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ABSTRACT 

Optimization Services (OS) 

Jun Ma 

This doctoral thesis presents a general optimization system design introduced under our 

new concept of Optimization Services (OS) along with its Optimization Services Protocol 

(OSP). Optimization Services is intended to be a unified framework for the next generation 

distributed optimization systems, mainly optimization over the Internet. Thus Optimization 

Services can be regarded as the Operations Research Internet. The corresponding Optimization 

Services Protocol is intended to be a set of industrial standards. 

Optimization Services framework is an XML-based, service-oriented, optimization-

centered, distributed and decentralized architecture. The Optimization Services Protocol is an 

application level networking protocol that includes over 20 sub-protocols of Optimization 

Services x Languages (OSxL). Optimization within a local environment is treated as a special 

case; issues within a local environment are mostly addressed under the distributed case. 

Although large-scale optimization has been under research for over half a century now, the 

challenge of making it useful in practice has continued to the present day. Initially, the greatest 

difficulties were posed by solution computation and model building, but the primary 

impediment to broader use of optimization models and methods today is now more of 

communication. Currently there exists an abundance of optimization solvers and other 

supporting tools, various formats to represent optimization problems, and heterogeneous 

mechanisms to communicate with optimization components. Moreover different optimization 

components are implemented in different programming and modeling languages and located on 

different platforms locally or over the network. Even if a prospective user is not puzzled by 

such a plethora of combinations, the trouble of obtaining, installing, and configuring the 

software does not justify the benefits from using it. 

Through standardization of representation, communication, discovery and registration, the 

framework provides an open infrastructure for all optimization system components including 

modeling language environments, servers, registries, communication agents, interfaces, 

analyzers, solvers and simulations. The goal is that all the algorithmic codes are implemented 

as services under this framework and customers use these computational services similar to 

daily utility services. Optimization Services also facilitates a healthier development 

environment for research and development in the general area of Operations Research and 

Management Sciences. 
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INTRODUCTION 
 

This doctoral thesis presents a general optimization system design introduced under our 

new concept of Optimization Services (OS) along with its Optimization Services Protocol 

(OSP). Optimization Services is a pioneering effort in building a unified framework for the next 

generation of distributed optimization systems, mainly involving optimization over the Internet. 

The phrase “next generation” emphasizes the fact that Optimization Services is a state-of-the-

art design and is not adapted from any existing system. Thus Optimization Services can be 

regarded as a new Operations Research Internet. The corresponding Optimization Services 

Protocol is intended to be a set of industrial standards. We are also developing our own system 

according to this standard OS framework (see http://www.optimizationservices.org [92] or 

http://www.optimizationservices.net [93]).  Optimization Services is the first systematic 

approach to addressing and solving general issues in optimization system and software 

development. Optimization Services Protocol is the first approach to standardizing all major 

instance representations and communications in distributed optimization systems.   

Technically, the newly introduced Optimization Services framework is an XML-based, 

service-oriented, optimization centered, distributed and decentralized architecture. The 

Optimization Services Protocol is an application level networking protocol that includes over 

20 specifications or sub-protocols of Optimization Services x Languages (OSxL1). 

Optimization within a local environment is treated as a special case. Therefore issues that exist 

within a local environment are mostly addressed under the distributed case.  

Although large-scale optimization has been a subject of research for over half a century 

now, the challenge of making it useful in practice has continued to the present day. Initially, the 

greatest difficulties were posed by solution computation and model building, but the primary 

impediment to broader use of optimization models and methods today is now more of 

communication. Currently there exists an abundance of optimization solvers, various formats to 

represent optimization problems, and heterogeneous mechanisms to communicate with 

optimization components. There are also plentiful research initiatives in developing supporting 

                                                 
1 The third small letter “x” in the acronym can be replaced with any of the other 25 letters to represent a 
concrete sub-protocol. For example, OSiL stands for Optimization Services instance Language, which is 
an XML language for representing any optimization instance including general nonlinear programming. 
OSxL is used in this thesis to generically mean all such concrete languages or sub-protocols specified in 
the Optimization Services Protocol (OSP). 
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tools to analyze and benchmark optimization problems, and solvers. Moreover different 

optimization components are implemented in different programming and modeling languages 

and located on different platforms locally or all over the network. Even if a prospective user is 

not to be puzzled by such a plethora of combinations, the trouble of obtaining, installing, and 

configuring the Operations Research (OR) software does not justify the benefits from using it. 

A wider level of collaboration to move toward some agreements is an imminent necessity. The 

research in Optimization Services originated with the motivation to start a wider level of 

cooperation to move toward a final standardization and facilitate a healthier development 

environment for research and development in the general area of Operations Research and 

Management Sciences. 

The research in Optimization Services is technologically timely. In the areas of Computer 

Science and Electrical Engineering, distributed technologies such as XML and Web services 

are growing rapidly in importance in today’s computing environment and are already widely 

accepted as industrial standards. It is our vision that by combining Operations Research and 

modern computing technologies, Optimization Services will make a wider audience aware of, 

and benefit from, an increasing amount of OR software that is implemented increasingly well.  

The advent of Optimization Services is also timely with the current efforts undertaken by 

the Operations Research and Management Sciences community to market the area as the 

Science of Better, to promote practice and to create demand. Through standardization of 

modeling representation, communication, discovery and registration, the framework provides 

an open infrastructure for all optimization system components including modeling language 

environments, servers, registries, communication agents, interfaces, analyzers, solvers and 

simulation engines. The goal is that all the algorithmic codes will be implemented as services 

under this framework and customers use these computational services similar to daily utility 

services (therefore the name Optimization Services). Special knowledge of optimization 

algorithms, problem types, and solver options required of users should be minimized. A supply 

chain modeler, for example, should just concentrate on writing a good supply chain model. 

Everything else that involves detecting the problem structure, finding the right solver, invoking 

the software, solving the instance, providing the computing resources and presenting the 

solution should be automatically taken care of by Optimization Services. It is the combination 

of distributed system embedded intelligence, smooth coordination of all the tasks, and effortless 

human involvement in the whole seamless integration process that makes Optimization 

Services unique and significant.  



 
 

 
 

 
 
 
 

3

A “service” is intended to serve customers. For Optimization Services, there are mainly 

three categories of  customers: 

• Application developers create and build system components such as modeling language 

environments and solvers as part of a larger optimization system. The components together 

take care of such generic functions as managing data, solving optimization problems, and 

presenting solutions in a graphical interface. Optimization Services provides a set of 

specific guidelines for application developers to implement their part of an optimization 

system. The “state-of-the-art” design and the resulted standardization extensively and 

drastically reduce the development time and effort for the developers while significantly 

improving software and system design qualities. Application providers are the major 

intended audience of this thesis.  

• Modelers work in a modeling language environment or in an environment provided by 

some graphical user interface to build optimization models and get acceptable solutions. 

From the perspective of Optimization Services, modelers are the immediate customers and 

beneficiaries; they can now solely concentrate on building more robust models by letting 

Optimization Services take care of the interfacing and solution parts. Modelers should not 

read this thesis in detail, but they should be aware of what Optimization Services is and 

how Optimization Services can benefit them.  

• Users run application packages that perform optimization at some stage through the 

optimization system. Users are usually the ultimate customers of any optimization system. 

With Optimization Services, users may not even realize that they are running optimization 

system components such as solvers, although they are often aware of optimization goals, 

such as minimizing costs or maximizing profits. Although not directly interfacing with 

Optimization Services, users will experience higher quality performance and results from 

of the application packages that they are using. Solutions are more likely and more quickly 

to be found as the application developers now have a much wider range of optimization 

resources to reply upon and modelers can concentrate on building better optimization 

models that more accurately reflect the users’ business problems.  

A side effect of Optimization Services is that although the OS framework is intended to be 

an infrastructure for the area of OR/MS, the design concept and philosophy is general enough 

to be learned and adopted by designers of distributed systems and architectures in many other 

domains. 
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CHAPTER 1 INTRODUCTION TO OPTIMIZATION SERVICES 
 

This chapter gives a general non-technical description of Optimization Services (OS) and 

the corresponding Optimization Services Protocols (OSP). Optimization Services is a unified 

framework for the next generation distributed optimization systems, mainly optimization over 

the Internet. The corresponding Optimization Services Protocol is intended to be a set of 

industrial standards. The phrase “next generation” emphasizes the fact that Optimization 

Services is a state-of-the-art design and is not adapted from any existing system. It also 

suggests that the OS framework fits well in the general picture of the “Future of Computing.”  

 

1.1 Future of Computing – A General Background 

 
Figure 1-1: Future of computing. 

 

Figure 1-1 depicts a future computing framework in which semantic Web services and 

software agents interact with each other. A “consumer” plugs his computer into a so-called 

“computing socket” (or a wireless access point), which is presumably next to the electrical and 
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phone outlets. Computing then is solely viewed as part of the daily utilities that are 

ubiquitously available (thus the coined name Optimization Services).  

The corresponding utility or power company is the consumer’s application service 

provider that rents computing power and resources and charges a monthly bill. As soon as the 

consumer starts his computer, a network connection is instantly established. Software agents 

will help find where the consumer’s requested services are, automatically, based on the request 

time, the computing socket location, and the consumer’s own needs. The software agents are 

themselves software services. The consumer is not aware of the existence of these agents. 

“Computing power companies” keep registries of these agents and contact them on behalf of 

the consumer. The consumer does not need to know which computer or grid of computers his 

requested services are finally run, just as he does not need to know where his electric power is 

generated or where the water flows in from.  

To locate services, software agents usually coordinate with each other and with registries. 

Some registries are general ones that keep information of all kinds of Web services, such as 

Universal Description, Discovery and Integration (UDDI, see Chapter 4). Others are 

specialized ones like the Optimization Services Registry (see Chapter 8) that only serves 

registration and discovery of Optimization software. Facilities such as Condor [38][72] can 

help in finding computers to provide idle computing power.  

Admittedly most of these tasks could be achieved by an arrangement of customized 

software tools using existing technologies, but that would be an enormous human effort. Think 

of the early Yahoo search engine for Web pages with human categorization.  

Listed below are the major components used to achieve the tasks described in the above 

scenario. Some are mature enough to be commercialized, whereas others are still in different 

research phases:  

• Peer to Peer (P2P) [87] 

• Software Agents [1][39] 

• Ontology and the Semantic Web [18] 

• Grid Computing [41] 

• Embedded Web services [17] 

Although it is true that many of the technologies already exist, it is the combination of 

distributed system embedded intelligence, smooth coordination of all the tasks, and effortless 

human involvement in the whole integration process that makes these scenarios significant. In 

this case, think of the Google search engine[14], with its automated web crawlers and state-of-

the-art file storage design.  
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The above-mentioned lack of automation and heavy human involvement is true of the 

current status of Operations Research (OR) software and system development. A lot of time is 

spent in solving issues such as programming language compatibility, format compatibility, 

interface compatibility, platform compatibility, and system compatibility. Although most of the 

OR related tasks can be done by a combination of manual labor and custom tools using existing 

OR technologies, the OR community needs a combination of software and systems with 

embedded intelligence, seamless integration and no human involvement.  

Our research in Optimization Services is also motivated by the fact that although large-

scale optimization has been a subject of research for over half a century now, the challenge of 

making it useful in practice is still a problem. Initially the greatest difficulties were posed by 

solution computation and model building, but the primary impediment to broader use of 

optimization models and methods today is one of communication.  

Currently there are many optimization solvers, various formats to represent optimization 

problems, and heterogeneous mechanisms to communicate with optimization components. 

There are also numerous research initiatives in developing supporting tools to analyze and 

benchmark optimization problems and solvers. Moreover, different optimization components 

are implemented in different programming and modeling languages and located on different 

platforms locally or all over the network. Even if a prospective user is not puzzled by such a 

plethora of combinations, the trouble of obtaining, installing and configuring the OR software 

does not justify the benefits from using it.  

 

1.2 Optimization Services (OS) 

In the early history of solving the mathematical programs, the translation of an 

optimization model to a format required by a linear program solver involved intensive human 

labor and human labor alone. The first major attempt to provide an environment to help the 

solution of a mathematical program was the matrix generator. A matrix generator is a computer 

code that creates input in the form of coefficient matrices for a linear program solver. The task 

of translation from the modeler’s form to the algorithmic code’s form is thus divided and 

shared between human and computer. The task is shared because what the matrix generator 

takes is not a modeler’s form. A modeler still has to convert a symbolic model to a special 

instance representation and then the matrix generator code translates this representation to the 

format that the solver desires. But the dominance of matrix generator continued to the early 

1980’s. 
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Then there was a big breakthrough with the development of modeling languages (the first 

major one being GAMS, see Figure 1-2), which entirely shifted the human labor of translation 

to computer. In 1983, Robert Fourer articulated a contrast between the modeler’s view and the 

algorithm’s view. He described new design considerations that would combine strength of 

general, high level languages with special-purpose languages [45]. Modeling languages 

introduced two key ideas: separation of the data from the model and separation of modeling 

language from the solver. They addressed the issues of verifiability, modifiability, 

documentability, independence, simplicity, and other special drawbacks of matrix generators. 

As modeling languages began to be packaged with other auxiliary tools that assist in model 

construction, people started to call them modeling systems.   

 

 
Figure 1-2: Home page of GAMS, the first major modeling language (http://www.gams.com).   

 

It has become increasingly common to separate modeling languages and systems from 

optimization solvers. In fact, the modeling language software, solver software, and data used to 

generate the model instance might reside on different machines using different operating 
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systems. The next great leap forward happened in the mid 1990’s when large-scale 

optimization was brought onto the Internet. The NEOS Server [29] for Optimization is the most 

ambitious realization to date of the optimization server idea. A cooperative effort of over 40 

designers, developers, collaborators, and administrators at the Optimization Technology Center 

of Northwestern University and Argonne National Laboratory, NEOS provides access to 

dozens of solvers. Modelers can submit problems with representations of many kinds and 

through networking mechanisms based on nearly all major protocols. 

By using distributed computing technologies such as XML and Web services, we envision 

the Optimization Services approach as the next step in the evolution of optimization 

technologies.  

The Optimization Services framework is an XML-based, service-oriented, optimization 

centered, distributed and decentralized architecture. By using Optimization Services Protocols, 

Optimization Services enable OR software to integrate with partners and clients in a fashion 

that is loosely coupled simple and platform-independent. In the next four sections, we illustrate 

the Optimization Services framework from different perspectives – from the viewpoint of OS 

as a framework for optimization systems, from the viewpoint of OS as a middle computational 

infrastructure for Operations Research (OR), from the viewpoint of OS as a next generation 

Network Enabled Optimization System (NEOS), and from the viewpoint of OS as the OR 

Internet.   

 

1.2.1 OS as a framework for optimization systems 

Optimization Services is a framework that specifies how a set of cooperative classes and 

interfaces should be designed and implemented in order to solve an optimization problem. The 

Optimization Services framework has the following properties: 

• It consists of multiple classes or components, each of which may provide an abstraction of 

some particular optimization concept.  

• It defines how these abstractions work together to solve an optimization problem.  

• Its optimization-related components are reusable, which is what makes Optimization 

Services a good framework, since it provides generic behavior that many different types of 

OR applications can make use of.   

• It organizes patterns at a higher level. By “pattern” we mean a tried and true way to deal 

with an optimization process, from the whole context to the problem and to the final 

solution that appears over and over again. Thus the adopted patterns in the Optimization 
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Services should be an effective means of communication between OR software developers, 

therefore bringing order into chaos.  

There are many definitions of a framework. In Appendix B, we list the classes and 

interfaces provided by Optimization Services. Some may regard these as a framework, but 

these are really a library. There is a key difference between a library and a framework. A 

library contains functions or routines that an application or a user can invoke. A framework 

provides generic, cooperative components that software can follow and extend.  Figure 1-3 

shows the difference between a framework and a library. The Optimization Services framework 

provides a foundation upon which OR applications, software, and libraries are built, whereas an 

OR library is a piece of software used by other OR applications.  

 

 
Figure 1-3: Difference between an OR library and the Optimization Services framework. 

 

Figure 1-3 also shows that the Optimization Services framework, per se, is not a system. It 

becomes a system (the dashed part in the figure) when implemented with the components 

(applications, software, libraries) built upon the framework. All the components work together 

to solve an optimization problem.  

As an analogy, think of the Optimization Services as a constitution. A constitution itself is 

really not a government or a court system. Rather it is a documented framework that specifies 

the components and the nature of a government, its powers and responsibilities. Likewise 

Optimization Services is a “constitution” that specifies how such optimization components as 

modeling languages and solvers should be built and how they should interact with each other, 

only that the OS “constitution” is written in the XML language. Some specific examples in this 

“OS constitution” are specifications for the format of the instance output of a modeling 

language or the process for discovering and invoking a solver.  

Although Optimization Services is intended to be a standard framework, not a system, we 

are also developing the optimization system according to this framework (see 
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http://www.optimizationservices.org [92] or http://www.optimizationservices.net [93]) and 

building libraries for other people to put up their OS software and components (see Chapter 8). 

 

1.2.2 OS as a computational infrastructure for Operations Research (OR)  

Operations Research, as a branch of applied mathematics, has its foundations in 

mathematics, computing and economic theories, on which basic tools in optimization and 

simulation are built. We apply these tools to model problems in such areas as manufacturing, 

distribution, finance, and marketing.  

 

 
Figure 1-4: Positioning of OS in the hierarchy of Operations Research (OR). 

 

Figure 1-4 shows a hierarchy of operations research activities. The highest level in the 

hierarchy is concerned with modeling and is the part that directly interfaces to consumers who 

use models for daily analysis.  

