative integer to indicate a
variable index. The multi and incr attributes of el are similar to those defined in the
intVector element described in the OSgL section (§6.1). If all the variable indexes are
continuous, the sequence of <e1> elements becomes optional; instead we can use the

startIndex and endIndex attributes of <quadraticCone>.

Suppose there are 11 variables in the optimization problem and their domains are x, =0
(i.e. x, enonnegativeCone), X, ; € quadraticCone, X, , 5, € rotatedQuadraticCone,

X, 4o €quadraticCone, x,, > 0. The cone programming representation in OSiL can look like:

<cones>
<nonnegativeCone>
<el>0</el>

292

<el>10</el>
</nonnegativeCone>
<quadraticCone>

<el>1</el>

<el>3</el>
</quadraticCone>
< quadraticCone>

<el>2</el>

<el mult="3" incr="1">4</el>
</quadraticCone>
< rotatedQuadraticCone startindex="7" endIndex="9"/>

</cones>

A.2 <stages> for math programs using stage information

Information of stages is used in several optimization types, such as dynamic programming,

and stochastic programming. The <stages> element is shown in Figure A-2.

| mpietraer B o]
E 1.0
e o+ ariables G 5-fTr]
(Saoee 1 /i35 e
s (e
| i B
- noes - e |
E 1 ..
1. .

Figure A-2: <stages> element in OSiL.

<stages> has an optional name attribute and a required number attribute. As with many
other array-type elements in OSiL, stages are referred by the indexes, not by the names. The
start stage is always 0 and the end stage is always number—1. Stages can be implicitly listed
using <implictOrder> if the rows and columns in the base program data part are listed in
time order, or otherwise explicitly stated using <explicitOrder>. <implicitOrder>
contains a sequence of <e1> elements, each one a nonnegative integer. Each <e1> has two
required attributes: startRowIdx and startColIdx. Each <el> also has two optional
attributes: endRowIdx and endColIdx. For example if we want to indicate that all the
elements from row 0 to 4 and from column 0 to column 3 belong to stage 0, we can write the
information down as <el startRowIdx="0" startColIdx="0"” endRowIdx
="4" endColIdx="3">0<el>.If endRowIdx and endColIdx are missing, stage 0

ends just before startRowIdx and startColIdx of the next <el> element (stage 1).

293

Alternatively the stage can be explicitly specified on each variable (<var>) and constraint
(<con>)in<explicitOrder>. Both <var> and <con> are nonnegative integers
indicating stages. <var> has a required 1 dx attribute for variable index references and <con>

also has a required i1dx attribute for constraint index references.

A.3 <stochastic> for stochastic programming

For a complete review of stochastic programming, refer to [11]. The OSiL stochastic
programming extension is designed to make it convenient and powerful to transform existing
deterministic linear or nonlinear programs into stochastic programs by adding dynamic and
stochastic structure information. It was first designed totally independent of the SMPS
format[10] and later, through working with Horand Gassmann, one of the coauthors of the
original SMPS format, added many new ideas. The OSiL stochastic extension is highly
comprehensive and is evolving at a faster pace than most other OSxL schemas. Describing the
entire stochastic extension is out of the scope of this thesis. We hereby illustrate the main

features in the current <stochastic> element (Figure A-3).

stochastic] == -

Il mmmmmmmmmmmmm——- -

-+ riskMeasures
.

Figure A-3: <stochastic> element in OSIiL.

The <stochastic> element is the next child after <stages> in <programData>.
The most commonly used child in practice is the scenario child which can be either an
<explicitScenario> (Figure A-4) or <implicitScenario> (Figure A-6). With scenarios,
we can model a variety of dependencies, both within and across stages. Explicit scenarios are
mostly for modeling stochastic processes with discrete distributions or discrete approximation.
Implicit scenarios can be used to model continuous distributions.

Scenario based stochastic programs can be mixed with penalty-related (<penalties>,
Figure A-7) and/or risk-measure-related (<riskMeasures>, Figure A-8) stochastic problems.
The best-known penalty-related stochastic problem is simple recourse. Risk-measure-related

problems are mostly about chance constraints and probabilistic objectives.

294

Figure A-4 shows the two alternatives to represent an explicit scenario:

<scenarioPaths>and <scenarioTree>.

- AT
scenarioPaths [-

E R e=

*1 slode
____________ e
0.

Figure A-4: <explicitScenario> element in OSiL.

The scenario path (<scenarioPaths>) approach views every scenario as a path from
the root of the scenario tree to one of its leaves. There has to be exactly one root scenario
(<rootScenario>, the first child of <scenarioPaths>). Every other scenario (the
subsequent <scenario> children of <scenarioPaths>) is a path that branches either
directly from the root scenario or indirectly from a branch of the root scenario. So each scenario
has a parent scenario. The root scenario’s parent is usually the OSiL core program. Each
scenario inherits all of the values from its parent scenario and makes changes on the stochastic
numbers that are different from the parent scenario in the stochasticNumbers child
section. Basically any number in the entire OSiL core program can be stochastic. Figure A-5

shows the different types of stochastic numbers.

295

Figure A-5: stochasticNumbers type in OSiL.

<el> has a rowIdx and a colIdx attribute for references to linear coefficients. If
rowIdx is negative, it is an objective function. If colIdx is -2, it is a lower bound (or left-
hand side) of a constraint. If colIdx is -1, it is an upper bound (or right-hand side) of a
constraint. <var> is used to vary different aspects of a variable in the math program, such as
lower bound, upper bound, and type. <num> is used to reference a nonlinear number that is
identified with an id. <node> and <arc> are used to refer to nodes and arcs in a network or
graph. These are mainly used for future extensions if network and graph extension is added.

The scenario tree (<scenarioTree>) approach allows a node by node construction of
the event tree. It has one and only only child (<sNode> of type scenarioNode) as the root
of the event tree. An <sNode> element contains its own data information. There are two
alternatives to specify the information: 1) by changing the information from one node to
another through the <changes> element; 2) by specifying an entire sub-optimization problem
through the <OS1iL> element. Each <sNode> can in turn have 0 (if a leaf node) or more (if an
internal node) <sNode> children. The idea is similar to the construction of nonlinear expression
trees in the <nl1> elements (§6.3). The recursive definition allows an entire scenario tree to be
constructed cleanly and flexibly.