The level of “Underlying Tools” comprises such core areas as mathematical programming, 

stochastic simulation, and statistics. This level is typically regarded as what uniquely defines 

Operations Research.  
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Optimization Services’ position is in the middle of the Operations Research hierarchy. It is 

concerned with things like communication infrastructures, modeling languages and systems. It 

is an interface part that bridges OR modeling with OR tools. When implemented smoothly, it is 

the part that is not noticed by modelers or users.  

 

1.2.3 OS as the next generation Network Enabled Optimization System (NEOS) 

 
Figure 1-5: NEOS Server for Optimization at http://www-neos.mcs.anl.gov.  

The NEOS server of the Optimization Technology Center of Northwestern University and 

Argonne National Laboratory makes more than 50 solvers available through several network 

mechanisms. Because the Server has evolved along with the Web and the Internet from their 

early times, it is limited to some degree by initial design decisions and is facing growing 

communication difficulties.  

Optimization Services, with all the OR applications, software and libraries built upon the 

OS framework, is intended to be the next-generation NEOS. It addresses many outstanding 

design and implementation challenges faced by the current NEOS under the large-scale and 

distributed optimization environment. For example, the benefit to the optimization community 

of a common format for instance representation and an accepted application programming 

interface (API) for solvers is clear. If modeling languages support a common format (addressed 

by our Optimization Services instance Language – OSiL), and solvers support a common API 

that operates on the instance format, then solver developers do not have to worry about 

supporting multiple model formats and modeling language developers do not have to worry 

about supporting varied solver input formats. As stated in the original National Science 

Foundation (NSF) proposal [44] for this research, titled Next-Generation Servers for 

Optimization as an Internet Resource:  

“The planned research is motivated by a vision of a next-generation NEOS Server that 

addresses outstanding challenges of communication in large-scale optimization. This work will 

address design as well as implementation issues posed by standardizing problem 

representations, automating problem analysis and solver choice, working with new web-service 

standards, scheduling computational resources, benchmarking solvers, and verification of 

results — all in the context of the special requirements of large-scale computational 

optimization.” 



 
 
 

12 

 
 
 
 

Considering the fact that the NEOS Server has over the past decade shown significant 

value in helping users of all kinds, Optimization Services can have widespread benefits to 

practitioners inside and outside of the Operations Research community. The continuing goal of 

Optimization Services as the next generation NEOS should stay the same as the current NEOS, 

to “make optimization a part of the worldwide software infrastructure that supports science and 

commerce.”    

There is one fundamental difference between NEOS and Optimization Services. NEOS is 

based on a tightly coupled centralized structure. All the solvers are connected with the server, 

and all the optimization job requests have to go through it. Therefore, the system does not scale 

well.  

On the other hand, Optimization Services adopts a decentralized Service-oriented 

Architecture (SOA, see Chapter 4). There is still in some sense a “central” server in the middle, 

but it functions as a lightweight “registry server,” or just “registry.” Such a registry knows all 

the solvers and other Operations Research software that exist in the whole decentralized system 

by keeping metadata files. Metadata here means that the registry contains information about the 

software, but not the software itself. No solvers are actually executed by this registry; instead 

users directly contact the solvers in a peer-to-peer mode. The advantages of a decentralized 

Service-oriented Architecture are significant and are elaborated throughout this thesis. The 

Internet has become popular because it is a decentralized architecture. There is no such thing as 

a “central repository server” that hosts all the Web pages. Development and maintenance all 

happen spontaneously. It is our vision that a decentralized architecture can better promote 

research and development in Operations Research. 

 

1.2.4 OS as the Operations Research (OR) Internet 

Optimization Services and the Internet are closely related because of the decentralized 

architecture.  
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Figure 1-6: A simplified sketch of Internet for purpose of illustration.  
 

In order to “surf the Internet” (Figure 1-6), a user uses an Internet browser to view the 

Web pages, which usually contain interactive links and forms. Clicking the links and filling in 

forms are what we call the user inputs. In the scenario of Optimization Services (Figure 1-7), 

the user is a modeler and his inputs are a model and the model’s data. Instead of the browser, 

the modeler constructs the model in a Modeling Language Environment (MLE1) or in a 

Graphical User Interface (GUI2) environment and instead of sending the model inputs to a web 

server, the MLE or GUI sends the inputs to an OS server. The OS server hosts solvers rather 

than Web pages (although Web pages can still be hosted along with the solvers on an OS 

server). Although the Internet existed long before it became popular, the entertaining Web 

pages were what made the Internet successful. The same can be said about Optimization 

Services. Without the actual “contents” provided by the solvers, OS is just an empty skeleton 

that can never be widely used no matter how well the skeleton is designed.  

                                                 
1 Modeling Language Environment is more traditionally called Modeling System. In this thesis, we 
prefer to use the term Modeling Language Environment and abbreviate it as MLE to avoid the potential 
confusion on the use of the term “system,” because MLE is just one of the many components considered 
in a more general Optimization Services system.  
2 The difference between MLE and GUI will be explained in www.optimizationservices.org (or http.  
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Figure 1-7: Analogy between Optimization Services and the Internet.  
 

To further apply the analogy, it is never the browser that contacts a web server. Rather the 

browser opens a socket, and through the socket, the browser sends the request and waits for the 

response. These all happen without the user’s knowledge. The exact equivalent of the socket in 

Optimization Services is the communication agent. The MLE or GUI delegates the agent to 

send an optimization instance to the remote OS server that hosts the solver. Like the socket, the 

agent understands all the communication protocols in order to establish the connection. But 

instead of using the HTTP protocol and sending/receiving HTML instances, the agent uses the 

OSP communication protocol and sends/receives OSP representation instances.  

Nowadays people heavily rely on search engines to find Web pages. The Optimization 

Services registry serves the function of a search engine. But unlike the Internet search engines, 

there has to be a unique registry in the whole Optimization Services system to ensure Quality of 

Service (QoS). Communication agents always know where the registry is, as there is only one. 

This registry has complete information of available services, as this is the only place that the 

services can register. The OS registry will not be overburdened as no software is connected 

through it.  

When a certain query is sent to the OS registry, usually from an MLE or GUI, the OS 

registry returns the locations of the found software and the MLE or GUI makes a peer-to-peer 

contact with the software at the provided location. This discovery process is similar to the 

search engine process, with the exception that everything in the OS system happens 

automatically between the software components, without user interaction.  
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On the opposite side of the discovery process is the registration process. In the case of the 

Internet, it is usually the search engine “crawlers” that automatically collect the contents of all 

the Web pages. In the Optimization Services case, it is the OR software developer’s 

responsibility to send the required information to, and get approved by, the OS registry, 

possibly through a mixture of automatic and manual procedures. This is primarily due to two 

reasons. One is that the quantity of OR software packages is not nearly large enough to be 

crawled efficiently. A second, and more important reason, is that the requirement of QoS on the 

OS registry is much stricter in order to ensure smooth functioning between OS components. 

The mechanism of “wantonly” crawling and storing “unwarranted” things found on the 

hyperlink paths degrades the Optimization Services.  

 

1.3 Optimization Services Protocol (OSP) 

A protocol is an agreed upon format for transmitting data between two devices, hardware 

or software. The Optimization Services Protocol determines how optimization related data are 

represented and communicated between two Optimization Services compatible software 

components.  Just like the Internet Protocol (IP), OSP can also be used by organizations sharing 

private networks.  

OSP is a rapidly evolving set of standards that consists of over 20 sub-protocols, all 

described by an abbreviation of in the form of “OSxL”, meaning some Optimization Services x 

Language. For example, OSiL stands for Optimization Services instance Language, which is a 

language expressed in XML to specify the structure and format of general optimization 

instances. As a core of the Optimization Services framework, OSP has great promise for the 

world of Operations Research applications, optimization systems and distributed computing.  

 

1.3.1 OSP as an application level protocol in protocol layering 

In modern protocol design, protocols are “layered.” Layering is a design principle that 

divides the protocol design into a number of smaller parts, each of which accomplishes a 

particular sub-task, and interacts with the other parts of the protocol only in a small number of 

well-defined ways. For example, one layer might describe how to encode text (with ASCII, 

say), while another may detect and retry errors (with TCP, the Internet's Transmission control 

protocol), another handles addressing (with IP, the Internet Protocol). Layering allows the parts 

of a protocol to be designed and tested without a combinatorial explosion of cases, keeping 

each design relatively simple.  
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As illustrated in Figure 1-8, the reference model usually used for layering is the Open 

Systems Interconnection (OSI) seven layer model -- physical, link, network, transport, session, 

presentation, and application layers from bottom to top. The Internet protocols (TCP/IP) can be 

analyzed using the OSI model, even though TCP/IP has only four distinct layers -- network 

access (e.g. Ethernet), internet (e.g. IP), transport (e.g. TCP), and application layers (e.g. 

HTTP). All protocols layered above the HTTP protocol (e.g. SOAP, briefly described in the 

next section) are also called application level protocols. Thus OSP, being a protocol based on 

SOAP (Chapter 4), is classified as an application level networking protocol.  

 

 
Figure 1-8: Layering of Internet protocols.  
 

1.3.2 OSP as an interdisciplinary protocol between CS and OR 

The Optimization Services Protocol is entirely based on SOAP1. Short for Simple Object 

Access Protocol, SOAP is a lightweight XML-based messaging protocol used to encode the 

information in Web service request and response messages. SOAP messages are independent of 

any operating system or protocol and may be transported using a variety of Internet protocols, 

including SMTP, MIME, and HTTP, although nearly always it is using HTTP. Generally, the 

protocols under the network layer belong to the area of Electrical Engineering, and the 

                                                 
1 More exactly, it is our implementation of the Optimization Services Protocol (OSP) that is entirely 
based on SOAP. Theoretically OSP can be built on any networking protocol, but the XML nature of OSP 
and SOAP make them a natural pair.  
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protocols above the network layer belong to the area of Computer Science. In this regard, 

SOAP is naturally a Computer Science protocol. 

 

 
Figure 1-9: OSP inside SOAP, which, in turn, is usually inside HTTP. 

 

Although SOAP defines a set of rules for structuring messages, it does not specify the 

actual content of the messages. In that sense SOAP is a generic and domain-independent 

protocol. OSP takes on the task of specification of the content in the domain area of Operations 

Research. The nature of bridging protocols in two separate areas – Computer Science and 

Operations Research – classifies OSP as an interdisciplinary protocol.  
 In an actual data packet, all the contents specified in OSP are inside a SOAP envelope. As 

both OSP and SOAP are XML based protocols, this is equivalent to saying that OSP contents 

are child elements of a SOAP parent element (Figure 1-9). For example, the Optimization 

Services hookup Language (OShL) sub-protocol of OSP specifies that OS compatible solvers 

should provide an invocation in the form:  

String solve(String instance); 

in which the input string “instance” has to follow the representation format specified by the 

Optimization Services instance Language (OSiL) and the output string has to follow the 

representation format specified by the Optimization Services result Language (OSrL).  

 

HTTP header

SOAP header

OSP content
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1.3.3 OSP sub-protocols 

There are mainly two categories of OSP sub-protocols, one that deals with representation 

(Chapter 6) and the other that deals with communication (Chapter 7). All the sub-protocols 

described in Chapter 8 - Optimization Services Registry, actually belong to either the 

representation or communication category. Since the registry is one of the most significant 

parts of Optimization Services and there are numerous corresponding sub-protocols, all the 

registry related representation sub-protocols are listed separately in Chapter 8. Most of the 

representation sub-protocols are specified in XML schema, a mechanism for defining a 

vocabulary specifying the structure of XML documents (Chapter 4). Most of the 

communication sub-protocols are specified in Web Services Description Language (WSDL, 

Chapter 4), a mechanism to describe the technical invocation syntax of a Web service, such as 

an optimization service.  

The principle of the representation related OSP sub-protocols is that they concentrate on 

content structure rather than presentation appearance, making the files more reusable and 

leaving the visual details to the end-user software, like Modeling Language Environments.  

 

Representation sub-protocols 

Here is the list of names and brief descriptions of the OSP sub-protocols for 

representations (non-registry-related) that are covered in detail in Chapter 6:  

• Optimization Services general Language (OSgL) – definitions of general data structures 

used by all other OSxL schemas. 

• Optimization Services instance Language (OSiL) – a general optimization instance format 

specification, including general nonlinear, constraint and logic, network and graph, 

stochastic and other extensions.  

• Optimization Services linear Language (OSlL) – reserved in honor of the original LP-

FML[53]. LP-FML is among the first XML initiatives to standardize linear optimization 

instance formats.  

• Optimization Services nonlinear Language (OSnL) – definitions of all the nonlinear, 

combinatorial, and other nodes (e.g. operators, operands, etc.) used in other OSxL's, mainly 

OSiL. 

• Optimization Services result Language (OSrL) – a general optimization result format 

specification, mainly outputted by solvers that can include analyses as well as solutions.   
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• Optimization Services option Language (OSoL) – a general OR software option format 

specification.  

• Optimization Services analysis Language (OSaL) – an optimization analysis format 

specification of analyzer output. 

• Optimization Services simulation Language (OSsL) – a specification of input and output 

format of a simulation engine.  

• Optimization Services transformation Language (OStL) – a standard transformation style 

sheet used to present other instance representations.  

 

Communication sub-protocols 

Communication sub-protocols deal with the general areas of optimization access, 

operations and flows. No mechanisms such as encoding and security are addressed in OSP. 

OSP leverages the mechanisms provided by its underlying protocols, for example the encoding 

scheme from SOAP and the security support from HTTP. Here is the list of names and brief 

descriptions of the OSP sub-protocols for communication (non-registry-related) that are 

covered in detail in Chapter 7:  

• Optimization Services hookup Language (OShL) – a description of how to hook up with 

OS software, mainly solvers and analyzers.  

• Optimization Services call Language (OScL) – a description of how to call simulation 

engines.   

• Optimization Services flow Language (OSfL) – an XML document of predefined standard 

flows of optimization services invocations.  

 

Registry sub-protocols 

The following are registry-related representation and communication sub-protocols and are 

covered in detail in Chapter 8: 

• Optimization Services query Language (OSqL, representation) – a specification of the 

query language format used to discover the optimization services in the OS registry.  

• Optimization Services uri Language (OSuL, representation) – a specification of the 

discovery result (in uri) sent back by the OS registry.  

• Optimization Services entity Language (OSeL, representation) – a specification of entity 

information used to describe the static information of an optimization service (such as 

name, type, and description). 
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•  Optimization Services process Language (OSpL, representation) – a specification of 

process information to describe the dynamic information of an optimization service (such 

as number of jobs being solved). 

• Optimization Services benchmark Language (OSbL, representation) – a specification of 

benchmark information used to partly describe an optimization service.  

• Optimization Services yellow-page Language (OSyL, representation) – a specification of 

the organization of the registry database information. 

• Optimization Services discover Language (OSdL, communication) – a description of how 

to discover optimization services in the OS registry.  

• Optimization Services join Language (OSjL, communication) – a description of how an 

optimization service can join the OS registry.  

• Optimization Services knock Language (OSkL, communication) – a description of how the 

OS registry can “knock” on remote OS services to check their run time information.  

• Optimization Services validate Language (OSvL, communication) – a description of how 

the OS registry can be used to validate any OS instance. 

 

A brief outline of the thesis follows. In Chapter 2, we describe optimization systems and 

components in general. Any optimization system that is built on the Optimization Services 

framework is called an Optimization Services (OS) system and the system components are 

called OS-compatible components. In Chapter 3, we discuss two real world distributed 

optimization systems. They initially served as motivations to the research in Optimization 

Services. In fact, the implementation of Optimization Services is intended to be a next-

generation system of the first example -- NEOS. Chapter 4 provides the necessary background 

on modern computing and distributed technologies in order to read the thesis. Chapter 5 

formally introduces the concept of Optimization Services. Chapter 6, Chapter 7, and Chapter 8 

describe respectively the representation, communication, discovery and registration parts of the 

OS framework and the corresponding OSP protocols. Although Optimization Services is 

intended to be a standard framework, NOT a system, we are also developing the Optimization 

Services system according to this framework and building libraries for other people to put up 

their OS software and components. A derived research product from the Optimization Services 

is a modeling language that natively supports the OSP protocols. We generically named this 

modeling language Optimization Services modeling Language (OSmL, see Chapter 9). Unlike 

other OSxL’s, OSmL is the component that directly faces a modeler. So it is not intended to be 

a standard. What is natural for one modeler may not be for another, so user flexibility is the 
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order of the computing world today. OSmL is invented to illustrate an original idea of 

designing modeling languages and to facilitate the adoption of Optimization Services. We end 

the thesis with Chapter 10 with a discussion of additional research and business models based 

on Optimization Services. Appendix A lists some of the extensions of optimization 

representations covered in Chapter 6. The design and implementation of Optimization Services 

libraries are covered in Appendix B.
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CHAPTER 2 OPTIMIZATION SYSTEMS AND COMPONENTS 
 

There are different definitions of an optimization system. The chapter is not intended to 

add another one. Rather our purpose is to describe the scope of the Optimization Services 

framework and show the system components that are targeted in the OS framework’s 

standardization process. We are mainly interested in the more general distributed optimization 

systems. Optimization within a local environment is treated as a special case. Issues that exist 

within a local environment are mostly addressed under the distributed case.  

First we clarify certain terminology usage in this thesis. Most modeling language software 

starts with a core modeling language along with a language compiler. Gradually the core 

evolves to include other auxiliary software such as preprocessors and graphical user interfaces 

(GUIs). By “auxiliary” we mean tools that help in constructing, preprocessing and compiling a 

modeling language, but not solving the model, which is the function of a solver. Modeling 

languages are eventually packaged with solvers in distribution. The whole package is usually 

called a modeling system. In this thesis, however, we stay away from using the term “modeling 

system” to avoid its potential confusion with the more general optimization system shown in 

Figure 2-1. 