Figure A-6 shows the <implicitScenario> element.

296

mltivariateDissrete [

imultinaimial [£

imipliestseanario —E-—);l ’ L ---,

. “oosodno o)
elemem(irmm ==

stochasticHlements [==

Figure A-6: <implicitScenario> element in OSiL.

In the <distributions> child, we can specify various univariate and multivariate
distributions. Many standard distribution functions are built in the OSgL schema (§6.1). User-
defined distribution functions are allowed through the OSnLNode in the OSnL schema (§6.3),
just like defining any nonlinear expression in an OSiL instance.

<stochasticElements> can have a sequence of <elementGroup> children. In

each <elementGroup>, we can specify history-dependent parameters in a stochastic process

of the form
D q
Y, = ZMI'YH' +Zvat—j tc, (A-3)
i=1 Jj=1
where M,,i=1,..., pand Nj ,J = 1,...,q are given matrices, v,,Vv,_, N 1 serially

uncorrelated and identically distributed random vectors and ¢, is a constant vector. This process
is known as the ARMA(p, g) process. For more information on the ARMA process, refer to

[117]. The incorporation of ARMA(p, g) into the OSiL stochastic extension is suggested by

H.I Gassmann. One special case of (A-3)is p =0, so (A-3) turns into ¥, = Nv,, a simple

t

linear transformation. So <stochasticElements> is a more generalized transformation of

stochastic numbers. Another special case of (A-3)is ¥, =Y, | +v,, where v, is +1 or -1 with

probability 0.5. So the model turns into a random walk.

In the <elementGroup> element, a sequence of <el> elements are used to identify

elements of the Y, vector. The subscript ¢ of Y is specified by the stage attribute of

297
<elementGroup>. M.Y . isspecified in <historyList> (which contains a matrix and a
vector) for each i. N,v, ; is specified in <randomVariableList> (which contains a

matrix and a vector) for each j. ¢, is specified in <constants>.

Figure A-7 shows the <penalties> element.

Figure A-7: <penalties> element in OSiL.

The <penalties> element can contain one or more <row> elements, each one having a
rowldx (= 0, constraints only) attribute. Penalties are imposed on violation of a constraint
(either shortage or surplus). The best-known penalty-related stochastic problem is simple
recourse. The <simpleRecourse> element has a (linear) shortagePenalty and a
(linear) surplusPenalty attribute. There are other kinds of standard penalties. For example
the <robustOptimization> element has quadratic penalties and the
<piecewiseLinearQuadratic> element has both linear and quadratic penalties. The
<userDefinedPenalty> element can be used to define customized penalty functions for
both surplus and shortage, through the OSnLNode in the OSnL schema, just like defining any
nonlinear expression in an OSiL instance.

Figure A-8 shows the <riskMeasures> element.

! - [
r-< simpleChance 1
. .

[SSSESSSS G
: 0.

! riskMeasures [:Er-fr-{'ib}&éh}.h}'é EH—H Lrow]
A 1
[Rty H

-+ integratedChance |

Figure A-8: <riskMeasures> element in OSiL.

Risk-measure-related problems are mostly about chance constraints and probabilistic

objectives. There are three children of <riskMeasures>: <simpleChance>,

298

<jointChance>, and <integratedChance>; each one represents a different type of
risk-measure-related problem and each one is associated with one (simple chance) or more
(joint chance) rowIdx attributes. If rowIdx > 0, it is a chance constraint, specifying the
probability that a constraint or some joint constraints are satisfied. If rowIdx<0,itisa
probabilistic objectives, changing the minimization or maximization of the objective to
minimization of maximization of the probability of the objective function value with respect to

(=,%,2)) the objective constant. Integrated chance constraints (ICC) is introduced by Klein

Haneveld. See [67].

A.4 <networkAndGraph> for network and graph problems

In the first version of OSiL, we excluded the <networkAndGraph> extension for
network and graph definition. For review, a test version schema OSiL._NaG.xsd includes the
network and graph extension and can be found at
http://www.optimizationservices.org/schemas/OSiL._NaG.xsd. We here briefly describe the
features of network and graph extension.

Like defining many data structures and elements, The OSgL schema (§6.1) also defines a
<networkAndGraph> element (Figure A-9), and then gets included in the OSiL schema.
The <networkAndGraph> element is used to comprehensively describe a network and
graph topology through a set of nodes and arcs elements and definitions of

nodeProperties and arcProperties.

nodeProperties [== - property
e M

________ o
0.
(= pioperty B
————————————————— A'\-; _lI
networkAndGraph - == 0.
' (SRR " el
0.0 0.0
= - o '\\'7 -
0.m 0.0

Figure A-9: <networkAndGraph> data type in OSgL.

Also like pre-defining standard functions, The OSgL schema (§6.1) also defines many standard
problems; OSgL is then included in the OSiL. schema. Most of these standard problems are

heuristics based on a network or graph. Here is a predefined standard shortest path problem:

<xs:element name="shortestPath">

299

<xs:complexType>
<xs:attribute name="costPropName" type="xs:IDREF" use="required"/>
<xs:attribute name="start" type="xs:nonNegativelnteger" use="required"/>
<xs:attribute name="end" type="xs:nonNegativelnteger" use="required"/>
</xs:complexType>
</ xs:element>

The shortest path problem defines a start and an end attribute which refer to nodes
(identified by a nonnegative integer) in a network and graph topology (Figure A-9). Since a
network can have many properties defined on arcs or nodes, the costPropName attribute in
the above shortestParth element specifies which arc property the shortest path algorithm
should be carried out on. This mechanism fully defines everything about a standard shortest
path problem. Other problems such as maximum flow problem, minimum spanning tree,
minimum cost flow, traveling sales person, vehicle routing problem, are similarly defined. All
these standard heuristics are grouped in <networkAndGraphHeuristicsGroup>
(Figure A-10). Along with the network and graph topology definition in Figure A-9, the group

can potentially be used in a future extension of OSiL to network and graph problems.

—L. minimumSpanningTree |

’venexColoring

J|rsteinerTree
’edgeColoring

xShortestPath
’venexc‘)nnectiu'ny

J|e(lge(ﬁolmectiu'il),uf

’minimumCostFlow

—L connectedComponents |

maximumMatching

E] -
aplanarlza‘tlon

El
3
]
3
g
=
=
=
a2
xR
a

’graphlsomorphism

(network.&.ndGratheurisﬁcsGroup = =

,graphPartilion

E E

e

’{IrawGrathicely

—L.lrauellingSalesPerson

J|(Irmn\.rTree

’\rehicleRouling [+]

’lee(IBack EdgeSet

’ithche{luling
feedBackVertexSet

’clique
’lransi'tiueCIosure

Jlimlepen(IentSet
atransitiveReduction

vertexCover

J|lopol-:'gid:aISorling

Figure A-10: <networkAndGraphHeuristicsGroup> group in OSgL.

300

A.5 Special nonlinear nodes in OSnL

A.5.1 <complements> for complementarity problems

The <complements> schema from OSnL is shown below:

<xs:complexType name="0OSnLNodeComplements">
<xs:complexContent>
<xs:extension base="OSnLNode">
<xs:sequence minOccurs="2" maxOccurs="2">
<xs:element ref="OSnLNode"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="complements" type="OSnLNodeComplements" substitutionGroup="OSnLNode"/>

The <complements> element allows complementarity problems to be constructed for
solvers to search for a feasible solution. Linear or smooth nonlinear optimization problems can
be viewed as special cases of complementarity problems. Complementarity more or less means
that at least one of a pair of logic expressions (e.g. two constraints) must hold with equality. For
more details refer to [49].

The <complements> element is one of the few special elements that don’t have
attributes. It also has a definite number of 2 children, which are often constraints. The sequence
of the 2 children does not matter. Both children can consist from 1 to 3 expressions separated
by logic operators =, >, and <. Of the two children of <complements>, there must be
either exactly two inequality operators or one equality operator. The <complements>
element evaluates to true if both children are true and at least one inequality is tight. For

example if constraint,is of the form expression, = 0 and constraint, is of the form

expression, <5, we can express the complementarity as

<complements>
<geq>
<constraint idx="1"/>
<number value="0"/>
</geq>
<leg>
<constraint idx="2"/>
<number value="5"/>
</leq>
</complements>

or more concisely as

<complements>
<constraint idx="1" valueType="status"/>
<constraint idx="2" valueType="status"/>
</complements>

301

because the bound information is already specified in the <constraints> element of OSiL.
Of course it has to be made sure that in using the concise form, the constraint is only
constrained on one side; otherwise there can be ambiguities. Notice if the valueType

attribute of constraint is not specified, it defaults to the constraint value.

When one constraint constraint,, i € {1,2} , involves two inequalities and is of the form
Ib < expression, <ub or ub > expression, 2 Ib ([b and ub are numbers), then the other
constraint ; , je{l,2},j #1i, must be just of the free form

expression ; . In this case, the <complements> element evaluates to true if constraint; is

true and

expression; = 0if Ib < expression; <ub
expression; < 0if expression, =ub
expression; 2 0 if expression, = Ib
For example if constraint is of the form 2 < expression, <7 and constraint , is of the form

expression, , we can express the complementarity as

<complements>
<and>
<leg> <number value="2"/><constraint idx="1" valueType="value"/> </leq>
<leg> <constraint idx="1" valueType="value"/><number value="7"/> </leq>
</and>
<constraint idx="1" valueType="value"/>
</complements>

or more concisely as

<complements>
<constraint idx="1" valueType="status"/>
<constraint idx="2" valueType="value"/>
</complements>

Of course it has to be made sure that in using the concise representation, constraint, is
bounded on both sides, that is, both 1b (# —0) are ub (# o) attributes have to be specified
on constraint, in the <constraints> element of OSiL.

Child elements of <complements> do not always have to be constraints. For example

the following is also valid:

<complements>
<and>
<leg> <number value="0"/><var idx="0"/> </leq>
<leg> <var idx="0"/><number value="9"/> </leq>
</and>
<plus> <var idx="1"/><var idx="2"/> </plus>
</complements>

302

for 0 < x, <9 complements x, + x, .

A.5.2 <nodeRef> and <arcRef> for network and graph problems

As the first release of OSiL does not include network and graph extension, the
<nodeRef> and <arcRef> elements from OSnL, which are used to reference node and arc
property values in a network, are reserved for future use. Briefly, the use of <nodeRef> and
<arcRef> are similar to that of <simInput> and <simOutput> discussed in §6.3. Like
<simInput> and <simOutput> which are used to reference values in a simulation
definition in OSiL (<simulation>), <nodeRef> and <arcRef> can be used to reference
values in a network and graph definition that can potentially be in OSiL

(<networkAndGraph>). <simInput> and <simOutput> use their attributes

(simName, inputName, outputName) and an optional child to take or supply values to and
from a simulation; similarly <nodeRef> and <arcRef> also use attributes (arcID,
nodelD, propName) and an optional child node to take or supply values to and from a

network and graph.

APPENDIX B OPTIMIZATION SERVICES LIBRARY

The OS library (including the OS server software for hosting individual services) and
related documents are located at http://www.optimizationservices.org. The OS library is an
open-source Java library intended to simplify the implementation of various OS compatible
services, enforce the requirements of standards, assist in the exchange of instances between
components, and facilitate the adoption of Optimization Services.

The OS library has two types of distributions. The first type is one entire library file
os.jar, which contains all the library classes. A “jar” file is a java equivalent to a
Windows .d11, or UNIX . so or .a library file. A jar file should be appropriately set in the
CLASSPATH environment before it can be properly included and used; check any major java
tutorial for details.

The second type of library distribution breaks the entire os . jar into seven smaller jar
files: osagent.jar, ossolver. jar, osmodeler.jar, osanalyzer.jar,
ossimulation.jar,and osregistry.jar, so that developers only need to download
and include related and more light-weighted jar files. oscommon.jar and osagent.jar
are almost always required.