 
Figure 2-1: A typical optimization system and component interaction. 
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Although a modeling package without any solvers is sometimes called a modeling system, 

we call a modeling language without any solvers a Modeling Language Environment (MLE), 

that is, a modeling language core with only auxiliary tools. An MLE is one of the components 

in an optimization system. An optimization system contains most of the following components: 

1. Model. This is where a modeler starts. The model component differs from the rest of the 

optimization components in that it is an abstraction of an input problem rather than a 

physical piece.  

2. Modeling Language Environment (MLE). The core of the MLE is the modeling language, 

in which an abstract model is defined. The MLE helps in the implementation process. Often 

a modeling environment may not have a modeling language, but just a spreadsheet or some 

graphical user interfaces with implicitly defined models. We call it a GUI. From the 

perspective of the general optimization system, the functions of MLEs and GUIs are the 

same.   

3. Instance Representation. An instance Representation is also called an instance. It is 

generated by various optimization system components and exchanged among them. For 

example, an MLE parses a model and generates a problem instance. This problem instance 

is then sent to a solver to be solved. The instance component differs from other physical 

components in that it is a data piece rather than software. 

4. Communication Agent/Interface. A communication agent is also called an agent. Agents 

are in charge of communication in a distributed system. No agents are needed in a local 

environment, in which case interfaces and objects are instantiated in memory and methods 

are invoked locally. Communication agents are used to send and receive instances. Instance 

representations and communication agents are least visible to system users, although they 

constitute the backbones of an optimization system.  

5. Server/Registry. Think of a registry as a lightweight server for now. A server or registry is 

the heart of a distributed system. An agent usually communicates with a server or a registry 

before invoking a solver.  

6. Analyzer. This is as an important auxiliary component in the whole system. Without 

analyzers, an optimization system can potentially involve much human interaction. So 

analyzers play a key role in an automated optimization system.  

7. Solver. Being the real “contents” of an optimization system, solvers make the whole system 

meaningful and are what users really need.  
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8. Simulation. Think of a simulation as a black box function evaluator. The simulation engine 

may or may not reside with the solver. If the simulation is a simple function that stays 

locally with the solver, it is usually called a function evaluator, a function pointer, an 

evaluation routine, or an expression tree. In an optimization system, simulations are usually 

invoked by a solver. Most of the optimization solver algorithms involve some iterative 

schemes and each iteration may potentially involve an invocation of the simulation.  

There may be many other components in the optimization system. We mention some of them in 

the following chapters, such as problem libraries, and solver benchmarkers. However the above 

eight components are the key ones. They are the main targets to be “regulated” by the 

Optimization Services framework (Chapter 5). When all these components are built according 

to the Optimization Services (OS) framework, we call them “OS-compatible,” and we call the 

optimization system an Optimization Services system. Each of the components is explained in 

detail in the subsequent sections. 

The process of the optimization system in Figure 2-1 is self-explanatory. Typically the 

process starts from a modeler who has a model (1) to be solved. He constructs the model in an 

MLE (2). The MLE in turn compiles the model and generates an instance representation (3). 

The MLE then delegates a communication agent (4) to send the instance to a solver (7). In a 

local environment, where there is no agent, the link between 4 and 7 is an interface through 

which the MLE instantiates the solver in memory. In a distributed environment, the MLE may 

access the solver through a server or a registry (5), therefore the respective links between 4 and 

5 and between 5 and 7. The communication with the analyzer (6) is similar to that with a solver 

(7). The link between communication agent (4) and simulation (8) means that the agent may 

call the simulation to get a function value, although in an optimization scenario, it is usually the 

solver (7) that calls the simulation (8) iteratively.  

As will become clear, the triangle between communication agent (4), registry (5) and solver 

(7) will later evolve into the Service-oriented Architecture (SOA). The design philosophy of 

SOA serves as the basis of our Optimization Services framework. A “service” is intended to 

serve customers. For our optimization system, there are mainly three categories of “human” 

customers: 

• Application developers create and build system components such as modeling language 

environments and solvers as part of a larger optimization system. The components together 

take care of such generic functions as managing data, solving optimization problems, and 

presenting solutions in a graphical interface. 
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• Modelers work in a modeling language environment or GUI to build optimization models 

and get acceptable solutions. 

• Users run application packages that perform optimization at some stage through the 

optimization system. Users are usually the ultimate customers of any optimization system.  

Modelers and application developers may see optimization in different ways. For modelers, a 

mathematical program is an abstract representation to be analyzed and understood; for 

application developers, a mathematical program is a concrete instance to be represented, 

communicated and solved. Modelers benefit most immediately from innovations that help 

people to choose and experiment with optimization software. Some application developers are 

also modelers, while others deal mainly with the inputs and outputs of optimization models set 

up by modelers. Users may not even realize that they are running optimization system 

components such as solvers, although they are often aware of optimization goals, such as 

minimizing costs or maximizing profits.  

 

2.1 Model  
In general, models are abstractions of reality. Although a model can take forms such as a 

graph or a flow chart, the models we discuss in this thesis are mainly high-level mathematical 

representations of problems that people find reasonably natural or convenient. The solved 

models are often used to assist in decision-making, an essential principle of Operations 

Research and Management Sciences. With the help of a range of quantitative techniques, 

models are tested, manipulated, and hopefully solved. Thus the models must be accurately 

formulated. For example, most of the time, the goals, the decisions, and the constraints of the 

problem must be clearly defined. The term “mathematical programming1” is often used as a 

synonym for “optimization” to mean the minimization or maximization of an objective function 

of many variables subject to constraints on the variables. A typical example is a linear program, 

0x
tosubject

 minimize

≥
= bAx

cx
x

 (2-1) 

                                                 
1 The word “programming” was first used in the 1940’s to mean planning or scheduling of related 
activities within a large operation; the necessary relationship to computer programming was incidental to 
the choice of name. There is no direct connection between the two, although indirectly some computer 
programming must be done in order to solve mathematical programs ://www.optimizationservices.net). 
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where x  is an n -vector of variables, c  is an n -vector of objective coefficients, A  is an 

nm× matrix of constraint coefficients, and b  is an m -vector of constraint right hand side 

coefficients. The expression cx  is called the objective function and the equations bAx = are 

called the constraints.  Usually A  has more columns than rows, and bAx = is therefore quite 

likely to be under-determined, leaving great latitude in the choice of variables x with which to 

minimize cx . The expression of the math program can have many variations. All these affect 

the design of a modeling language discussed in the next section.  

• Language variation. People may state the model in a different language to mean the same 

model. One common example would be using “s.t.” instead of “subject to.”  

• Algebraic variation. A simplest example would be to use y instead of x  to represent 

variable vectors. Also in (2-1), instead of using bAx = , we can use a double-sided 

constraint bAxb ≤≤  to express the same math program. 

• Mathematical program type variation. The above example illustrates a linear math 

program. We can have many more math program types by allowing different variable types 

(continuous, integer, binary), function types (linear, nonlinear), constraint types 

(unconstrained, bound constrained, generally constrained) and other special properties 

(special objectives, special operators, special structures, special parameter, variable or 

function behaviors).  The analysis and categorization of optimization can be a daunting task 

(Figure 2-2). Much effort has been dedicated to designing a good categorization of 

optimization problems such as the one shown in Figure 2-3. A good categorization with 

unambiguousness and practicality will facilitate automated analysis thus directing 

optimization system development in a healthy and robust way (more in Chapter 6).  
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Figure 2-2: A daunting task of optimization categorization. 

 

 
Figure 2-3: NEOS Optimization Tree to help users manually choose connected solvers.  

We described three types of customers of optimization systems. A modeler is the person to 

formulate a model in a mathematical program. The modeler needs to express both what the 

mathematical program is and how it relates to the situation being modeled. Models expressed in 

mathematical programs should have the following common characteristics [45]: 

• Symbolic. They represent most of the problem data by symbols, which are usually 

mnemonic in nature.  

• General. They can define an entire class of mathematical programs together, each 

particular mathematical program corresponding to some choice of data. 



 
 
 

28 
 

 
 
 
 

• Concise. They describe a mathematical program nearly as briefly as possible, in such a way 

that the description’s length depends on the complexity of the model rather than on the 

quantity of data or on particular data values.  

• Understandable. They present a mathematical program in a form that is easily read and 

comprehended by people. 

Different people have different preferences of expressing a mathematical model. The 

Optimization Services framework is not intended to standardize the expression of the model at 

the user or modeler level. The Optimization Services framework mainly regulates the 

communication between machine and software components. In fact, through standardizing the 

underlying communication, the Optimization Services framework promotes the flexibility for 

users to express models differently with various modeling languages, as they will no longer be 

limited by the choices of software due to interface compatibility issues.   

 

2.2 Modeling Language Environment (MLE) 
Modeling languages are a standard tool in the development of mathematical programming 

applications. A modeling language environment is designed to help people formulate 

mathematical programs and analyze their solutions. A modeling language environment takes as 

input the above described “model,” and translates the model to the forms required by solvers 

automatically. Figure 2-4 shows an example of the classic diet problem expressed in the AMPL 

modeling language. The goal of a modeling language is to express a mathematical 

programming problem in much the same way that a modeler does, which is to describe 

mathematical programs in a readable and symbolic form, such as the familiar algebraic notation 

for variables, constraints, and objectives. 
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Figure 2-4: The AMPL model and data on the classic diet problem (http://www.ampl.com). 

 

set NUTR ordered; 
set FOOD ordered; 
 
param cost {FOOD} >= 0; 
param f_min {FOOD} >= 0, default 0; 
param f_max {j in FOOD} >= f_min[j], default Infinity; 
 
param n_min {NUTR} >= 0, default 0; 
param n_max {i in NUTR} >= n_min[i], default Infinity; 
 
param amt {NUTR,FOOD} >= 0; 
 
# ------------------------------------------ 
 
var Buy {j in FOOD} integer >= f_min[j], <= f_max[j]; 
 
# -------------------------------------------------------- 
 
minimize Total_Cost:  sum {j in FOOD} cost[j] * Buy[j]; 
 
# -------------------------------------------------------- 
 
subject to Diet {i in NUTR}: 
n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i]; 

param:  FOOD:                    cost  f_min  f_max := 
"Quarter Pounder w/ Cheese"    1.84     .      . 
"McLean Deluxe w/ Cheese"      2.19     .      . 
"Big Mac"                      1.84     .      . 
"Filet-O-Fish"                 1.44     .      . 
"McGrilled Chicken"            2.29     .      . 
"Fries, small"                  .77     .      . 
"Sausage McMuffin"             1.29     .      . 
"1% Lowfat Milk"                .60     .      . 
"Orange Juice"                  .72     .      . ; 
 
param:  NUTR:   n_min  n_max := 
Cal      2000      . 
Carbo     350    375 
Protein    55      . 
VitA      100      . 
VitC      100      . 
Calc      100      . 
Iron      100      . ; 
 
param amt (tr): 
Cal  Carbo Protein   VitA   VitC  Calc  Iron := 
"Quarter Pounder w/ Cheese"  510     34     28     15      6    30    20 
"McLean Deluxe w/ Cheese"    370     35     24     15     10    20    20 
"Big Mac"                    500     42     25      6      2    25    20 
"Filet-O-Fish"               370     38     14      2      0    15    10 
"McGrilled Chicken"          400     42     31      8     15    15     8 
"Fries, small"               220     26      3      0     15     0     2 
"Sausage McMuffin"           345     27     15      4      0    20    15 
"1% Lowfat Milk"             110     12      9     10      4    30     0 
"Orange Juice"                80     20      1      2    120     2     2 ; 
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A modeling language is, however, not a general-purpose programming language; rather, it 

is a special purpose declarative language that expresses the mathematical programming model 

in a notation that computer system can interpret. Be aware that there are modeling languages 

for other areas in Operations Research, such as simulation, statistical regression and differential 

equations. But mathematical models in these areas tend to have a fairly small number of 

equations that may be written out in full without undue effort. 

Mathematical programming models, by contrast, are almost always too big to be 

represented without symbolic combinatorial devices, such as index sets. Modeling languages 

for mathematical programs are consequently somewhat harder to design and implement.  

In general, any modeling language for mathematical programs must satisfy two opposing 

sets of requirements. One set is imposed by the needs of customers discussed early in this 

chapter and the other by the nature of computers. Customers want a modeling language that is 

easy to use and to understand. Thus a modeling language needs to enforce an organization and 

terminology that modelers find convenient and natural.  

Computer systems, on the other hand, require a modeling language that can be processed 

and translated at reasonable cost. Above all, this means that the specification of a modeling 

language – both syntax and semantics – must be unambiguous and not overly complicated. 

Additionally, the language’s notation must be simple and precise enough to be read, stored, and 

printed by machines. A practical modeling language is a compromise between the above 

requirements. In principle this compromise can be carried out in many ways, and workable 

modeling languages are designed in many ways. For example, in general, a flexible and 

powerful modeling language is most logically based on a variable-and-constraint (row-wise) 

form. However, a modeling language can also be derived from any activity-and-requirement 

(column-wise) modeler’s form with no greater difficulty. There are other attractive forms for 

more specialized applications; as an example, a modeling language for network linear programs 

could be based on a node-and-arc form of description.  

A modeling language is the core of a modeling language environment. The most important 

module in an MLE is a compiler that translates a model into an instance. Among the other 

auxiliary software modules are graphical user interfaces (GUIs) (e.g. Figure 2-5) and 

preprocessors. MLEs usually lead to more reliable application of mathematical programming at 

lower overall cost.  
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Figure 2-5: AIMMS Modeling Environment with model explorer and property windows 

(http://www.aimms.com) . 

 

Common alternatives to algebraic modeling language environments include spreadsheet 

front ends to optimization, and custom optimization applications written in general-purpose 

programming languages that are usually equipped with some GUIs. Matrix generators may be 

used behind the GUIs to generate optimization instances.  

In the Optimization Services framework, the MLE is required to output an instance in 

Optimization Services instance Language (OSiL, Chapter 6). Also if the MLE is to invoke OS 

software on a distributed system, it must either carry out the communication following exactly 

the OS communication protocols or invoke an OS agent to do the job instead (Chapter 7).  

 

2.3 Instance Representation 
If a model is to express a mathematical program in a modeler’s form, an instance 

representation is to express it in a computer algorithm’s or solver’s form. These two forms of 

mathematical programs are not much alike. Most applications of mathematical programming 
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involve translating one form to the other and communicating the translated form to other 

system components through some complex interfaces.  

There are three main reasons we emphasize the roles of instance representations and later 

interfaces (or agents in a distributed environment): 

• Regular users and modelers (as versus developers) do not see low-level representations and 

interfaces. But in certain situations, awareness of low level operations helps make more 

appropriate judgments and decisions. 

• The low level representations and interfaces are the biggest obstacle for the development of 

optimization in the Internet age. A good design of a low level component is essential for 

efficient and effective communication between different optimization system components. 

This is the key to building a simple, standard, scalable and smooth system infrastructure.  

• The principal advantage of an instance representation as a separation between a modeling 

language environment and a solver lies in its flexibility. Writing software for interfacing, or 

drivers, does not require access to proprietary information about either the MLE or the 

solver. Thus the writing of drivers is encouraged. Some may be written by a modeling 

language developer and others by a solver developer. Driver source code can be made 

public, providing useful examples for writers of additional drivers.  

Upon receiving a “solve” request from the modeler, the modeling language environment 

compiles the current high-level model/data into a particular low-level1 optimization problem, or 

instance representation, in a format that has been designed to be flexible and easy to be parsed 

to the input data structure required by a solver. Such a generic process is described in Figure 

2-6.  

 

 
Figure 2-6: A generic process of instance generation and parsing. 

 

                                                 
1 In this thesis, we mean the low-level instance representation when we simply say representation or 
instance. 
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Without the modeling language environment, a modeler must formulate his model directly 

in an instance representation, which is tedious and difficult to understand and adapt to similar 

models. Instance representations are distinctly different from models expressed in mathematical 

programs [45] in that they are: 

• explicit rather than symbolic –  they incorporate numerical problem data directly in the 

model; 

• specific rather than general –  they describe just one particular mathematical programs; 

• redundant rather than concise –  they describe a mathematical program more extensively 

than necessary, and the length of their description depends on the number and size of the 

data values;  

• convenient rather than understandable – they organize a mathematical program so that it 

can be stored and operated upon most efficiently by the computer. 

There are many acceptable instance representation formats just as there are many modeling 

languages. Table 2-1 lists different optimization types and major corresponding input formats. 

Many solvers also take binary inputs directly from general programming languages such as C, 

C++, Java, Matlab and FORTRAN. The Optimization Services instance Language (OSiL) in 

the OS framework supports all the major optimization types.  
Linear Programming  

Quadratic Programming 

Mixed Integer Linear Programming 

MPS, xMPS, LP, CPLEX, GMP, 

GLP, PuLP, LPFML, MLE 

instances 

Nonlinearly Constrained Optimization 

Bounded Constrained Optimization 

Mixed Integer Nonlinearly Constrained Optimization 

Complementarity Problems 

Nondifferentiable Optimization 

Global Optimization 

MLE instances 

SIF (only for Lancelot solver)  

Semidefinite & Second Order Cone Programming Sparse SDPA, SDPLR 

Linear Network Optimization NETGEN, NETFLO, DIMACS, 

RELAX4 

Stochastic Linear Programming sMPS 

Stochastic Nonlinear Programming None 

Combinatorial Optimization  None (except for TSP input, only 

intended for solving Traveling 



 
 
 

34 
 

 
 
 
 

Sales Person problems.  

Constraint and Logic Programming None 

Optimization with Distributed Data None 

Optimization via Simulation None 

Table 2-1: Major optimization types and corresponding input formats; Optimization Services 

instance Language (OSiL) supports all the listed optimization types. 

As seen in Table 2-1, there is not a widely accepted format for nonlinear programs. Solvers 

usually take the instance generated from a modeling language, and use the library provided by 

the MLE to parse the instance. Also many optimization types do not have any standard format.  