* oscommon.jar contains parsers for reading and writing all the instances specified by the
standard OS representation schemas (Chapter 6), interfaces specified by the OS
communication WSDL documents (Chapter 7), and related computational and utility
classes.

* osagent.jar contains communication agents that can be delegated to send and receive
OS instances according to the protocols specified by the OS communication WSDL
documents (Chapter 7).

* ossolver.jar contains sample solver services, public solver service APIs, local
interfaces, sample problems, and customized parsers that use the standard parsers
(oscommon. jar) to convert instances to and from the solver-specific formats or data
structures.

* osmodeler. jar contains sample modeling language environments (MLE), especially
the OSmL MLE, which includes the GUI, OSmL engine and associated tokenizers, parsers
and compilers.

* osanalyzer.jar contains sample analyzer services, local interfaces, and customized

interfaces.

303

304

* ossimulation.jar contains sample simulation services, local interfaces, and
customized interfaces.

* osregistry.jar mainly contains the implementation of the OS registry.

Besides the library jar files, the OS server software for hosting individual services can also be

downloaded from the OS Web site, along with tutorials and other documents. In Chapter 7, we

showed some examples of using the library and explained the process of how the OS server

software works.

Java classes (and interfaces) are grouped into packages, equivalent to the C++ namespaces,
to avoid class name conflicts. A jar file can contain several packages and each package usually
contains many java classes. Each OS java class file is documented, or commented in the
“Javadoc” format in detail. Javadoc tools are then used to generate the java APIs and
documentation comments to a set of HTML pages describing the classes, inner classes,
interfaces, constructors, methods, and fields. These HTML documentation pages are also
published at the OS Web site (Figure B-1). We describe the OS library and all its packages and
classes at a relatively high level in the following sections. For details on using each class, refer

to the OS Javadoc document on the OS Web site.

<2} 0S Library - Microsoft Internet Explorer

: File Edt View Favorites Tools Help 5
Qback -~ @ - [H A - 3 d@e' =] &a P search 7 Favarites Folders & - - ¥ 3
! address @http:Nwww.optim\zatinnservices.org| R . Qo
All Classes e
Overview Package [SEM Use Tree Deprecated Index Hel;
Fackages OS packages SUNMARY: NESTED | IELD | CONSTR | METHOD BETALS FIELD | CONSTR | METAB |
org.optimizationservices.osa
org.optimizationservices.osagent.api
org.optimizationservices osanalyzer analyzer org optimizati i epr i Ser
org.optimizationservices osanalyzer api Class OSiL.Reader
org.optimizationservices.0scommon communicationinterface
org.optimizationservices.oscommaon honlinear java. lang.Object
org.optimizationservices.oscommon representationparser L org.optimizationservices.oscommon. representationparser
org.optimizationservices.oscamman. util L ory.optimizationservices.oscommon. representationpsz
org aptimizationservices asmodeler ogui
org optimizationservices osmodeler modeler
org.optimizationservices.osmodeler. parser.osm
org.optimizationservices.osregistry. api public class OSiLReader The current class
org.optimizationservices.ossimulation.api extends OSslReader (fields, methods ...)
org.optimizationservices.ossimulation simulation
org optimizationservices . nssoker api The 0siLReader class parses an OS5iL in|
oro.optimizationservices ossoler parser provides a set of "get" methods (e.g. getVanablelNames) that can be used to
org.optimizationservices.ossoker problem retrieve different pieces of mformation of the optmization mstance
org.optimizationservices.ossolver.solver
Y sy g Since:
> 0810
Classes Version:
Etdl Handler 1.0, 03/14/2004
FrLReader Anthor:
EmLWriter . .
OSal Reader ERobert Fourer, Jun Wa, Kipp IMartin
OSalviiter Classes in one See Also:
OShlFeader org.optimizationservices.ossolver.parser.FMLHandler,
DShLyyriter OS paCkage org.optimizationservices.ossolver.parser . FHLEeader,
% ¥MLReader, 08 iLEeader
05l Reader
DS Writer
QDS Reader
goaLmer Field Summary
OSilwriter ~
< ¥ < ¥

Figure B-1: OS Java library document (Javadoc) at http://www.optimizationservices.org.

B.1 Library Design

When designing the OS library, we break up the library into seven projects: OSCommon,
OSAgent, OSSolver, OSModeler, OSAnalyzer, OSSimulation, and OSRegistry. At design time,

each corresponds to a folder with similar subfolder structures as shown in Figure B-2.

306

& 0SCommon A=1E3
File Edit Wiew Favorites Tools Help :"
QBack - O T P search |ﬁ_" Folders| -
. Address |lﬂ i\ eclipse\workspaceOSCommon v| Go
Falders X [C)bak
2 OSAgent » |206n — binary files

(1]

[o5analyzer

CSCommon Iédc":
) bak Dete
3 bin Sfile
) css (Dimg
=3 dac [Syinclude
hfl ekc gl]z
= file :
B2 img [DIMETA-TNF
) include ~ Dse —» source files
=L [wEB-INF
Db Sxml
) META-INF .classpath
hil arc Jproject
[WEB-INF build.properties
) an buiidzml - — hyild file
£ osModeler ©5tomman.jar——p jar file

[5) OsReqistry

[©ssimulation

) os550lver w
< | »

Figure B-2: The subfolder structure of the OSCommon project folder; other folders have similar
subfolder structures.

We use the Eclipse IDE [32] as our Java development environment (Figure B-3). So each
folder also corresponds to an Eclipse project. At distribution time each project is zipped into a
respective jar file with the same name as the project’s folder name. The os . jar file described
in the introduction is a compilation of all the seven respective jar files. Java sources are
included in the jar file distribution.

Each project (design time) or jar file (distribution time) contains several packages and the
classes are grouped into a corresponding package. All the Optimization Services package
names begin with the prefix: org.optimizationservices. [projectname] where
[projectname] is the name of one of the seven projects. For example the package name for
all the classes in the OSCommon project or jar begins with
org.optimizationservices.oscommon, and then under this package sub-packages
can be further created, for example, org.optimizationservices.oscommon.util or

org.optimizationservices.representationparser.

£ Java - OSiLReader. java - Eclipse Platform

Fle Edit Source Refactor MNavigate Search Project JBoss Server Menu Tomcat Run window Help

- W eede |8 & EEE | H-0-0-4- = c Il B =g T | 8oave Fsebug ?

o = 2 1ava Browsing

Package Explorer ant | Synchronize =0 m OSiLReader java 8 B

= %5 - JEE V.
#-[22 OSAnalyzer 3 = [(#) 0FiLReader 1.0 03/14/200%2
=24 OSComman *
+-[= bak * Copyright (o) 2004
+-[= bin L
[ess package org.optimizationservices.oscommon.representationparser;
& doc project browser
= et
(= file
(= img
= include
=
= lb
(= META-INF
=EE — source folder (contains
(= WEB-INF
& il all the packages and
5 chsspath class files for the a
|=| project .
ob build properties pl‘OJeCt)
<& buitd
|=| O5Common, jar
=+ b‘J (OSMadeler
+ b‘J OSRegistry
-2 0SSimulation
=+ b‘J OSSolver v

—
(=3

ma

¥

b import java.util.HashMap:[] the current class

+

<P>The <coder0filBeader</code> class parses an 031l instance
provides a set of "get" methods (e.g. getVarisbleNsmes) chat
different pieces of information of the optimization instance

EaE e S

<fpr

Rokert Fourer, Jun Ma, Eipp Martin

1.0, 03/14/2004
org.optimizationservices.ossolver . parser . FiLHandler
org.optimizationservices.ossolver. parser, FHLReader
org. Xl .sax. ZMLReadsr w

Hierarchy EEOutIine 58 Call Hierarchy lag 1] \is © % v T O||Console | Tasks Declara... | @ lavadoc 57 . Classic... | Problems Properties Error Log| Cheat 5., [= 0

arg, optimizationservices, oscommon, representationpar ser 4| |Javadoc - org. optimizationservices.oscammon.represent ationparser, OSiLReader java
=
#-'= import declarations —
=@, ositRead A
" vl ;a:;gicamr . String fields and methods|| fhe osiLreader class parses an OSiL instance into a DOM tree and provides 2 set of
© m_bPracessConstraints(|bockean jn each class et” methods (&.q. get\v"ariah\e_‘Na ’7 e u BT et e= o)
< m_bProcess¥ariables : lholean farmation of the optimization instafpce. aqullary window (e.g.
< m_bProcessFML : baoleaft See Also: console, JaVadOC)
M m,:grocessimmbobole?n oty optimizationsenices. oasdlver. parser FMLHandler
< M_DFrocess i Doalean L t . t ; L = o
< m_bProcessMatrixMarket : boolean E:g;?n:?::};?\f?f;:;cd?r neEn
M m,EZrocessr:PSrMatmi:boolgan s v org. optimizationsenices. oscommon. representationparser. OSiLReader v
QSCommonyste
Figure B-3: The Eclipse Java IDE (Integrated Development Environment).
B.2 OSCommon Library
The OSCommon library (project or jar) currently contains the 5 packages described in
Table B-1.
Package name Brief description
org.optimizationservices.oscommon.communicationinterface Interface classes that list the operations required

by the OSP communication WSDL documents,
and are to be implemented by corresponding
Optimization Services.

org.optimizationservices.oscommon.representationparser Parser classes that read and write standard OSP
representation instances.
org.optimizationservices.oscommon.nonlinear An expression tree class and all the OSnL node

classes that correspond to the nonlinear nodes
(operators, functions, etc.) specified in the OSnL
schema.

org.optimizationservices.oscommon.algebra Algebra (mainly linear algebra) utility classes
used in optimization solvers.

308

org.optimizationservices.oscommon. util

General utility classes that handle /O, XML,
XPath, XQuery, XSLT, Web services, and other
common routines.

Table B-1: OSCommon packages.

Table B-2 through Table B-6 list some of the important classes in each of the above 5

OSCommon sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the

Javadoc and other documents on the OS Web site.

Sample classes in the communicationinterface sub-package

Brief description

OScL

Interface class that lists all the operations
specified in the OScL WSDL document: such as
String call (String ossl),and to be
implemented by OS simulations.

OSdL

Interface class that lists all the operations
specified in the OSAL WSDL document: such as
String discover (String osqgl),and
to be implemented by the OS registry.

OShL

Interface class that lists all the operations
specified in the OShL WSDL document: such as
String call (String osil),andtobe
implemented by OS solvers and OS analyzers.

OSjL

Interface class that lists all the operations
specified in the OSjL WSDL document: such as
String join (String osel),and to be
implemented by the OS registry.

OSKL

Interface class that lists all the operations

specified in the OSKL WSDL document: such as
String knock (), and to beimplemented
by OS solvers, OS analyzer and OS simulations.

OSvL

Interface class that lists all the operations
specified in the OSvL WSDL document: such as
String validate (String osxl),and
to be implemented by the OS registry.

Table B-2: Sample classes in org.optimizationservices.oscommon.communicationinterface.

Sample classes in the representationparser sub-package

Brief description

OSiLReader

Read an OSiL instance and generate certain
standard data structures and methods such as
array/vector of objective coefficients, coefficient
matrices, and calculation of nonlinear
objective/constraint functions or derivatives.

OSiLWriter

Write out an OSiL instance from standard data
structures such as array/vector of objective
coefficients, coefficient matrices, and nonlinear
function expressions.

OSaLReader, OSaLWriter, OSbLReader, OSbLWriter,

Similar to the OSiLReader and OSilWriter. In the
representationparser packages, each OSxL
representation has two corresponding classes:
OSxLReader and OSxLWriter.

Table B-3: Sample classes in org.optimizationservices.oscommon.representationparser.