One widely used format for representing linear and quadratic math programs is the MPS 

format that originated from IBM. See Figure 2-7 for the MPS representation of the quadratic 

program in 2-2. 

 

2-2 

 

 

 
Figure 2-7: MPS representation of the quadratic math program in 2-2.  
 

The original MPS only supported pure linear programming. The QSECTION in Figure 2-7 

for quadratic programming was added in a later MPS extension. The reason that MPS has 

become widely accepted is not due to its flexibility or powerfulness. In fact, MPS was 

originally set up by an IBM user group for data representation using punch cards. It remained 

the only choice for decades until the 1980’s. MPS already falls behind the current needs of 

operations researchers. Nowadays, many outdated formats like MPS and LP, mainly serve for 

NAME          qpEx 
ROWS 
 N  obj 
 G  c1 
COLUMNS 
    x1        c1        6 
    x2        obj       -1 
    x2        c1        7 
    x3        c1        -8 
RHS 
    rhs       c1        9 
QSECTION      obj 
    x1        x1        2 
    x1        x3        -3 
    x2        x2        4 
    x3        x3        5 
ENDATA 
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submitting bug reports and for communicating benchmark problems. Optimization systems use 

much more general and efficient formats for communicating problem instances to solvers and 

for retrieving results.  

 

2.4 Interface/Communication Agent 
The instance representation created by a general-purpose modeling language environment 

is usually not directly input into a solver. Instead the instance is sent through an interface, a 

driver that converts between the generated instance and the data structures required by the 

solver (Figure 2-6). Each solver for a modeling language environment has its own driver, 

tailored to its particular requirements. The driver handles a variety of solver-specific 

information. The most important tasks are the processing of instance representations, handling 

of algorithmic directives (or “options”), evaluation of expressions at given points, and 

generation of solution reports (or “results”). 

In the case of the AMPL modeling language environment, the AMPL language compiler 

converts the current problem instance to an AMPL “.nl” format, which is specific to AMPL, 

but not used by other MLEs. Each solver’s AMPL driver transforms this representation as 

necessary, passes the transformed instance to the solver itself, and retrieves the reported 

solution. Finally the driver converts the solution information to a “.sol” result format that the 

AMPL language environment is able to read and present to the user. The interfacing process is 

illustrated in Figure 2-8.  

 
Figure 2-8: Interface between AMPL and CPLEX solver.   
 

Optimization models are usually developed in the context of some larger algorithmic 

scheme or application. The ability of optimization software to be embedded through smooth 

interfaces is often a key consideration. Although most optimization software packages are built 

to be run in stand-alone mode, many are available in callable library form, and an increasing 

number can be accessed as class libraries in an object-oriented framework. Solver systems have 

long been available in this form, with the application-specific calling program taking the place 
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of a general purpose modeling language environment. Modeling language environments have 

gradually also become available for embedding (Figure 2-9), so that the considerable 

advantages of developing and maintaining a modeling language formulation can be carried over 

into application software that solves instances of a model. Unfortunately, due to lack of 

standards, each interface requires a different implementation. Needs for standardization are 

receiving increasingly serious attention. 

 
Figure 2-9: MPL Modeling Language's component library for embedding in larger applications 

(http://www.maximal-usa.com). 
 

In a distributed system, the generic process illustrated in Figure 2-6 needs the addition of a 

communication agent as shown in Figure 2-10. The separation of an instance from a model 

provides the valuable flexibility needed by the agent. Once a modeling language environment 

has translated a model and data to an instance, the MLE delegates further solver invocation 

process to the agent. The agent in turn sends the instance to the solver side through complex 

networking mechanisms. The agent knows everything about how to invoke a remote solver, 

which arguments to pass, and in which input formats to write the arguments.  
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Figure 2-10: A generic process of instance generation and parsing.  
 

Notice that the instance parsers usually reside together with the solver for purpose of 

computational efficiency. The communication between the two can be highly iterative, such as 

sending function and gradient values at each iteration.   

The solution-finding process runs independently of the MLE. Thus the MLE developers 

can concentrate on high-level language design and parsing and the agent developers can 

concentrate on low-level communication. The communication can involve both distributed 

networking and invocation of local drivers. In either situation, the MLE and the agent do not 

need to remain an active process to wait for the response while the solver is running. For an 

MLE to retrieve a job result later, some mechanisms need to be established to keep the 

networking “stateful,” i.e. matching a request from a later period (e.g. retrieval) with a request 

from a previous period (e.g. job submission).  

The separation of communication agent also allows the agent to be used not only by MLEs 

but also others components in the optimization system. This is a key in the Optimization 

Services framework as many components can potentially be clients of others. For example a 

solver can be a simulation client to request function values from the simulation (see §2.8).  

 

2.5 Optimization Server and Registry 
In the mid-1990s, developers of optimization software began to use Internet services so 

that their users could try their software without installing it on their local computers. The initial 

optimization servers tended to use email or ftp to move problem files in one or both directions, 

with the associated Web pages advertising and explaining the service. Designs soon evolved to 

make use of Web Wide Web forms that were integral parts of server operations. The NEOS 

Server [29] for Optimization is the biggest and most successful realization to date of the 

optimization server idea. More is discussed in Chapter 3.  
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For the optimization servers, people’s main interest is in the server side. The client is 

generally a browser (or a “thin” client) that sends problems and receives results via ordinary 

Web pages. Data are represented in HTML and sent through HTTP, while the server-side 

connections to solvers are usually via such mechanisms as Common Gateway Interface (CGI) 

scripts (Figure 2-11).  

 
Figure 2-11: A typical optimization server with a “thin” client. 

 

Technologies are needed to balance the work between client and server while maintaining 

or improving the quality of the client-server communication. For example more recent 

optimization servers (e.g. NEOS Kestrel [28]) allow model building on the local machine 

through a modeling language environment (or a “thick” client) and let the MLE conduct 

communications via such remote procedure call mechanisms as CORBA or XML-RPC. Such 

arrangements offer the greater stability and portability of established standards, together with 

the advantages of an object-oriented design (Figure 2-12). 

 
Figure 2-12: An optimization server with a “thick” client.  
 

However, the fundamental server side architecture remains the same, and a user stills 

needs to access the optimization software through the optimization server. Therefore, an 

optimization server needs some way to protect itself from requests that can soak up all available 

resources. Some improvements have been achieved through different means. For example a 

time limit or a charge proportional to resource usage is sometimes imposed, but these 

mechanisms may discourage the use of an optimization server. More flexible strategies are 

implemented to take advantage of prior experience with different problems and solvers. One 
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such strategy is to build a database of solver performance that can be automatically updated as 

optimization requests are carried out. An adaptive scheduler can then employ information from 

the database, together with specific customer preferences, in making initial allocations of 

computing resources to requests. For long-running jobs, such a scheduler can also monitor 

performance and take simple actions, such as increasing or decreasing a job’s priority, moving 

a job to a faster or slower machine, suspending a job while querying its owner for instructions, 

and terminating a job.  

The above strategies only achieve marginal improvements. A fundamental alternative to 

the traditional centralized optimization server is to replace the server with a “middle man” not 

to carry out the optimization jobs, but to provide connection information between clients and 

solvers.   

The optimization Services framework takes this next step and introduces the concept of an 

optimization registry (Figure 2-13). An agent first contacts the registry for location information 

about solvers. Upon response from the registry, the agent takes a second step to contact the 

solver in a peer-to-peer mode. In both steps, data representation and communication follow the 

Optimization Services Protocol (OSP). Such an arrangement alleviates the burden of any 

traditional optimization server. Another direct result of the decentralization is that solver 

providers will correspondingly assume a more independent role to compete for customers’ 

business. We envision decentralization as the future in distributed optimization for it provides 

an encouraging environment for the development of optimization systems and components. The 

Optimization Services registry is described in detail in Chapter 8.  

 

 
Figure 2-13: The optimization registry architecture. 
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2.6 Analyzer 
Programming languages such as C++ or Java are equipped with supporting tools, e.g. 

debuggers, in their corresponding integrated development environment (IDE1). Similarly 

analyzers are traditionally viewed as auxiliary components of a modeling language 

environment (or what we abbreviated as MLE2). They can be used in a preprocessing or a 

presolve phase of an optimization before the final instance is sent to a solver. If an optimization 

model is easy enough, it can potentially be solved by an analyzer without sending to a solver. 

As shown in the Optimization Services framework, mainly with the introduction of the 

optimization registry and the corresponding discovery mechanism in a decentralized 

optimization system, analyzers become a highly integrated and critical part of the whole 

framework. The output of an analyzer can be used by a solver query engine to locate the 

appropriate solvers for the model analyzed by the analyzer. So unlike other auxiliary tools 

provided by a modeling language environment, analyzers are treated as a separate system 

component.  

Conventionally, a solver query engine could communicate directly with modelers. But its 

usefulness would then depend on the willingness and ability of modelers to give correct lists of 

characteristics for the problems they want to solve. If problem characteristics could instead be 

automatically extracted from the modeler’s submissions, the query engine could operate much 

more automatically and reliably. So as a basic requirement, analyzers should be able to detect 

the optimization types of a problem instance. If the format of an instance is well designed, in 

many cases conclusions can be immediately drawn by looking at the structure of the instance. 

For example if the instance format is separated into distinct linear and nonlinear parts, and if 

the analyzer does not detect the nonlinear part, it follows that the problem is a linear program. 

Figure 2-14 shows a basic mathematical program analysis report from the MProbe Analyzer 

[18], most of which can be detected by parsing the instance without further computation.  

 

                                                 
1 An example of an IDE is Microsoft Visual Studio. 
2 The creation of the acronym “MLE” is related to the fact that people use “IDE” to stand for integrated 
development environment.  
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Figure 2-14: MProbe Analyzer’s basic analysis report.  

 

For more advanced details, analyzers usually require further computational work such as 

studying nonlinear functions to discern their shapes in a region of interest. Such information is 

often crucial in finding the best-fit optimization solver. Again for these more advanced 

structure detection, there are problem characteristics that can be unambiguously determined by 

fast algorithms (e.g. network flow problems, quadratic problems) and there are more difficult 

ones that cannot be analyzed in an efficient and completely certain way (e.g. convex/non-

convex problems). If the analyzer is used as a standalone tool, user interaction can help 

throughout the analysis process. But in the context of an optimization system, an analyzer is 

used as an intermediate procedure in a computerized process. There is no user available for 

extra input or hints. We want to make an automatic determination of problem characteristics, 

and of solver choice based on those characteristics. Tradeoffs between speed and reliability 

should be carefully considered.  

From the Optimization Services framework perspective, there are more requirements on 

the analyzers in terms of communication with other components. For example, after a modeling 

language environment converts a model into an instance, the MLE will likely send the instance 
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to the analyzer before contacting a solver. So the analyzer should take the same instance as any 

solver on the optimization system.  

After an analysis is carried out, the analyzer’s output is converted into a query that feeds 

into an optimization registry’s solver search engine. Such a process requires a standardized 

analyzer output that can be converted into the query understood by the registry. An OS-

compatible analyzer should take OSiL as its input and generate output in OSaL, the 

Optimization Services analysis Language. See Chapter 6 for more information on these 

representations.   

 

2.7 Solver 
Optimization solvers, or solvers, are algorithms designed and implemented to find optimal 

solutions to specific optimization problems. A solver takes a low-level instance of an 

optimization problem and produces another low-level representation of the optimization result. 

Any solver on an Optimization Services system should take the Optimization Services instance 

Language (OSiL) as its input and generate the Optimization Services result Language (OSrL, 

see Chapter 6) as its output.  

A solver, however, does not usually carry out computation directly on the instance 

representation. Rather an instance reader parses the input into the internal objects or data 

structures required by the solver’s algorithm. Optimization Services provides libraries for 

reading the standard OSiL input (OSiLReader) and writing the OSrL output (OSiLWriter), as 

shown in Figure 2-15.  

 
Figure 2-15: A generic input and output process of an Optimization Services compatible solver.  
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Not only there are optimization solvers of many types, there are also usually large 

differences between solvers of similar types in performance in terms of speed, numerical 

stability, and adaptability to computer architectures. As solvers are the ultimate need of an 

optimization system user, the quality of the solvers directly determines the success of the entire 

optimization system. This is especially important in a decentralized and automated architecture 

like Optimization Services. To ensure that the OS registry only send addresses of the solvers 

that are of reasonably high quality, regulations are imposed when an OS-compatible solver is to 

be registered in the OS registry. Special OSP protocols are also designed to make sure a solver 

is well-described, live, reliable, and robust. Information about solvers that is kept in the OS 

registry includes: 

• entity information that is reported by solver developers at registration., e.g. solver types, 

solver locations, maximum problem size (Optimization Services entity Language, OSeL, 

see Chapter 8); 

• option information that is reported by solver developers at registration, e.g. algorithm 

directives like maximum time, output listing (Optimization Services option Language, 

OSoL, see Chapter 6); 

• real-time process information that is either automatically reported by the registered solver 

software (“push”) or detected by the OS registry (“pull”), e.g. whether the solver is live 

online, how many optimization jobs are in the solver queue (Optimization Services process 

Language, OSpL, see Chapter 8); 

• benchmark information that is produced separately by auxiliary software tools designated 

by the OS registry, e.g. general solver ratings (Optimization Services benchmark Language, 

OSbL, see Chapter 8).  

Solver development in some areas like stochastic programming is lagging due to the lack of 

a good representation. It is the hope of Optimization Services that by introducing a set of 

universal standards, the project can help facilitate solver development in such areas.  

 

2.8 Simulation (Function Evaluator) 
A conventional iterative hill-climbing or evolutionary searching algorithm such as the 

Newton-based nonlinear optimization method generates a series of trial solutions, or iterates, 

and requires the values of the nonlinear objective and constraint functions only at each 

iteration. These nonlinear solvers typically require a user routine, in a programming language 

such as C or Java, that takes an iterate as input and returns the corresponding objective and 
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constraint function or derivative values as output. We call such routines function evaluators. 

The calling conventions for user-supplied function evaluators differ from one solver to another. 

The function evaluators are called repeatedly throughout the optimization process and directly 

affect the speed of the employed algorithm. 

Usually function evaluators reside locally with the solver that calls them and there are 

explicit mathematical formulas for the objective and constraint functions. In reality, such 

requirements cannot always be met due to reasons like the following:  

• Function evaluators are coded in some general software, usually called a model service that 

calculates function values as well as doing other things. It is possible that the final objective 

and constraint functions consist of calculations from multiple model services.   

• Many model services are located remotely. Local copies cannot be easily duplicated due to 

various reasons. For example, the model service may be tightly coupled with a database 

system.  

• Some model services are so complicated that no simple mathematical representation can be 

formulated.  

• Some of the model services are proprietary and thus their formulas cannot be revealed. 

• Most importantly, some model services do not return results instantaneously. The delays 

make it difficult to integrate the model services into the optimization solver.  

In situations like these, we refer to the function evaluators as simulations.    

Optimization via simulation (or simulation optimization) is usually thought of as 

optimization over performance measures from outputs of stochastic simulations. But the 

simulations that we refer to here can be deterministic as well. As a matter of fact, from the 

Optimization Services framework point of view, function evaluators that specify a set of inputs 

(can be none), a set of outputs (at least one), and the invocation address are considered a 

simulation as illustrated in Figure 2-16. The function form is usually hidden inside the 

simulation. We also call such simulations as “black-box simulations,” and call optimization via 

simulation “black-box optimization.” 

 

 
Figure 2-16: Three requirements of a simulation: input, output and address. 
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If a model requires an optimization via simulation, the simulation function has to contain 

information regarding the three required components, and it is the modeling language’s job to 

provide natural features to support simulation definitions.  

In an optimization problem, an objective or constraint function is of the 

form )21 ,,,( nxxxfy L= , where the function input is a vector and the function output is a 

single scalar ( RR n → ). Our simulation box in Figure 2-16 is more general than a function 

since the simulation can have multiple outputs ( mn RR → ). So a modeler has to specify which 

output or combined value of several outputs is to be taken as the function value ( y ).  

For example suppose the objective function in (2-3) cannot be written in a closed form.  
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(2-3) 

 

 

Instead the function is calculated from the simulation at the address 

http://somesite.com/mySimulation. The black box simulation – “mySimulation” – at this site 

looks like the schema shown in Figure 2-17. 

 

 
Figure 2-17: The schema of a simulation called “mySimulation,” which hides its internal 

calculation.  

 

So “mySimulation” takes three inputs: “a”, “b,” and “c” and generates two outputs: “value” and 

“confidence.” The internal calculation 2
2

2
1 * cba +  is hidden from the user. The objective 

function 2
2

2
1 2xx +  in (2-3) shows that we are only interested in changing two of the input 

parameters: “a” and “c,” as variables and keep “b” constant at 2. Also the objective function 
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ignores the “confidence” output and only takes “value” output. One way to rewrite the model in 

(2-3) as a simulation optimization is shown in (2-4).  
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We replace the objective function with the simulation ),2,( 21 xxonmySimulati , so we pass in 

three inputs. In the simulation definition part of the model we specify the three simulation 

requirements: simulation address, input and output. The inputs – a , b , and c – are listed in 

order and in this example take the values 1x , 2 , and 2x  respectively. In a sense, 

“mySimulation” is no different from a user-defined function, except that in a user-defined 

function we write down the actual form of the function, whereas in “mySimulation” we write 

down the three requirements.  

There are essentially two types of input in the simulation: constant input (e.g. 2=b ) and 

variable input (e.g. 1xa = ). Constant inputs remain the same throughout the simulation 

optimization. Variable inputs are decided by the solver and can change at each optimization 

iteration. This means at each iteration, the solver may call the simulation at the address by 

providing a new set of inputs and obtain a new function value from the simulation outputs.  