309

Sample classes in the nonlinear sub-package

Brief description

ExpressionTree

The OSExpressionTree class represents an
expression tree for a nonlinear function (linear
ones being special cases) and provide convenience
methods to process the contained nonlinear
function. In essence it contains the root node (of
OSnLNode type) of an expression and hides all
the internal nodes. It is the only public class that
interfaces with any component (e.g. a solver) that
needs to manipulate the nonlinear functions in an
instance. For example, it is mainly used in the
osilReader class to parse a nonlinear optimization
instance.

OSnLNode

The OSnLNode class represents a node in an
expression tree for a nonlinear function (linear
ones being special cases) and provide convenience
methods to process the node. It is an abstract (or
generic) node from which we derive concrete
operator nodes.

OSnLNodeSin

The OSnLNodeSin class represents a sin node in
an expression tree. It extends the abstract
OSnLNode class and implements its abstract
methods such as calculateFunction(double[]).

OSnLNodePI

The OSnLNodePI class represents a PI constant
node in an expression tree. It extends the abstract
OSnLNode class and implements its abstract
methods such as calculateFunction(double[]).

OSnLNodeVar

The OSnLNodeVar class represents a variable
node in an expression tree. The variable can be
treated as a unary operator with its index as a
subscript operand of the "variable operator". If the
variable index is a number, there is no operand
node. The number is treated as the variables
attribute. If the variable index is an integer-valued
function or a look up from some data source, it is
treated no different from a unary operator. It
extends the abstract OSnLNode class and
implements its abstract methods such as
calculateFunction(double[]).]).

OSnLAbs, OSnLAnd, OSnLArccos, OSnLArccosh ...

Similar to OSnLNodeSin, OSnLNodePI and
OSnLNodeVar. They are all concrete node classes
that extend the abstract OSnLNode class and
implements the required abstract methods.

Table B-4: Sample classes in org.optimizationservices.oscommon.nonlinear.

Sample classes in the algebra sub-package

Brief description

DoubleVector

Vector class with double precision entries.

DoubleSparseMatrix

Sparse matrix class with double precision entries.

BigDecimalDenseMatrix

Dense matrix class with arbitrary precision
entries.

BiglntegerDenseMatrix, DoubleDenseMatrix ...

Various kinds of matrix and vector classes that
provide basic matrix and vector operations such as
multiplications, factorizations, etc.

Table B-5: Sample classes in org.optimizationservices.oscommon.algebra.

Sample classes in the util sub-package

Brief description

CommonUtil

Contains methods for performing common basic
operations used by many classes in the

310

Optimization Services (OS) framework.

10Util Contains methods for performing common basic
input-output (I/O) operations, such as file
reading/writing, used by various components in
the Optimization Services (OS) framework.

MathUtil Contains methods for performing mathematics
related operations used by many classes in the
Optimization Services (OS) framework.

ProcessUtil A process and runtime (or terminal environment)
related utility class. For example it provides
methods to run commands (e.g. DOS or UNIX
commands from within the programming codes.

WSUtil Contains methods for performing common web
services related operations, such as soap
construction/web services invocation, used by
various components in the Optimization Services
(OS) framework.

XMLUtil Contains methods for performing common basic
XML-related operations used by various classes in
the Optimization Services (OS) framework.

XPathUtil Contains methods for performing common basic
XPath-related operations used by various classes
in the Optimization Services (OS) framework.

XQueryUtil Contains methods for performing common basic
XQuery-related operations used by various classes
in the Optimization Services (OS) framework.

XSLTUtil Contains methods for performing common basic
XSLT-related operations used by various classes
in the Optimization Services (OS) framework.

Table B-6: Sample classes in org.optimizationservices.oscommon.util.

B.3 OSAgent Library

The OSAgent library (project or jar) currently contains the 2 packages described in Table
B-7.

Package name Brief description

org.optimizationservices.osagent.agent Various agent classes for communication to
different Optimization Services. For example an
OSSolverAgent is used to hook up to an OS
solver.

org.optimizationservices.osagent.parser Parser classes that convert one standard instance
to another.

Table B-7: OSAgent packages.

Table B-8 through Table B-9 list some of the important classes in each of the above 2
OSAgent sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the

Javadoc and other documents on the OS Web site.

311

Sample classes in the agent sub-package

Brief description

OSSolverAgent

The class implements the OShL interface as
specified by Optimization Services hook-up
Language (OShL). It contains methods to help
solver agents communicate with OS solvers. It
hides all the SOAP protocol related technical
details from an optimization user.

OSAnalyzerAgent, OSSimulationAgent, OSRegistryAgent

All similar to the OSSolver Agent.

OSFlowAgent

The class is invokes Optimization Services
according to the process flow specified in an
Optimization Services flow Language (OSfL). It
may involve invoking separate agents listed
above.

Table B-8: Sample classes in org.optimizationservices.osagent.agent.

Sample classes in the parser sub-package

Brief description

0OSaLToOSqL

The class converts standard OSaL instance to
standard OSqL instance. It is used if the
OSFlowAgent involves automatically invoking
and discover operation after it gets an OSaL
analysis from an OSAnalyzer.

Other standard instance conversion classes needed by the agents
and various agent-customized parser classes needed in
communications.

Table B-9: Sample classes in org.optimizationservices.osagent.parser.

B.4 OSSolver Library

The OSSolver library (project or jar) currently contains the 5 packages described in Table

B-10.

Package name

Brief description

org.optimizationservices.ossolver.api

Contains sample solver services. These are the
classes that implement the OShL (hook-up) and
OSKL (knock) and are accessed on the OS
network.

org.optimizationservices.ossolver.locallnterface

Local interfaces that contains standard in memory
data structures that can be directly accessed by the
solver engines.

org.optimizationservices.ossolver.parser

Customized parsers that use the standard parsers
from oscommon to convert instances to and from
the solver-specific formats or data structures.

org.optimizationservices.ossolver.solver

Sample solvers that solve various optimization
problems.

org.optimizationservices.ossolver.problem

Sample optimization problems using the standard
data structures in the
org.optimizationservices.oscommon.locallnterfac
e package.

Table B-10: OSSolver packages.

Table B-11 through Table B-15 list some of the important classes in each of the above 4

OSSolver sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the

Javadoc and other documents on the OS Web site.

312

Sample classes in the api sub-package

Brief description

KnitroSolverService

KnitroSolverService is an api that is public to the
external world. It hides all the parsing, local interfacing,
and solving processes. It implements the OShL and
OSKL interfaces from OSCommon. It is called by an OS
agent. The service solves continuous nonlinear
optimization problems.

LindoSolverService

LindoSolverService is an api that is public to the
external world. It hides all the parsing, local interfacing,
and solving processes. It implements the OShL and
OSKL interfaces from OSCommon. It is called by an OS
agent. The service solves very general optimization
problems.

Table B-11: Sample classes in org.optimizationservices.ossolver.api.

Sample classes in the locallnterface sub-package

Brief description

OSil

This is an Optimization Services instance Interface. It
contains the standard optimization problem data
structures that are generated from the OSiL instance
and can be directly accessed by a solver.

OSol This is an Optimization Services option Interface. It
contains the standard optimization option data
structures that are generated from the OSoL instance
and can be directly accessed by a solver.

OSrl This is an Optimization Services result Interface. It

contains the standard optimization result data structures
that are returned by a solver and then used to generate
the OSrL result instance.

Table B-12: Sample classes in org.optimizationservices.ossolver.locallnterface.

Sample classes in the parser sub-package

Brief description

LindoOSiLReader

The LindoOSiLReader class uses the generic
OSilReader to parse an OSiL instance into the Lindo’s
Instruction List format that can be inputted into the
Lindo solver.

Table B-13: Sample classes in org.optimizationservices.ossolver.parser.

Sample classes in the solver sub-package

Brief description

KnitroSolver

Knitro optimization solver that solves continuous
nonlinear problems.

LindoSolver

Lindo optimization solver that solves general nonlinear
problems.

Table B-14: Sample classes in org.optimizationservice

s.ossolver.solver.

Sample classes in the problem sub-package

Brief description

OptProblem Rosenbrock

The Rosenbrock problem constructed using the
standard data structures in the
org.optimizationservices.oscommon.locallnterface
package

Table B-15: Sample classes in org.optimizationservices.ossolver.problem.

B.5 OSModeler Library

313

The OSModeler library (project or jar) currently contains the 4 packages described in

Table B-1.

Package name

Brief description

org.optimizationservices.osmodeler.api

Contains modeling language environment services that
can be accessed publicly over the OS network.

org.optimizationservices.osmodeler.gui

Contains modeling language Graphical User Interface,
which is usually used locally on a desktop.

org.optimizationservices.osmodeler.modeler

Contains the modeling language engines that compiles
modeling languages into standard instances.

org.optimizationservices.osmodeler.parser

Contains relevant tokenizers and parsers using by the
modeling language engine compilation process.

Table B-16: OSModeler packages.

Table B-17 through Table B-20 list some of the important classes in each of the above 4

OSModeler sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the

Javadoc and other documents on the OS Web site.

Sample classes in the api sub-package

Brief description

OSmLService

It is a public OSmL Web service that can be accessed
over the OS network. It takes OSmL models, generates
standard instances and delegates communication agents
to solve the optimization instances.

Table B-17: Sample classes in org.optimizationservices.osmodeler.api.

Sample classes in the gui sub-package

Brief description

OSmLGUI

OSmLGUI provides the OSmL modeling language
GUL

Table B-18: Sample classes in org.optimizationservices.osmodeler.gui.

Sample classes in the modeler sub-package

Brief description

OSmLEngine

The OSmLEngine compiles the XQuery based
Optimization Services Modeling Language model and
compiles the model into an Optimization Services
instance Language (OSiL) low level representation.
When the optimization result is returned in
Optimization Services result Language (OSrL), the
engine takes the role of an OSrL parser.

Table B-19: Sample classes in org.optimizationservice:

s.osmodeler.modeler.

Sample classes in the parser sub-package

Brief description

OSmLPreparser

It pre-parses an OSmL model into a pure XQuery
Language.

OSmLQueryResultToOSiL

It parses the XQuery result intermediate XML instance
generated by an XQuery engine and converts the
intermediate XML instance into the standard OSiL
instance.

InfixParser

It parses infix based expressions.

Table B-20: Sample classes in org.optimizationservice

s.osmodeler.parser.

B.6 OSAnalyzer Library

314

The OSAnalyzer library (project or jar) currently contains the 3 packages described in

Table B-21.

Package name

Brief description

org.optimizationservices.oscommon.api

Contains OS analyzer services that can be accessed
publicly over the OS network.

org.optimizationservices.oscommon.analyzer

Sample analyzers that analyze various optimization
problems.

org.optimizationservices.oscommon.parser

Customized parsers that use the standard parsers from
oscommon to convert instances to and from the
analyzer-specific formats or data structures.

Table B-21: OSAnalyzer packages.

Table B-22 through Table B-24 list some of the important classes in each of the above 3

OSAnalyzer sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the

Javadoc and other documents on the OS Web site.

Sample classes in the api sub-package

Brief description

DrAMPLAnalyzerService

DrAMPLAnalyzerService is an api that is public to the
external world. It hides all the parsing, local
interfacing, and analyzing processes. It implements the
OShL and OSKL interfaces from OSCommon. It is
called by an OS agent. The service analyzes an
optimization instance and returns an OSaL analysis
result.

Table B-22: Sample classes in org.optimizationservice:

s.osanalyzer.api.

Sample classes in the analyzer sub-package

Brief description

DrAMPLAnalyzer

Dr. AMPL analyzer that analyzes various optimization
problems.

Table B-23: Sample classes in org.optimizationservice:

s.osanalyzer.analyzer.

Sample classes in the parser sub-package

Brief description

DrAMPLOSILReader

The DrAMPLOSILReader class uses the generic
OSilReader to parse an OSiL instance into the Dr.
AMPL’s format.

Table B-24: Sample classes in org.optimizationservice:

B.7 OSSimulation Library

s.osanalyzer.parser.

The OSSimulation library (project or jar) currently contains the 3 packages described in

Table B-25.