 Another thing to notice is that since the simulation engine is a black box, there are usually 

no derivative values provided. Of course the solver can numerically compute a derivative by 

invoking the simulation twice at two separate points and calculate a finite difference. But there 

are two main reasons not to do that. One is due to the long communication time just mentioned. 
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The other is that the behavior of the simulation function is usually unknown. For example it can 

be discrete. So it may not be appropriate to use a solver that requires derivatives on a 

simulation optimization model. These issues and others are discussed in our second example in 

Chapter 3.  

 From the Optimization Services framework point of view, if a simulation like 

“mySimulation” is to be invoked by an OS-compatible solver, its input (“a” “b” and “c”) and 

output (“value” and “confidence”) have to be put in a standard format. Such a standard format 

is specified by the Optimization Services simulation Language (OSsL). Of course when the 

model in (2-4) is translated by a modeling language into the Optimization Services instance 

Language (OSiL), OSiL should support features of simulation optimization and be able to 

embed OSsL.
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CHAPTER 3 OPTIMIZATION SYSTEM IMPLEMENTATIONS 
 

In this chapter we discuss two distributed optimization systems – the AMPL modeling 

system using remote NEOS solvers and Motorola’s Virtual Prototyping (VP) Intelligent 

Optimization System. Issues in designing and implementing the two systems are discussed. The 

two different optimization systems provided us with the initial motivations for a more general 

design and framework. Though architecturally different, these two optimization systems can be 

unified under our Optimization Services framework (see Chapter 5). 

 

3.1 AMPL and Network Enabled Optimization System (NEOS) 
AMPL is an algebraic modeling language developed by Robert Fourer, David Gay and 

Brian Kernighan [48], in the mid 1980’s. For a detailed description, refer to [49] and the AMPL 

Web site at http://www.ampl.com.  General concepts of modeling languages and modeling 

language environments (MLE) are discussed in Chapter 2.  

NEOS stands for Network Enabled Optimization System. The optimization system resides 

at Argonne National Laboratory. The project was started in 1995. NEOS system provides 

optimization software and services through Web, email, socket-based access and Remote 

Procedure Call. Development of the NEOS system has been mainly supported by the 

Optimization Technology Center (OTC) team, which consists of research scientists, professors, 

post-doctorate associates and graduate students from Northwestern University and Argonne 

National Laboratory. With the development of NEOS, emphasis in recent years has shifted to 

Internet, distributed computing, and problem-solving environments. For more information 

check the OTC Web page at http://www.ece.nwu.edu/OTC and the NEOS Web page at 

http://www-neos.mcs.anl.gov.  

 
3.1.1 Standalone AMPL architecture  

Figure 3-1 shows the standalone system architecture of AMPL with a local solver.   
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Figure 3-1: Standalone AMPL-Solver architecture (local). 

 
 A user begins in a command environment. After starting AMPL, the user sees the AMPL’s 

prompt: 
ampl: 

The user communicates with AMPL in two ways: by typing commands, and by setting options 

that influence subsequent commands. In Figure 3-1, the user invokes a previously constructed 

model, which usually consist of a “.mod” file and a “.dat” file. The “.mod” file is AMPL’s 

abstract algebraic representation of an optimization problem. The “.dat” file contains specific 

values of data that define a particular problem. AMPL then combines the “.mod” and “.dat” file 

and converts them into a low level optimization instance representation in a “.nl” format. For 

the diet example in Figure 2-4, that corresponds to a user typing at the prompt:  
ampl: model diet.mod; 
ampl: data diet.dat; 

and a diet .nl file is created. Then as soon as the user types: 
ampl: option solver minos; 
ampl: solve; 

the “.nl” instance file is sent to the Minos solver through the AMPL-Solver Driver, a piece of  

interface software between the AMPL modeling language and the hooked solver.  

For nonlinear objectives and constraints, the AMPL-Solver Driver contains an expression 

tree to calculate function values, and sometimes gradients and Hessians as well. Throughout the 

optimization iterations, the solver calls function evaluation routines that use expression trees 

and obtains function values ( xf ) from the expression trees by providing the current variable 

values ( x ), all through the AMPL-Solver Driver. Due to the hill-climbing nature of most 

nonlinear algorithms, solvers need to know the function values only at specific points.  
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Finally optimization results are sent back by solvers. The AMPL-Solver Driver interface 

converts the results into a “.sol” format and the AMPL modeling provides convenient 

commands for viewing the solutions.  

 

3.1.2 AMPL-NEOS architecture  
 

The NEOS Server currently provides more than 50 optimization solvers through many 

types of networking interfaces. Users send requests to a central server at Argonne National Lab, 

but optimization solvers can be on any workstation on the Internet that is connected with NEOS 

through a standard setup [27].  

NEOS’s Kestrel interface provides a mechanism that enables remote optimization from 

within the AMPL modeling environment.  For example to solve the diet problem using the 

remote Minos solver on NEOS, the user would type at the prompt: 
ampl: model diet.mod; 
ampl: data diet.dat; 
ampl: option solver kestrel; 
ampl: option kestrel_options ‘solver=minos’; 
ampl: solve; 

So much remains the same for the user. From the user’s perspective, Kestrel is just another 

“solver” and the real solver provided through Kestrel just appears to be a further option under 

the “Kestrel solver.” There is no networking jargon and all the communication details are 

hidden by the AMPL-Kestrel interface. The user won’t notice whether the model is solved 

locally or on a network. When the “solve” command is executed, AMPL delegates the Kestrel 

agent to handle all the networking protocols such as CORBA or XML-RPC to send requests 

and receive responses. In fact even AMPL does not know anything about the networking. To be 

more exact, the Kestrel communication agent hides everything from the modeling language 

environment. For a detailed description of Kestrel, refer to the paper by Dolan et al. [28]. 
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Figure 3-2: AMPL-NEOS Architecture through Kestrel. 

 
As a result, the locally running AMPL modeling language environment can have access to 

a wide variety of the remote NEOS solvers. Moreover, optimization results are provided within 

the AMPL modeling language environment so that users do not need to parse a result file to use 

the generated answers. From the Kestrel perspective, we call AMPL a “thick” (or “fat”) 

network client, as it takes away from the NEOS server many of the optimization 

responsibilities, such as compilation, preprocessing, and presentation. Otherwise, if an 

optimization request is submitted via an Internet browser, the NEOS server would do nearly all 

the work. In this case, we call the Internet browser a “thin” network client. 

 In terms of architecture, there are no major differences between the standalone AMPL and 

the AMPL-NEOS system shown in Figure 3-2. They are essentially the same at the two ends of 

the optimization process, that is, the local modeling environment and the remote solving 

environment. The AMPL-NEOS system adds a Kestrel client agent and a Kestrel server agent 

between the AMPL modeling environment and the NEOS server and connects the two Kestrel 

interfaces with either a CORBA or an XML-RPC interconnection. The NEOS server then 

further relays the information to and from the solver. The “.nl” and “.sol” files are transmitted 

between the Kestrel agents rather than through a local interface.  

 

3.1.3 AMPL-NEOS optimization problem representation issues 
 

The large number of optimization types serves as a barrier as well as a motivation toward 

input format standardization. Neither AMPL nor NEOS precludes any text or binary file format 

to be passed to a solver. If there are N solvers (or other software such as analyzers) on NEOS, 

then N different drivers are required to read the AMPL nl format. Besides AMPL, there are 
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many other algebraic modeling languages and numerous GUI environments with prewritten 

optimization models underneath. Suppose there are M modeling languages and GUIs and N 

solvers, then M × N drivers are required for complete interoperability over NEOS (Figure 3-4).   

 
Figure 3-3: M x N drivers needed by M modeling languages (or GUIs) and N solvers (or analyzers). 

 

Even a cursory look at the NEOS Server’s list of solvers (Figure 3-5) reveals the babble of 

input formats recognized by current optimization software. There are more than a dozen 

different low-level formats recognized by one or another solver in the NEOS lineup, including 

MPS [86] formats for linear and integer programming, SMPS [10] extensions to the MPS 

format for stochastic programming, SIF [24] for nonlinear programming, formats such as 

SDPA specific to semidefinite programming, and DIMACS min-cost flow and other formats 

for network linear programming. Other solvers recognize input programmed as functions in 

various languages including FORTRAN, C, C++, and Matlab.  

To the extent that there is any greater degree of standardization, it is through the use of 

input written in higher-level optimization modeling languages. Although NEOS works with the 

GAMS [12][16] and AMPL [48][49] languages, however, each of these supports only some of 

the available solvers. An arrangement that applies AMPL solvers to GAMS models is at best a 

stopgap, requiring execution of both the AMPL and GAMS compilers.  

XML has emerged over the past few years to guide the design of standard forms for 

Internet communication of all kinds. The XML Schema described in Chapter 4, for example, 

can be used to enforce a standard for optimization and can grow in a well-defined way to 

accommodate new problems types. This contrasts with the current situation, where for example, 
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parsers for the MPS Standard [86] vary in details between implementations, interpreters of the 

SMPS standard [10] are even more varied, and no proposal for nonlinear extensions (see, for 

instance [60]) has caught on at all. 

In our Optimization Services framework, we propose a new low-level XML format 

(Optimization Services instance Language – OSiL, see Chapter 6) that currently supports all of 

the problem types supported through the NEOS Server, with sufficient flexibility to be 

extended to new types. Using the standard representation of an instance, only M + N drivers are 

required for complete interoperability (Figure 3-4).   

 
Figure 3-4: M + N drivers needed by M modeling languages (or GUIs) and N solvers (or analyzers) 

with a standard XML instance. 

 

OSiL addresses problems that are not application-specific, but are as specialized as 

stochastic recourse problems or as generalized as nonlinear-constrained programs. The 

adoption of such a format by solvers will make them more universally available through 

Internet services. The adoption of the same format by modeling languages will enable solvers 

to more readily support many languages. The overall effect will be to decouple language and 

solver choices, letting the user pick the best tools for any project.  
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Figure 3-5: Part of the NEOS Server’s list of solvers and problems formats.  

   

3.1.4  AMPL-NEOS optimization communication issues 
 

Solving large optimization problems may require computational power far beyond what 

regular desktop workstations can offer. Due to increasing computing and networking power, 

typical users now have access to more resources than ever before. When NEOS project was 

begun in 1995, the Web was just beginning to come into widespread use. At first the NEOS 
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supported only low-level file formats and FORTRAN programs, and input only via e-mail; 

successive enhancements provided the much more powerful and convenient communication 

options available today. To ensure reliability of the Server, this work used early and relatively 

mature standards, such as Web forms, TCP/IP sockets for the NEOS Submission Tool (see 

http://www-neos.mcs.anl.gov/neos/server-submit.html) and CORBA for the Kestrel interface 

[28] (see also http://www-neos.mcs.anl.gov/neos/kestrel.html).  

Now a user can submit an optimization problem to NEOS via any of the above-mentioned 

interfaces. The NEOS Server then locates the specified solver in its data bank and schedules the 

user’s optimization job request on a remotely connected computation resource that is currently 

available and equipped to process jobs of the given type. Registered solver providers must 

provide software and sometimes hardware. Solver administrators have to write implementations 

to check data consistency, solve optimization problems, and return appropriate results. The 

NEOS Communication Package, a Perl application, is provided to facilitate communications 

between the NEOS Server and solver computers. The latest version of NEOS has been re-

implemented in the more powerful Python programming language and all the server-solver 

connections have been updated accordingly.  

But still, the current NEOS Server has not fundamentally addressed the communication 

difficulties of large-scale optimization with respect to the combinatorial effect of the plethora of 

solver types, interface choices, and connection to modeling languages. As the NEOS Server has 

evolved along with the Web and the Internet, it is limited to some degree by early design 

decisions.  

We are now seeing a new generation of standards that make Web services more flexible in 

design and easier to build and maintain. With tools such as SOAP, WSDL, Web services 

registries (see Chapter 4), we have developed a general and flexible Optimization Services 

environment for developers to make their software easily accessible on the Internet.  

The effects of Optimization Services on NEOS are multifaceted:  

• The NEOS server and its connected solvers will communicate using the Optimization 

Services framework, e.g. using standard representation for data communication.  

• External optimization submissions can still be kept as flexible as possible and may become 

even more flexible. At least one more networking mechanism will be provided, i.e. the 

networking based on the Optimization Services Protocol (OSP). That means NEOS will 

add an interface so that it can be invoked exactly as what’s specified by the Optimization 

Services hook-up Language (OShL, Chapter 7). It will also accept OSiL as a standard 

input, and may gradually deprecate the other formats.  
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• The entire Optimization Services system over the Internet can just be viewed as a new 

decentralized NEOS. In effect the old NEOS will become another OS-compatible solver in 

the new system. The “NEOS server” can then solve more types of optimization by 

delegating the job further to different solvers behind it. We therefore regard the old NEOS 

as a “meta-solver” registered on the new Optimization Services system.  

The Optimization Services framework is also complementary to the design of OSI (Open 

Solver Interface), a standard procedural interface to solvers currently being implemented under 

the auspices of the COIN-OR project [23]. OSI provides a way of calling optimizers directly 

from applications, whereas OSiL is an optimization instance that can be communicated to 

solvers in a variety of ways. The interfacing between Optimization Services and OSI is 

illustrated below in Figure 3-6.  

Suppose an OSiL instance (1) comes in through the Internet from another Optimization 

Services component. From the OSiL sender’s view, an OS solver is being invoked as it accepts 

the standard OSiL as an input. Within the OS solver, the OSiLReader (2) first parses the OSiL 

instance into a set of generic objects/data structures (3) and in turn these objects/data structures 

are transformed into the Open Solver Interface (4), and any COIN-OR compatible solver can be 

hooked up behind the interface. As the OSiL is a standard instance, only one OSiLReader needs 

to be written to read the instance and as the Open Solver Interface is also a standard interface, 

both OSiLReader and Open Solver Interface can be provided in one library. All that a solver 

developer needs to do is to include this library to resolve all interface or format issues.  
 

 
Figure 3-6: The Optimization Services (OS) – Open Solver Interface (OSI) connection. 

 

The success of Optimization Services will promote the work of COIN-OR and in turn the 

wide acceptance of the OSI interface will allow more solvers to be easily hooked into the 
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Optimization Services system. To take further advantage of this, we are extending the OSI 

interface to more optimization types.  

 

3.2 Motorola Labs Multidisciplinary Intelligent Optimization System 
This section describes another optimization system implementation. The project finished 

before the first conception of Optimization Services, so it may seem a bit detached from the 

central theme of this thesis. However, it was through four years of experiences with this 

project, that we gained significant insights in designing Optimization Services. Also it provides 

another perspective in optimization systems used on an intranet within a corporation.  

The Motorola Virtual Prototyping (VP) optimization system is a critical step in a 

multistage effort to develop and deploy enterprise-wide tools that drastically reduce the cycle 

time for new designs and technologies. The principal feature of this effort is the integration of 

design and development processes from various disciplines. The goal is to plan, design, 

construct and manage knowledge-based systems for the transfer, application and execution of 

highly specialized knowledge. The main economic benefit is to be realized in terms of reduced 

engineering effort for new product ideas, improved compliance with standard design and 

development rules, and more optimal design and development trade-offs.  

 
3.2.1 Dataflow and knowledge flow 

 
In 2001, we designed a nonlinear optimization solver using a modified feasible direction 

algorithm for the Virtual Prototyping (VP) group [101], led by Thomas Tirpak at the then 

Motorola Advanced Technology Center (MATC). Solvers of other math programming types 

were subsequently developed. In the second year all the solvers were integrated into the 

distributed Virtual Prototyping system as a new VP service. The service was intended to solve 

most of the general large scale nonlinear optimization problems with discrete variables 

encountered in Motorola’s engineering design. This optimization service has since proved to be 

of value to the Motorola engineering community. It has been applied in areas such as printed 

wiring board design and embedded passives design and has helped achieve significant design 

and engineering cost reductions. 

At the beginning, the VP optimization service was only applied on a single engineering 

domain simulation model. This means the entire objective function was calculated by one 

model service that is usually located on the same machine as the optimization engine. As the 
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system evolved, an objective function can consist of metrics from multiple and distributed 

model services on remote machines, as illustrated in Figure 3-7. 

 
Figure 3-7: Dataflow of optimization with metrics calculated from distributed services. 

 

The objective f  of the optimization service is comprised of many iy  metrics that are 

calculated from the corresponding model service i . The variable set x is shared among all the 

services. The arrows indicate flow of information at each optimization iteration. At the higher 

level is the optimization engine that sends new variable values to individual model services. At 

the lower level are the model services that supply objective values )(xyi  and constraint 

values )(xgi . If there is an objective function, it is possible to generate an improved solution 

just by knowing the current function values.  

 This dataflow also mimics the real world knowledge flow to automate manual processes 

and reduce cycle time. Knowledge derives originally from customers, who express it in the 

form of specifications of their needed products. The specifications are likely to encompass a 

wide area of engineering domains such as electronic engineering, mechanical engineering, 

material engineering and manufacturing. These specifications are distributed to the 

corresponding engineering groups for proof-of-concept designing and prototyping. Without the 

VP Multidisciplinary Intelligent Optimization System, the engineering solutions that have been 

developed in a separate manner are finally combined into a complete prototype in a manual 

way. If the solutions have a so-called “technical interface” conflict, then they are sent back for 

reengineering. Such a process goes on for several rounds mainly in a time-consuming trial and 

error mechanism with many inter-departmental or group meetings. This manual process ends 

when the final complete product is free from design conflicts.  
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With the establishment of the automated Virtual Prototyping system, the optimization 

engine takes the responsibility of coordinating the design solutions that originate from separate 

departments, finds a feasible solution and possibly optimizes within the feasible region to find 

the best combination of designs. The data flow in Figure 3-7 thus leverages on knowledge flow 

in the real engineering world. The higher-level optimization engine replaces the “combination” 

process of inter-departmental meetings. The lower-level model services replace the 

“reengineering” process of individual departments.  

 
3.2.2 Initial modeling of computational complication in test bed 

Before we implemented our robust design (next section) in the VP system, we built a 

simplified test bed to simulate the true Motorola system. In our initial test bed modeling (Figure 

3-8) of the data flow shown in Figure 3-7, different optimization solvers are extended from a 

standard optimizer interface. All solvers interact with optimization problems through a 

common interface. The optimization problem interface is connected with a simple accelerator. 

The accelerator is to simulate the behavior of remote services, and provide estimated function 

values to the solvers locally. Each local optimization problem has a corresponding remote 

service connected with it. The real computations are carried out on the remote services and the 

local optimization problems serve as bridges between the remote services and the optimization 

solvers.   

Model services are simulated with relatively simple functions. All the services are initiated 

in separate process threads. Though the simple function value calculations take no time to 

complete, different time factors are realized by forcing each process thread to wait according to 

the parameters specified for each service. To speed up the optimization process, all the time 

units are scaled down to milliseconds.  

The time for a model service to execute may depend on a variety of factors, e.g., the 

computer on which the service is running, the time of the day, the complexity of the scenario 

represented by the inputs ( x ), etc. Services may be unavailable at certain scheduled or 

unscheduled times. There may be a delay in transmitting the inputs to the services or the 

outputs from the services both due to networking and model service computation time.  
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Figure 3-8: Initial modeling of optimization with metrics calculated from distributed model 

services. 

 

The computational performance of the model services in Motorola’s Virtual Prototyping 

System can be characterized by three factors:  service time, server load factor, and down time. 

Down time includes when the server computer is down, when there is a bug in the model 

service software, and when there are difficulties running the service for a given set of inputs 

( x ). Communication time between the optimization engine and remote services is 

insignificant.  

An immediate issue is that an optimization can easily take thousands of iterations. If each 

iteration takes a long time due to the above factors, it may become impractical to solve the 

whole optimization within a reasonable amount of time.  

Moreover when engineers design and construct their model services, they do not know that 

their models will later be used as parts of an optimization system. Therefore, these model 

services usually do not provide gradient information. The optimization solver often has to be 

based on an algorithm not using derivatives.  
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Benchmarking has been conducted on different optimization algorithms, and a method 

based on Powell’s algorithm [95] with quadratic step length estimation was selected in the 

initial modeling system. Our initial tests have proceeded as follows.  

Benchmark problems are first tested with their objective functions unbroken (i.e. the entire 

objective function) and statistics are collected for comparison with later tests in the distributed 

system. Then the objective functions are arbitrarily divided into several parts and put on 

different machines communicating with the TCP/IP networking protocol. The server, where the 

optimization solver is located, sends the current variable values to each machine for a 

functional evaluation and waits till it gets all the responses. It then gathers the functional values 

and integrates them into a whole function for the optimization solver to conduct the next 

iteration. Primitive estimations such as quadratic fitting and smoothing splines are used to 

approximate the functions. Acceleration is achieved by evaluating from the approximated 

functions rather than getting real values from the remote services.  

Through our initial modeling, we have shown that without any estimation and acceleration 

techniques, the optimizations using distributed systems are solved with the same accuracies and 

same numbers of iterations as before. The time taken to solve each problem is, however, 

significantly longer, since the optimization solver always has to wait for the last and slowest 

machine to respond with a function value.  

Simple acceleration techniques often result in less total optimization time, with relatively 

the same accuracies achieved. But these improvements are not guaranteed on any functions. 

The improvements are not even guaranteed on different starting points of the same function, 

since the response surfaces can behave very differently in various neighborhoods. Our primitive 

acceleration techniques also do not take account of networking anomalies. When a model 

service generates mathematical errors (e.g. divide by zero), the network becomes congested, or 

the server that hosts the model service crashes, our optimization process is terminated too. All 

these suggest further research in a better design and more robust procedure.    

 

3.2.3 A robust implementation of distributed optimization in the real VP system 

The next few sections introduce our effort to design a more advanced architecture using 

intelligent methods of search and acceleration. Along with optimization, special approximation 

procedures are being developed in the areas of statistical learning and artificial intelligence 

including data mining and machine learning. The challenge is how the optimization engine 

should simultaneously use information such as rate of improvement of the objective function 
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and the computational performance characteristics of a set of distributed model services, so that 

the “best” solution can be found in the “shortest” possible time.  

Due to confidentiality issues, in the following discussion actual component names of the 

real system are altered to more generic ones. Model services are referred to by numbers and 

types according to their service categorization explained above. In the benchmarks, algorithms 

are distinguished according to their levels of effectiveness, but the underlying optimization 

algorithms and various methods of function approximation are not disclosed. 

The general system architecture and process flow will, however, be explained in detail. 

This is what the Optimization Services framework is mostly concerned with: to address the 

issues in system designs and provide a good infrastructure to carry out optimization of various 

types including optimization via distributed simulation. Optimization Services allows any 

optimization algorithms and approximation methods to be highly modularized and easily 

plugged into an optimization system.    

  
3.2.4 Design and architecture 

Figure 3-9 shows the VP Multidisciplinary Intelligent Optimization System. The upper 

right part of the figure is the solver architecture. The major component modules are as follows: 

Central Server. This is mainly used to connect to different distributed model services or 

simulation engines offered by the Virtual Prototyping System, and maintain administrative 

routines. Requests for function values from the optimizer are always routed through the server. 

The optimizer is also connected with the server.  

 Simulation Engines. These are the major Virtual Prototyping model services in different 

engineering domains. When the central server relays the input ( x ), the simulation engine i  

returns value iy .  

 Model Constructor. This part is used to dynamically construct multidisciplinary models 

that consist of services offered in the Virtual Prototyping system. It is mainly used to construct 

multi-objective functions: ))(),...(),(( 21 xyxyxyf n , where )(xyi  is calculated by simulation 

engine i . From the optimizer’s view, it is just another simulation engine. Instead of returning 

the value )(xyi from one simulation engine, it returns a combined value of several simulation 

engines. Of course, the optimizer can choose to call separate simulation engines and construct 

the multi-objective function by itself. In this way, the optimizer becomes more flexible since it 
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can decide which simulation engine to call to get an exact value ( y ) and which to estimate to 

get an approximate value ( 'y ).  

 Client. This is usually any engineer who wants to use the services connected through the 

central server. From the client’s view, the optimizer is simply another simulation engine, only 

the optimizer returns an optimized value. The client may not be aware that an optimization 

process is going on. But he may notice it takes longer to get the value, as an optimization may 

involve thousands of invocations of many simulation engines. All the data from are client side 

is sent through a communication socket.  

 

 
Figure 3-9: Architecture of VP Multidisciplinary Intelligent Optimization System.  

 

Following are the modules related specifically to the solver architecture.  

Optimizer. This module contains optimization solvers of different types, including linear 

programming, nonlinearly constrained programming, and integer programming. 

Solver Interface. This is a generic interface that is connected to the remote central server. 

All solvers have to interact with this interface if they need function values from simulation 

engines connected with the central server. Notice that the solver interface separates the solvers 
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from everything else. This means when a solver asks for a function value, it does not know 

where the function value comes from and it does not know whether the function value is exact 

or estimated. The design is critical because it allows any nonlinear solver to carry out the 

simulation optimization without changing its code at all. In a sense, the solver itself is not 

“intelligent.” It is the components connected with the interface that make smart choices of 

function values, making tradeoffs between speed and accuracy.  

Analyzer/Decider. This is the module that the solver interface uses to branch to different 

optimization processes. For example, it decides whether to get the real function value or 

approximate the value from a learned function.   

Statistics Data. This module keeps track of run time information through the entire 

optimization process, for example, the time it takes to get a response from one of the simulation 

engines. The solver interface usually stores the necessary information at each iteration. The 

statistics data is also used by analyzer/decider for carrying out analysis.  

Real Opt. This is the module that routes solver requests to real simulation engines, from 

which the optimizer gets an exact function value.  

Opt Storage. This is an interface that provides access to retrieval and storage of online 

optimization data, for example the variable points and objective values on the optimization path 

that are needed for function learning.  

Hash Table. This is basically a hashed database that stores all the evaluated variable 

points in a special way. In essence, it keeps a table in which a row looks like:  
kk

n
kk fxxxk ,,,,, 10 L  

where k is the iteration number, 
k
ix ’s are the variable values at the kth  iteration and kf is the 

corresponding function value. 

Processed Data. This module is a data structure that processes the data stored in Hash 

Table into a format accessible by Learner Thread so that learning algorithms can be carried out 

with no format compatibility issues.  

Surrogate. This is the module that acts as an approximate deputy for a simulation engine. 

It can be used either to learn a function through Learner or approximate the function value 

through Estimator.     

Learner Thread. This module takes the processed data from Hash Table, and learns 

functions that approximate function of a simulation engine. It is a thread because it carries out 

function learning in a separate thread from the optimization process.   
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Estimator. This module takes the learned function from Learner and provides Optimizer 

with an estimated function value.  

Opt Thread. Opt Thread is a separate thread launched by Solver Interface to get function 

values from the simulation engines. The purpose of Opt Thread is that the optimizer does not 

need to wait for a response from simulation engines because the thread is launched separately 

from the general optimization process. Function values are still to be returned at a later time but 

the optimizer can just carry on its optimization process with estimated function values. One 

main advantage is that more function values will later be obtained for the learning process. 

Another advantage is that when a simulation engine returns an error, the thread can simply be 

aborted without affecting the optimization process.  

 

3.2.5 Optimization process 

Figure 3-10 shows the processes of the entire intelligent optimization system. We will start 

with the normal flow, i.e. the flow with no learning process.  

1). Normal Flow (without learning and approximation)  

On the left part of the figure are processes (processes 0-10 and 11-15) with bold borders. 

They represent a normal nonlinear optimization flow – start with an optimization problem, 

alternate between finding directions/step lengths and updating variables, and finally terminate 

upon certain conditions. The major characteristic in this flow is that processes 2 and 5 do not 

get function values locally. Instead they have to go through process 11 - 15 to get function 

values from remote simulation engines that are connected with the central server. Function 

values are optionally stored in the hash table (process 15).  

Processes 2 and 3 are intended to find step directions. Potentially a large number of 

requests are made to obtain information on function values and gradients. Thus arrows leading 

out of process 2 and leading into process 3 are in bold.  

Processes 5 and 6 are intended to find a step length along the direction. Only a few 

function requests are needed. Naturally, it takes a much shorter time to do a line search than to 

find a direction. According to our benchmarks (§3.2.7), solvers that have a loop back 

mechanism from process 6 to process 4 tend to be much faster. The loop back is intended to do 

a very accurate line search and in practice, all the loop backs in one iteration take only a 

fraction of time of finding a direction.  

2). Intelligent Flow (with learning and approximation) 
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Processes on the right part of the figure (processes 16-25) are with dotted borders and 

represent the intelligent components. Notice the separation between the normal flow and the 

intelligent flow. None of the intelligent components are built within the solver, that is, the 

optimization algorithm remains untouched. The idea is that any solver can leverage on the 

intelligent system with no code alteration and any intelligent system can be plugged in without 

much interfacing effort. This is the key assumption when we redesign optimization via 

Simulation under the Optimization Services framework (Chapter 6).  

The major decision is process 12. If no intelligence is needed, it goes through a regular 

distributed optimization process (12-15) and back to the normal nonlinear algorithm flow (0-

10). Otherwise, it leverages on the estimation and acceleration techniques in the intelligent part.  
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Figure 3-10: Flowchart of the intelligent optimization process; thicker lines mean more frequent 

data flow in the optimization process. 

 
2.1) Intelligence Flow – Analysis Stage 

The first thing after the intelligent optimization starts (16) is to analyze statistics of run 

time information (17), including:  
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• optimization process data, for example current iteration number, variable change rate, 

objective convergence rate, and constraint improvement rate; 

• historical data points in database; 

• finishing status of a simulation (The simulation is successfully run or it generates 

errors); 

• time it takes between requests and responses of a simulation over recent iterations 

• access types of recent function calculations – whether function values are retrieved 

through database, estimated through an approximated function, or evaluated by the 

real simulation engine; 

• last global and local learning time of the function learners; 

• accuracies of function learners through validation between estimated values and real 

values. 

Statistics are constantly updated whenever new information is available.  

2.2) Intelligence Flow – Learning Stage  

Process 19 is a decision to learn a function from historical points. The decision to learn a 

function is based on one criterion, namely whether there are enough new data points. The 

choice of the number of data points is quite empirical and depends on the chosen learning 

algorithms. It can be further studied and may be changed on an adaptive basis.  

Two types of learning are used. The global learning is intended to learn the entire function 

surface, while the local learning is used to learn the function surface in the neighborhood of the 

current variable point. In general learning takes various forms. Complex learning like Neural 

Network Training and Gene Expression Programming are potentially more accurate. For 

general descriptions of statistical learning, machine learning and data mining, refer to the book 

[67]. But they can take a long time. Motorola Advanced Technology Center has developed a 

number of advanced machine learning tools and several of them are both accurate and fast.  The 

main purpose here is not to describe the algorithms inside these tools. The goal is to illustrate 

that with the help of well designed learning tools that are properly coordinated with an 

optimization algorithm, decent acceleration can be achieved (see benchmarks in §3.2.7). In 

addition to the proprietary tools, a range of other function fitting algorithms (e.g. quadratic 

fitting) are tested. But they generally do not fare well in the benchmarks. Although they are 

simpler and faster, they are less accurate in approximating functions in high dimensions, and 

tend to lead optimization in wrong directions.  

In practice, global learners are relatively slower than local learners. Global learners include 

standard statistical regressions, neural network training, gene expression programming, etc. 
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Global learners are launched when an optimization first starts. The leaning or training process 

is stopped sooner at the beginning, but the allowed learning time gradually increases. The 

purpose is to generate a big picture and a roughly smooth shape (i.e. not over-fitting) of a 

function, so optimization can move in a generally correct direction. As data points accumulate, 

we increase learning time and finally as convergence slows down, we switch to local learners.  

Local learners include basis expansion methods such as smoothing splines, kernel methods 

such as local linear or polynomial regressions, and variants of nearest-neighbor methods. By 

the time we switch from a global learner to a local learner, we have accumulated more points. 

Many algorithms in local learning need a large number of points to fit functions in high 

dimensional variable space.  

Just as in optimization that no solver performs the best and fastest on all functions, no 

learners perform the best and fastest on all datasets. Not all global learners or local learners are 

launched, depending on factors such as the number of points and number of variables. For 

example certain learners simply can not be launched with a few points and other learners are 

only suited to fitting in low dimensions. If a learner takes an extremely long time, it may just be 

dropped.  

The following decisions are the three choices that the solver can make to get functional 

values: retrieval, evaluation, and estimation.  

2.3) Intelligence Flow – Retrieval Stage 

Our database is in essence a hash table with the hash key being the x variable 

( nxxx ,..., 21 ) and the hash value being the function value ( xf ) along with an access index. The 

access index measures recentness of variables, which is useful in cases where only recent points 

are needed for learning, estimation and validation. Admittedly, a hash table takes up memory. 

Our reasoning is that memories are abundant, so that in practice we never have to face memory 

overflow. Our main concern is speed rather than space. A hash table’s row indexing is based on 

a hash function value and record retrieval is of constant time. Thus every time we try to search 

for a point x , we don’t have to go through the entire table, which can be time consuming with 

accumulation of data points. Data precision is kept to certain decimal points and digits after that 

are truncated, so points that are close enough are considered the same.  

In our case, retrieving time is only a tiny fraction of the time it takes to calculate a function 

from a simulation engine. If we succeed in locating a previously calculated function value out 

of even thousands of retrievals, we still can save time. Function value retrieval from the 

database happens quite often in practice. There are three reasons that the same points are being 
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retrieved. The first is due to the searching algorithm going back to the same region.  The second 

is due to algorithms using finite differences to evaluate gradients. For a simple illustration, in a 

one variable optimization, the left point used to estimate the gradient at the current point may 

be the next current point if the search decides to move left to that point. The third reason is an 

implementation issue. Most of the time when a solver implementer codes an algorithm, he 

assumes that function evaluation time is negligible or about the same as retrieving from 

memory. So in each iteration he may just keep on requesting the same function evaluation to 

calculate gradient, direction, step size etc, rather than store the value in a local variable for later 

retrieval.  

A closest point (process 23) may also be returned depending on its Euclidean distance to 

the current point. Because variables are normalized to the same scale before optimization, a 

“closeness” measure is set to a very small fraction multiplied by the number of variables. The 

closest point is returned if the distance between the closest point and current point is both 

smaller than the “closeness” measure and smaller than the distance between the closest point 

and the last evaluated point. The first standard is an absolute measure of closeness whereas the 

second standard is a relative closeness with regard to the latest movement. The second standard 

is also used to protect finite difference based gradient estimation, in which the last point is 

almost surely the closest point, thus generating a gradient value of 0.  

2.4) Intelligence Flow – Evaluation Stage 

If no previous data point or closest data point can be retrieved, the Analyzer/Decider may 

choose to get the evaluation (process 24) from the real simulation engine (process 14) through 

the Central Server (process 13). This process is always launched separately, but the flow does 

not go on until after a maximum wait time. The maximum wait time is adaptively set to some 

number of times larger than a moving average of the previous simulation time. If an acceptable 

simulation result is obtained, it is first stored in the Hash Table (process 15). If there is an error 

returned or the maximum wait time expires, the flow moves on to process 24 to return an 

estimated function value. This is a major step toward robust optimization design protecting 

against simulation anomalies. The simulation process is allowed to continue even after the 

maximum wait time. Any result the simulation eventually produces is stored in the database. 

This stored result is of special interest in validation and comparison of learners, because this 

point is both estimated by a learner and evaluated by the real simulation engine.    