Package name

Brief description

org.optimizationservices.ossimulation.api

Contains OS simulation services that can be accessed
publicly over the OS network

org.optimizationservices. ossimulation.simulation

Sample simulation engines that run simple or complex
simulations.

org.optimizationservices. ossimulation.parser

Customized parsers that use the standard parsers from
oscommon to convert instances to and from the
simulation-specific formats or data structures.

315

simulation-specific formats or data structures.

Table B-25: OSSimulation packages.

Table B-26 through Table B-28 list some of the important classes in each of the above 3
OSSimulation sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the

Javadoc and other documents on the OS Web site.

Sample classes in the api sub-package Brief description

SampleSimulationService It is an api that is public to the external world. It hides
all the parsing, local interfacing, and simulation
processes. It implements the OScL and OSKL interfaces
from OSCommon. It is called by an OS agent. The
sample simulation service runs various sample
simulations and returns an OSsL simulation result.

Table B-26: Sample classes in org.optimizationservices.ossimulation.api.

Sample classes in the simulation sub-package Brief description

SampleSimulation It calculates various simple or complex functions and
operations.

Table B-27: Sample classes in org.optimizationservices.ossimulation.simulation.

Sample classes in the parser sub-package Brief description

SampleSimulationParser The class uses the generic OSsLReader and
OSsLWriter to read or write an OSsL instance to or
from the SampleSimulation’s format.

Table B-28: Sample classes in org.optimizationservices.ossimulation.parser.

B.8 OSRegistry Library

The OSRegistry library (project or jar) currently contains the 5 packages described in
Table B-29.

Package name Brief description
org.optimizationservices.oscommon.api Contains the OS registry service that can be accessed
publicly over the OS network
org.optimizationservices.oscommon.parser Customized parsers that use the standard parsers from

oscommon to convert instances to and from the OS
registry-specific formats or data structures.

org.optimizationservices.oscommon.registry The OS registry and provides join, discover, validate
and other operations.

org.optimizationservices.oscommon.util Utility classes used by the OS registry.

org.optimizationservices.oscommon.web OS Web site development related classes such as Java
servlets.

Table B-29: OSRegistry packages.

Table B-30 through Table B-34 list some of the important classes in each of the above 5
OSRegistry sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the

Javadoc and other documents on the OS Web site.

316

Sample classes in the api sub-package Brief description

OSRegistryService It is an api that is public to the external world. This is
what people sees as an OS registry service. It hides all
the parsing, local interfacing, and registry related
processes. It implements the OSjL, OSdL and OSvL
interfaces from OSCommon. It is called by an OS agent.

Table B-30: Sample classes in org.optimizationservices.osregistry.api.

Sample classes in the parser sub-package Brief description

OSRegistryReader The class uses the generic OS registry related reader to
read a registry related OSXL instance to the
OSRegistry’s own format.

OSRegistryWriter The class uses the generic OS registry related writer to
write a registry related OSxL instance from the
OSRegistry’s own format.

Table B-31: Sample classes in org.optimizationservices.osregistry.parser.

Sample classes in the registry sub-package Brief description

OSRegistry The OS registry class that provides join, discover,
validate and other operations.

Table B-32: Sample classes in org.optimizationservices.osregistry.registry.

Sample classes in the util sub-package Brief description

OSRegistryCommonUtil Common utility classes that provide various convenient
methods used by the OSRegistry.

Table B-33: Sample classes in org.optimizationservices.osregistry.util.

Sample classes in the web sub-package Brief description

OSRegistryJoinServlet A java servlet class that is used with the OS join Web
form. When the user clicks the submit button of the
Web form, the servlet parses the form and generates an
OSeL instance that is then sent to the OS registry
database.

Table B-34: Sample classes in org.optimizationservices.osregistry.web.

B.9 Optimization Services Server

We provide the OS server software that can be downloaded and installed on the OS
service providers’ computers and host their Optimization Services. The OS server uses the
Tomcat Web server [4] from Apache for HTTP and Java servlet handling. It uses Axis [5] again
from Apache for Web services SOAP handling. The OS server then adds OS related libraries
and classes as plug-ins for OSP handling (such as OSxL representations and communication).

User manuals are provided on the OS Web site.

B.10 www.optimizationservices.org and www.optimizationservices.net
Figure B-4 shows the OptimizationServices.org Web site. Currently the
OptimizationServices.net is mirrored after the .org Web site and provides exactly the same

information. Later contents on the two Web sites may diverge on different emphases. But the

317

standards (schemas, WSDL documents, the OS registry) will always use the
OptimizationServices.org address. OptimizationServices.net will provide auxiliary services that
facilitate the use of Optimization Services. Various papers, presentations, user manuals,
standards, software and other documents are published via the OS Web sites. For latest

information always check the two Web sites:

http://www.optimizationservices.org and http://www.optimizationservices.net

2l Optimization Services {0S) - Microsoft Internet Explorer EI@IEI

© File Edit view Favorites Tools Help l':'

o Back = |ﬂ |£1 2 A~ a@e' =) ;,_Ll o - Search 5 7 Favorites |7 Folders) - - kG Y

: Address |f§] http: ffwaen, optimizationservices, orgf vl Go
-~

Optimization Services (OS)

Eobert Fourer
Jun Ma
Industrial Engineeringdfanagement Sciences, Morthwestern Tniversity
Eipp Martin

Graduate School of Business, University of Clucage

— Tell a friend

about this website

OR

contact@optmizationservices. org

Optinization Services (085) 15 a general design for 2L -based, service-onented, optimization-centered distributed
architecture. It is intended as an open seurce COmputation INfrasructure (COTN) for Operations Besearch. With its
cotresp onding Optimization Services Protocel (OSP), which includes 204 specfications of Optimization Services 2
Languages ((O5xL), Optimization Services i intended as an industrial standard and a vnified framework for next generation

e B oy [e PURgs JU) [P Sy U RpURe poput i e SRR, [ty ur U RS e NP, PPPpUS, MU, ey

Figure B-4: The OS Web site at http://www.optimizationservices.org (or
http://www.optimizationservices.net)