2.5) Intelligence Flow – Estimation Stage  

If the Analyzer/Decider finally chooses to estimate a value from a learned function (process 

25), it first needs to validate all the learners to measure learner effectiveness. Whether the 
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estimation is local or global depends on whether the last learning process is global or local, 

because as mentioned above only one type of learner can be at launched one time. Validation is 

based on the sum of squared residual errors between estimated values and evaluated values. 

Validations are executed only on the most recent data. If not enough recent data are both 

evaluated and estimated, extra time will be taken to extract the most recent data from the 

database and estimate them with each learner. The learner that performs the best in validation is 

chosen to return its estimated function value to the solver.  

Currently the Analyzer/Decider has an ad hoc mechanism to guarantee convergence or 

termination. There is a maximum number of times that estimations can be made in a row. When 

convergence rate is slow or the iteration number exceeds a certain limit, the Analyzer/Decider 

will always choose to get an evaluation from the real simulation. Due to the big convergence 

tolerance and the large iteration limit that we set, this mechanism is seldom used in practice.  

 

3.2.6 System implementation issues and lessons learned for Optimization 

Services 

The simulation engines in the Motorola system were not originally built to be optimized 

over a distributed system. In designing an intelligent multidisciplinary optimization system that 

involves legacy simulation software, the following major issues need to be solved for any 

optimization process. Due to the lack of a universal standard and framework, many of the 

design issues were solved on an ad hoc basis. Many of these serve as a motivation for our 

Optimization Services described in Chapter 5. 

Initial Design Generation 

This serves as the initial point for a nonlinear optimization. But not all the simulation 

engines provide such information. A set of quadruples is required for each variable in the form 

of:  

).,,,( boundupperboundlowervaluelikelymostvaluecurrent  

These values are obtained by consulting with domain engineers. Current values can be 

customized for each optimization run by the client. When multi-start optimizations are carried 

out, distribution functions (for example a triangular distribution based on most likely value, 

lower and upper bounds) are used to generate different starting points.   

Common Variable Resolution 

Different simulation engines are implemented in individual domains, without exchanging 

information with each other. As a result, names of parameters and variables are different even 
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though they refer to the same things. For example, the name “bsize” in simulation engine 1 may 

be the same as the name “board_size” in simulation engine 2. Originally, the situation was 

handled by constructing interdisciplinary constraints forcing different variables to be of the 

same values. But then the optimization problem size is made unnecessarily large due to 

redundant variable declarations. An overhaul has been carried out on all the simulation engine 

implementations to find common variables. To match all the different names to a standard 

naming, a static “pairing” table has been constructed, so common variables are detected and 

variables are declared only once. But there are still other issues. For example in the table we 

match “bsize” and “board_size” respectively to a common name “boardSize.” 

Clients may be unaware of the common variable situations by supplying different current 

values to two differently named copies of the same variable, for example setting current values 

of “bsize” to 1.0 and “board_size” to 1.2. In cases like these, we take the average of the two 

values, for example, setting the current value of “boardSize” to 1.1. Most likely values, lower 

bounds, and upper bounds may also be set different when constructing a multi-domain model. 

In practice we choose the largest lower bound, the smallest upper bound, and the average of the 

mostly likely values a compromise.   

Multi-objective Function Construction 

A multi-objective function usually takes the form of a weighted sum. Different simulation 

engines are chosen by the client and corresponding weights are specified for the objective from 

each simulation engine. Weights are solely based on the client’s personal judgment reflecting 

the importance of different simulation metrics. But the client has to indicate whether a smaller 

value or a bigger value of a metric is better, so that the model constructor can build a consistent 

maximization or minimization objective function. Metrics of different simulation engines are 

also in different units; thus the constructed multi-objective function is unitless and only useful 

for relative comparisons, such as Pareto analysis.  

Meaningful reports for each simulation are constructed based on optimal variable values. 

Normalization techniques such as arctangential transformation are taken to bring component 

metrics to the same scale.  

Constraint Enforcement 

Constraints of a multidisciplinary optimization are a combination of all constraints from 

each separate simulation plus interdisciplinary constraints over several simulations across 

domains. All the interdisciplinary constraints are hard coded in an assistant module. The 

assistant module first detects which simulation engines and what variables are chosen, and then 

returns the interdisciplinary constraints that contain the simulations and the variables.  
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Result Interpretation 

Though the Motorola system has a proprietary data format to internally standardize results 

from different simulation engines, they were never intended to be combined with each other to 

construct a multi-objective function. Name conflict is thus one major issue. For example many 

simulation engines return a generic name called “result.” Efforts had to be taken in setting 

distinctions between the names. One way is to rename, but this caused many unforeseeable 

bugs because sometimes results are further analyzed by other computer systems. Another way 

is to group results into subsections and use combinations of simulation names, subsection 

names and result names.  

Another issue, though encountered not as often, is that results can be discrete. During any 

hill-climbing type of optimization, these situations can cause optimization solvers to 

immediately claim a local minimum or maximum. One technique used is a smooth 

interpolation of the previous results. When using a learning technique that tries to estimate the 

function smoothly, this problem is naturally avoided. Techniques can be applied on a situation-

by-situation basis. In one circumstance, we added an “interdisciplinary” objective term, as a 

secondary objective, to make the discrete function continuous. All the interdisciplinary 

objective terms are hard coded in an assistant module. The module first detects whether the 

simulations that have discrete objectives are chosen, and then incorporates into the optimization 

model the corresponding interdisciplinary objective terms. When results from an “altered” 

model are returned, they have to be reinterpreted and presented to the client in terms of the 

original model.   

Process Coordination 

Requests for results from distributed simulations are all launched in parallel, instead of 

sequentially. The simplest coordination technique is to wait for all the processes to finish before 

moving on to the next step. Other techniques are also employed depending on different 

situations. Any major textbook on designing and building parallel programs covers some most 

popular and practical algorithms; see [40]. For our case in Virtual Prototyping, the multi-

objective function can only be constructed with the returns of all the component objectives 

from distributed simulations. Therefore we usually have to wait for the slowest simulation. But 

due to the intelligent mechanisms described above, it is also usually the slowest simulation 

engine whose values are estimated most often by the learners. 

The client may happen to choose simulation engines that do not share variables and 

constraints. In situations like these, separate optimization processes are launched for each 
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individual simulation in parallel, and results are combined finally according to the client’s 

multi-objective construction. 

Queue/Sequence Arrangement 

Sometimes not all simulation processes can be launched at the same time. Some 

simulations may contain input parameters that are results from other simulations.  Flows are 

hard coded when we encounter a combination of simulations that have to be invoked in 

sequence. Simulation processes that have to wait for results from others are put in a queue to be 

notified later. Some standard service flow coordination mechanism is needed here. 

Input Parsing/Output Reporting  

Input parsing and output reporting are specified in a proprietary format. Though 

standardized, the format is complicated and only understood by a few software developers in 

Motorola labs. Moreover the format was not built for multi-disciplinary optimization 

constructions. Special efforts had to be taken to extend the functionality. In the case of process 

sequencing, where one simulation’s input takes a value from another simulation’s output, the 

effort is extremely painstaking. In the case of generating reports of multidisciplinary results and 

mapping multi-dimensional space onto two-dimensional graphs, the procedure is even more 

laborious. 

 

3.2.7 Simulated benchmarks  

Table 3-1 through Table 3-4 show the benchmarks from applying various combinations of 

optimization solvers and function learning algorithms to different simulation services of 

different types. Results are shown in minutes taken to optimize each simulation service or 

combination of simulation services. An “X” in the tables means the optimization process 

aborted due to simulation or network errors. The “>1500” means we manually terminate the 

optimization process after 1500 minutes or 25 hours.  

Each table shows a different learning algorithm used with a set of optimization solvers. 

Table 3-1 uses no learning algorithm and the optimization solvers always try to get exact 

function values by calling the real simulation engines. Table 3-2 uses a simple 3-layer neural 

network learning algorithm. Table 3-3 uses a more advanced gene expression programming 

learning technique. Table 3-4 uses an advanced generalized neural network learning algorithm. 

So the tables are ordered according to the general quality of the learning algorithm used. 

Qualities of these learning algorithms were intensively benchmarked within Motorola in terms 

of both learning accuracy and speed. 
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Within each table, each column indicates a different optimization solver. Four 

optimization solvers are used: MFD, MFD+, Direct MMFD, and Direct MMFD+. MFD is the 

original optimization method based on a modified feasible direction method. MFD requires 

gradient values. We use the finite difference method to get the gradients. MFD+ does a more 

intensive line search to find an accurate step length. As explained in the previous sections, 

finding step lengths involves much fewer function calls than finding search directions. So 

MFD+ is adapted especially for optimization via simulation where each simulation takes a long 

time. Direct MMFD modifies the MFD algorithm so that no gradients are required. Direct 

MMFD+ does a more intensive line search than direct MMFD.  

Within each table, each row indicates a different service or combination of services. 

Remote service execution time is given by the following formula and data: 

 

DTtLFTT s +×= )(  (3-1) 

where: 

sT = Service time for a given server; 

)(tLF  = Load factor as a function of time ( t ); 

DT = Down time.   

Three kinds of services with typical behaviors are identified:  

Service A:  

sT = Uniform distribution [6, 30] seconds 

)(tLF = 2.0 from 0800 to 1700 hours; 1.0 otherwise 

DT = 5% probability of the service going down for 30 seconds 

This service has automatic “crash detection” and recovery; therefore, the maximum down 

time is 30 seconds. 

Service B:  

sT = Uniform distribution [30, 60] seconds 

)(tLF = 1.25 from 0600 to 1400 hours; 1.0 otherwise 

DT = Insignificantly small 

This service runs on a dedicated server; therefore, the load factor does not change 

significantly during the day. The down time is insignificant, because this service runs on dual 

servers, and the robustness of the model service software has been proven. 

Service C:  
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sT = Uniform distribution [30, 90] seconds 

)(tLF = 2.0 from 0800 to 1700 hours; 1.0 otherwise 

DT = 1% probability of the service going down for anywhere between 15 minutes and 16 

hours 

In short, service type A takes the shortest time and service type C takes the longest. 

Service B is the most stable and service A and C can malfunction, thus not able to return 

function values sometimes. “+” means a combination. For example “A+B” means the multi-

objective function consists of metrics calculated from both service type A and service type B.  

In all the tables we only show the time it takes for the methods. It turned out that quality of 

solutions varies little between various methods. It is partly due to final stage fine tuning and 

safeguards for convergence used in our intelligent optimization process, and partly due to 

“good” function behaviors, or normal surface shapes of our simulations. Also in practice, we 

have a good idea of a feasible starting point based on the existing engineering design of a 

product. In most cases, our goal is to improve a product that’s already designed or 

manufactured rather than find an initial design.  

service type MFD MFD+ Direct MMFD Direct MMFD+ 
A X X X X 
B 623 137 310 110 
C X X X X 

A+B X X X X 
A+C X X X X 
B+C X X X X 

A+B+C X X X X 
Table 3-1: Benchmark results from normal optimization without function learners (time in 
minutes).  
 

service type MFD MFD+ Direct MMFD Direct MMFD+ 
A 619 132 376 78 
B 645 287 389 172 
C >1500 >1500 422 192 

A+B 641 212 358 142 
A+C 1231 >1500 401 >1500 
B+C 908 333 385 180 

A+B+C 1147 324 >1500 202 
Table 3-2: Benchmark results from intelligent optimization with a simple 3-layer neural network 
learner (time in minutes).  
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service type MFD MFD+ Direct MMFD Direct MMFD+ 
A 343 71 210 40 
B 360 160 215 91 
C >1500 >1500 230 106 

A+B 361 118 190 79 
A+C >1500 190 210 92 
B+C 480 846 202 93 

A+B+C 647 165 273 114 
Table 3-3: Benchmark results from intelligent optimization with a gene expression programming 
learner (time in minutes).  
 

service type MFD MFD+ Direct MMFD Direct MMFD+ 
A 182 66 93 49 
B 204 87 108 42 
C >1500 1452 105 54 

A+B 165 87 92 37 
A+C 1002 487 145 49 
B+C 229 132 123 45 

A+B+C 293 145 123 67 
Table 3-4: Benchmark results from intelligent optimization with an advanced generalized neural 
network learning (time in minutes).  
 

Table 3-1 shows that without “intelligence” (learning and approximation), an optimization 

either crashes or generally takes longer. In fact, as long as a simulation engine can malfunction, 

the optimization always aborts since nowhere else can it get another function value when an 

error or exception is returned by a simulation. The only benchmark results are from 

optimization that just involves service of type B, the most stable service. From the service type 

B row, we see that if we add an intensive line search (MFD+ vs. MFD, and Direct MMFD+ vs. 

Direct MMFD), we do significantly reduce optimization time. The direct method (Direct 

MMFD vs. MFD, and Direct MMFD+ vs. MFD+) also helps but is not as significant as the 

intensive line search. Combining the intensive line search and the direct method is the best 

choice and it also is true in the cases of intelligent optimization flow where learning algorithms 

are employed.  

Table 3-2 uses a simple 3-layer neural network. Obviously it is more robust as we can get 

all the results. However if we compare the row of service type B with that in Table 3-1, we see 

that the optimization takes longer with each optimization algorithm. This was also true with all 
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the other less advanced learning algorithms that we used in the early prototyping stage, e.g. 

quadratic fitting. If the learning is not accurate, it tends to mislead the optimization direction 

and as a result optimization takes more iterations to finish. The curse of dimensionality is 

always an issue. So learning algorithms robust in high dimension can help. In our situation, 

there are usually 10 to 20 variables involved. Less advanced learning algorithms tend to 

perform badly when the number of variables gets over 10.  

Table 3-2 (as well as Table 3-3 and Table 3-4) also shows that optimization takes longer 

when simulations take longer. With combinations of simulations, the optimization time only 

correlates with the simulation that takes the longest, as we launch the simulations 

simultaneously and wait for the last to return before the next optimization step. One thing to 

notice is that optimization with a combination of simulations does not necessarily take longer 

than optimization with just one simulation. Occasionally they may even help to some extent. 

For example in Table 3-4, the MFD method on service of type “A+B” takes 165 minutes, 

whereas it takes 182 minutes if there is only service of type A. This is sometimes also true if 

other learning algorithms are used. Part of the reason is that there are usually not many extra 

variables involved with combination of services and function learning on more services may 

often be more accurate due to more data accumulation.  

Table 3-3 and Table 3-4 use more advanced learning algorithms. In general the 

optimization takes much less time. This is most obvious in the case of using the most advanced 

generalized neural network learning. So speed and quality of learning algorithms matter 

significantly. But do notice that it is not always true. Occasionally there are some erratic 

behaviors. For example it takes 846 minutes for the MFD+ optimization to finish on service 

type B+C (Table 3-3), while it only takes 333 minutes for the simple neural network (Table 

3-2). Optimization that involves service type C quite often shows these erratic behaviors. It’s 

possible that service type C has a more irregular function shape than the other two, thus harder 

to learn.  

In summary, intensive line search and direct methods both help. Adoption of learning 

makes optimization more robust. Although not always the case, good learning algorithms can 

significantly speed up optimization without losing solution quality. These are all on the 

assumption that simulations take a long time. With simulations whose function evaluations are 

quick, there is no advantage of using intelligent optimization, due to the extra overhead in 

getting a simple function value. 
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CHAPTER 4 OS COMPUTING AND DISTRIBUTED 

TECHNOLOGIES 
 

This chapter provides the necessary background on modern computing and distributed 

technologies in order to read the thesis. We explain all the technologies in the Optimization 

Services context.  

Historically, distributed computing has been focused on the problem of distributing 

computation between several systems that are jointly working on a problem. The most often 

used distributed computing abstraction is the RPC – Remote Procedure Call. RPC allows a 

remote function to be invoked as if it were a local one. The history of RPC-style distributed 

computing is fairly complicated. More or less it started with Sun Microsystems’ Open Network 

Computing (ONC) RPC system in 1987, as the basic communication mechanism for its 

Network File System (NFS). NFS is now supported on UNIX, Linux, and many other 

distributed operating systems. NFS is used to access directories and files located on remote 

computer as if those directories and files were located on the local computer.  

The first major effort toward language-independent and platform-neutral distributed 

computing was taken by the Object Management Group (OMG) in 1989. OMG is a consortium 

that includes over 500 members. In 1991, OMG delivered the first version of Common Object 

Request Broker Architecture (CORBA), a distributed objects platform. CORBA allowed 

programs located in different parts of the network and written in different programming 

languages to communicate with each other. The term Object Request Broker (ORB) gained 

popularity to denote the infrastructure software that enabled distributed objects. In 1996, 

CORBA version 2 introduced the Internet Inter-ORB Protocol (IIOP) as major enhancements in 

the core distributed computing model and higher-level services that distributed objects could 

use. IIOP established CORBA’s dominance in distributed computing for the next 5 years until 

the advent of Web services.  

Microsoft started its own distributed computing initiative around 1990. In 1996, Microsoft 

delivered the Distributed Component Object Model (DCOM), which was closely tied to 

previous Microsoft component efforts such as Object Linking and Embedding (OLE), non-

distributed COM (or OLE2), and ActiveX (lightweight components for web applications). To 

compete with CORBA, the next year (1997) Microsoft introduced COM+ to bring DCOM 

much closer to the CORBA model for distributed computing.  
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In the same year, Sun Microsystems added Remote Method Invocation (RMI) in its Java 

Development Kit (JDK 1.1).  RMI is similar to CORBA and DCOM, but works only with 

objects written in Sun’s Java programming language. In Sun’s 1999 Java 2 Enterprise Edition 

(J2EE) platform, the company integrated RMI with CORBA’s IIOP.  

Unfortunately, CORBA is very complex. It requires significant effort to implement. The 

much simpler XML-based XML-RPC appeared in 1999 and became a strong competitor to 

CORBA. XML-RPC was inspired by two earlier protocols. The first is an anonymous RPC 

protocol designed by a person named Dave Winer. The other more important inspiration was an 

early draft of the SOAP protocol. 

The name of Simple Object Access Protocol (SOAP) appeared for the first time around 

2000, which heralded the era of Web services. Our implementation of Optimization Services is 

entirely based on SOAP and adopts the same architecture as that of Web services.  

Although Remote Procedure Call has been the traditional approach for building distributed 

systems, there are other alternatives such as data-oriented or document-centric messaging (for 

asynchronous invocation). Rather than being focused on distributing computation by 

specifically invoking remote code, messaging takes a different approach. Applications that 

communicate via messaging run their own independent computations and communicate via 

messages that contain pure data. IBM released its messaging product MQSeries in 1993. 

Microsoft’s messaging product is the Microsoft Message Queuing Server (MSMQ). Sun 

Microsystems’ J2EE defines a set of APIs for messaging through the Java Messaging Service 

(JMS). There is no attempt to define a standard interoperability protocol for messaging servers.  

One of the key benefits of Web services is that the core Web service protocols can support 

RPCs and messaging with equal ease. We define Web services and describe related 

technologies in the later sections (§4.5, §4.6, §4.7, §4.8). We also describe the service-oriented 

architecture that structures the Optimization Services framework.  

 

4.1 Basic Computing Technologies and Terminologies  
This section briefly describes basic computing technologies that help in understanding the 

later sections of the chapter. All of these technologies are used directly or indirectly in the 

design and implementation of the Optimization Services framework.  
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4.1.1 Java and OS design philosophies  

In the Optimization Services project, we use the Java programming language to implement 

the Optimization Services (OS) library and build our Optimization Services system. The OS 

library is designed to provide a foundation of reusable objects to speed the development of OS 

applications and make them more reliable. Today many Operations Research applications are 

developed from scratch to solve a specific problem without the benefit of a foundation of tested 

software. This is time consuming and expensive due to the complexity and the thorough testing 

that is required of OR applications. By reusing the many proven classes in the OS library, OS 

developers can build OS applications more efficiently and the OS system will be more reliable.  

In order for OS library to be accepted, it must be immediately useable and at the same time 

provide the depth and flexibility required for advanced applications. Our OS library provides 

depth and flexibility through the extensive use of interfaces to abstract methods and data 

structures. All methods use only these interfaces and abstract classes when accessing internal 

objects and this allows developers to substitute an object that provides new functionality.  

Java was selected because it is platform independent and provides a rich environment for 

application (esp. client and server applications) development. The data structures and methods 

used in OS applications have a large impact on performance and using Java will make efficient 

components more widely available and easier to use. Moreover most current surveys and 

benchmarks [73] find that Java performance on numerical code is comparable to, or better than 

that of C++, with indications that Java's relative performance is continuing to improve. 

 

Portability 

Most programs created on a particular operating system must be converted, or ported, 

before they can run on a different operating system. A major advantage of the Java 

programming language is that users can run the same Java programs on computers using 

different operating systems. The phrase “write once, run anywhere” is often used to describe 

Java programming. This is also the goal of Optimization Services.  

 

Java Virtual Machine (JVM) 

JVM is software that runs Java programs. The virtual machine creates a simulated 

software environment on a computer, which allows Java programs to run outside of the 

computer’s operating system. This helps prevent malfunctioning Java programs from crashing a 

computer system and makes it possible for Java programs to run on different platforms. The 
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Java virtual machine also automatically handles such tasks as garbage collection, threading, 

security, and loading classes. The Optimization Services server that we implemented to host 

services like solvers relies on JVM. Thus hosted services enjoy all the support from JVM.  

 

Free Environment and Open Source Community Support 

The Microsoft .NET initiative includes a new programming language (C#) and a Common 

Language Runtime (CLR). C#’s language design is similar to that of Java and CLR is very 

much like Java’s Virtual Machine – CLR components are implemented as byte code that runs 

in a managed environment. But .NET is Microsoft proprietary and is not free.  

To design and implement an open standard framework like the Optimization Services 

framework, Java is a good fit and almost a necessity. Java is the most widely adopted language 

in the general Open Source and free software community. The language support has a much 

larger audience base. In fact, all the required libraries used in the OS library are open source. 

There are different classes of “free software,” and there are gray areas between each class. For 

more information on Open Source and free software and Open Source license, visit the site 

http://www.opensource.org/. 

 

Objected-oriented Language 

Java is a purely objected-oriented programming language. To design a good distributed 

system framework like the OS framework, the Object-Oriented Programming (OOP) ideology 

and philosophy should be adopted. We describe OOP in more detail in the next section.  

 

4.1.2 Object-Oriented Programming (OOP) 

Object-Oriented Programming is a programming concept developed to make programs 

more understandable and easier to correct and modify. In the OOP concept, a program is made 

up of one or more objects, which are small, re-usable chunks of code. Each object is used to 

perform a specific task and can be shared with other programs. Distributed object-oriented 

systems require object-based RPC. It is almost a necessity to adopt OOP when designing any 

good distributed system.  

In our Optimization Services system, each component is designed as an object. A 

communication Agent object, for example, provides methods for generic networking. The 

mechanism to create the Agent objects is the Agent class. Users of the Agent class are 

provided with a specification of how the class works, but they need no knowledge of how the 
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Agent class is implemented. The separation of specification from implementation is called 

information hiding. In our example, the Agent class hides all the information of our 

Optimization Services Protocol based networking. Classes are more formally called “abstract 

data types” or ADTs in objected-oriented programming terminologies. ADT is the most 

important characteristic of any OOP language.  

A second characteristic of OOP languages is inheritance. In our Optimization Services 

implementation, for example, there is a library package for basic algebra operations. In the 

common algebra package, we define a SparseMatrix. A SparseMatrix class is certainly 

a matrix. Thus the class SparseMatrix can be said to inherit from class Matrix. In this 

context, class Matrix is called a base class and class SparseMatrix is called a derived 

class. SparseMatrix can in turn have its own derived classes, for example, 

DoubleSparseMatrix for a sparse matrix with double precision decimal matrix entries, 

and BigSparseMatrix, for a sparse matrix with arbitrarily precise matrix entries. An 

inheritance hierarchy of matrices is shown in Figure 4-1.  

 
Figure 4-1: Inheritance hierarchy for matrices. 

 

The third characteristic of object-oriented programming language is polymorphism, a 

dynamic binding of messages to method definitions. This is supported by allowing one to 

define polymorphic variables of the type of the base class that are also able to reference objects 

of the derived classes of that class. The base class can define a method that is overridden by its 

subclasses. The operations defined by these methods are similar, but must be customized for 

each class in the hierarchy. When such a method is called through the polymorphic variable, 

that call is bound to the method in the proper class dynamically.  

Polymorphism is the key idea in designing nonlinear programming features in 

Optimization Services. In the case of nonlinear programming, a key aspect of any nonlinear 
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instance parser is some sort of expression tree for the nonlinear part of a model instance. 

Consider the following Rosenbrock [97] nonlinear function: 
22

12
2

1 )(*100)1( XXX −+−  (4-1) 

An expression tree for the function is illustrated in Figure 4-2.  

 

 
Figure 4-2: An OS expression tree for the Rosenbrock nonlinear function. 

One approach is to use a C-structure for each node in the expression tree. The structure can 

store information as to operator or operand type and pointers to children nodes. A tree-walking 

method is used to perform operations on the expression tree such as function or derivative 

evaluations. See Figure 4-3 for an illustration the essential idea. In Figure 4-3, 

expr is a C-structure, *e a pointer to the root node of expression tree and opnum is an integer 

value denoting the node type.  

 
Figure 4-3: Sample code for parsing a nonlinear instance without polymorphism. 

 

Currently there are more than 200 nonlinear operators supported in the Optimization 

Services nonlinear Language (OSnL, §6.3). OSnL is included in the Optimization Services 

instance Language (OSiL, §6.2) for nonlinear extension. A fundamental problem with the 

above approach is that every method that operates on the expression tree requires a switch 
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with a whole series of case statements (or a sequence of more than 200 if statements) 

making the code very complex. Updating the code to reflect new operators can be even more 

time consuming and error prone.  

A second approach is to use an object oriented language such as C++ or Java and define a 

class for each type of node in the expression tree. For example, define a “plus” node class, a 

“minus” node class, an “exponential function” class, etc. However, for an object-oriented 

approach to be effective it is necessary to avoid the use switches and complicated logic as much 

as possible. This is achieved by having each node class extend a single node class and using 

polymorphism.  

In our Optimization Services nonlinear Language (OSnL) library for reading nonlinear 

expressions, we first define an abstract class OSnLNode. All of the operator and operand 

classes used to define a nonlinear term extend the base class OSnLNode. For example, there is 

a class OSnLNodeTimes that extends the base class OSnLNode. This is a significant benefit, 

because we can construct an expression tree of homogenous nodes, i.e. the OSnLNode. 

Methods that operate on the expression tree to calculate function values, derivatives, postfix 

notation, etc. do not require switches or complicated logic. Since each operator and operand 

class extends the OSnLNode, class polymorphism eliminates the need for switches. For 

example, the abstract class OSnLNode has an abstract method calculateFunction that 

takes a double precision array of variable values and evaluates the expression tree for the give 

variable values. Every class that extends OSnLNode must implement this method. Consider 

the node class corresponding to the plus operator, OSnLNodePlus. The 

calculateFunction method for the OSnLNodePlus class is listed in Figure 4-4. 

Compare the logic in Figure 4-4 with the logic in Figure 4-3. Through the use of polymorphism 

and recursion the need for switches is eliminated. Because of this design, adding a new operator 

element is easy. It is simply a matter of adding a new class and implementing the 

calculateFunction() method. 

 
Figure 4-4: Calculating a function value in an OSnLNodePlus class. 
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4.1.3 Networking background and terminologies  

Network and network software 

We sometimes use the term Optimization Services (OS) network. By that we mean a 

group of connected computers that allow people to share optimization services. The size of an 

OS network is therefore the number of computers in this group.  

The OS Network software consists of programs that 1) manage the OS network, 2) provide 

optimization services, and 3) allow computers to communicate and share information on the 

network.  

1). Since Optimization Services relies on widely accepted networking protocols, no 

software (i.e. network operating system) that manages the OS network needs to be provided. 

Most of the time, Optimization Services is based on the Internet. Every modern computer has 

built-in Internet support, so there is no extra installation or configuration in order to run 

Optimization Services applications. If Optimization Services is used on an Intranet, popular 

Local Area Network software is also readily available.  

2). Optimization software developers (e.g. solver developers) are the ones who provide the 

optimization services. Most software is built independent of Optimization Services. Therefore 

some interfacing adaptations need to be made in order to make the software Optimization 

Services compatible.  

3) We as the Optimization Services developers provide the OS server software and library 

to help OS computers to communicate and share optimization services on the OS network. In 

this thesis, OS server and library are what we mean by OS network software.  

 

Network protocols and standards 

 In §1.3.1, we talked about the Open Systems Interconnection  (OSI) networking protocol 

model that specifies seven layers in the OSI model – Application, Presentation, Session, 

Transport, Network, Data Link and Physical from top to bottom. But OSI is only a reference 

model and it may be more detailed than necessary. Sometimes two OSI layers are simple 

enough that they are implemented together. In particular, the best known protocol, the Internet 

protocol (TCP/IP), aggregates some of layers in the OSI model. TCP/IP is a collection of 

protocols and it has only 4 distinct layers -- network access (e.g. Ethernet), internet (e.g. IP), 

transport (e.g. TCP), and application layers (e.g. HTTP). 

Many products (including optimization related products) are needed to create and maintain 

a network. Before a network can function properly, all the products on the network must be 
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able to communicate with each other. Before the protocols are introduced, there was no 

standardized way to exchange information on a network. Many companies developed their own 

network hardware or software without considering how different devices would work with 

other products on a network.  

Most companies now follow the standard protocols so that their products will work with 

products developed by other companies. When companies follow standards, they ensure their 

devices will communicate with other devices on a network. It seems that the standards at the 

bottom layers (hardware) tend to be more mature than those at the top. The reason may be due 

to more diverse types of software at the higher level, which need to allow user flexibility. For 

example, Optimization Services Protocol (OSP) is a domain-specific application protocol. 

There can be many domains that need application protocols and benefit from standardization.  

A major benefit of OSP is that it is an open standard protocol like TCP/IP. This means that 

any company or person can design a device or program that uses OSP without having to pay a 

royalty or licensing fee. Another major advantage of OSP is that due to the layering 

characteristic of networking protocols, OSP can leverage the many generic networking 

mechanisms from its underlying protocols and concentrate on domain specific (i.e. 

optimization) designs. For example OSP can be transmitted (directly or indirectly) over the 

Secure HyperText Transfer Protocol (HTTPS) instead of the normal HTTP protocol. HTTPS is 

then used to securely transfer information on the Internet. HTTPS encrypts and decrypts the 

information exchanged between a server computer and a client computer using a system called 

Secure Sockets Layer or SSL. 

Client/Server networking 

A client/server network consists of a central computer that serves resources and services to 

other computers, called clients. Traditional centralized optimization systems are typically based 

on such networking.  

A client is a computer that requests optimization-related services or access to optimization 

information stored on a server. People use client computers to enter and display information 

processed by an optimization server on a network. An optimization server is usually dedicated 

to providing optimization-related services on a network. As with all centralized networks, 

administrative tasks such as result backup and security monitoring must be performed on a 

regular basis to ensure efficiency and reliability. If the optimization server is tampered with or 

malfunctions, the entire optimization system will be affected. As client/server networks require 

specialized, dedicated hardware and software, they can be very expensive.  
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Peer-to-peer networking 

Our OS network is essentially a peer-to-peer network, as it allows all the computers on the 

network to store and share their resources and services, although on each peer-to-peer link, the 

networking is still set up on a client/server basis. There are no central computers that control 

the network. Software applications, such as optimization solvers, and the OS networking 

software/system (the OS library and OS server) run on each computer. Each computer is set up 

to share and access information and resources on the OS network. Since computers on the OS 

peer-to-peer network are configured to share and access information, individual developers 

administer their own computers. There is usually no dedicated system administrator for the OS 

network.  

If a computer on an OS network is not turned on or malfunctions, the other computers on 

the network will not be able to access the computer’s resources and services. However, 

resources and services on other computers on the network will not be affected. So peer-to-peer 

network is more fault-tolerant than a centralized client/server setup. It has to be acknowledged 

that since developers on the OS peer-to-peer network store files and services on their own 

computers, anyone may be able to access their computers. This makes information on the OS 

peer-to-peer network less secure than the traditionally more centralized optimization systems. 

The cost of a peer-to-peer network is, however, generally low.  

 

4.2 XML 
Optimization Services is an XML-based framework. The OS framework uses XML to 

specify both communication and representation standards.  

XML stands for Extensible Markup Language. It is a subset of Standard Generalized 

Markup Language (SGML) constituting a particular text markup language for representation 

and interchange of structured data. For a quick reference, see [99]. For a complete reference, 

see [107]. SGML is a standard for how to specify a document markup language or tag set. 

HTML is another example of SGML.  

 But unlike HTML, which defines a fixed set of tags describing a fixed number of 

elements, XML is a meta-markup language in which we can define the tags we need to describe 

a document’s structure and meaning. The tags must be organized according to certain general 

principles, but they are quite flexible in their meaning. For example, as we are working with 

optimization and need to describe objectives, variables, constraints, and so forth, we can create 

tags for each of these elements. The tags that we create can be documented in a schema. For 
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now, think of a schema as a vocabulary and syntax for certain kinds of documents. For 

example, our Optimization Services instance Language (OSiL.xsd1) is a schema that 

describes a vocabulary and syntax for an optimization problem instance, and we can use the 

schema to validate an optimization instance. The validation mechanism ensures the stability of 

the Optimization Services standards. Formatting of our optimization instance can be added 

through additional style sheets (e.g. XSL in §4.4), but the instance document itself only 

contains tags that describe the optimization contents, not the appearance. So XML is a semantic 

markup language.   

 

4.2.1 Why XML  

XML became a specification at the World Wide Web Consortium (W3C) in 1998.  Since 

then XML has increasingly been adopted as a standard for information interchange of all kinds.  

Domain-specific 

This is probably the biggest reason that the Optimization Services is XML-based. XML 

allows workers in each research area to develop their own XML dialects. Thus XML is ideal 

for large and complex optimization instance documents.  For example, we can create “variable” 

and “constraint” tags in a way that it is most efficient and effective for storing, transmitting and 

parsing a mathematical program. XML not only lets us specify a vocabulary for the document, 

but also lets us specify the relations between elements. For example, we can require that every 

variable has a lower bound and if the lower bound is missing, it defaults to 0.   

Open 

Optimization Services, being an open framework, requires the standards that it uses to be 

completely open and freely available on the Internet. XML is a W3C standard that is 

nonproprietary, unencumbered by copyright, patent, trade secret, or any other intellectual 

property restriction.  

Interoperable  

 Optimization Services is intended to solve communication issues between heterogeneous 

components over a distributed system. XML can be used on a wide variety of platforms and 

interpreted with a wide variety of tools. XML supports a number of key standards for character 

encoding, allowing it to be used all over the world in a number of different computing 

environment. XML complements our programming language Java, another force for 

interoperability, very well. A considerable amount of early XML development has been in 
                                                 
1 ‘.xsd’ is the file extension of a schema file.  
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Java.  Because the document structures behave consistently, Optimization Services parsers that 

interpret them can be built at relatively low cost in many languages. Also by storing an 

optimization instance in XML format, we are bringing the model closer to the data source and 

facilitating the integration of optimization-based solutions into IT infrastructures. 

Presentable 

XML-based Extensible Stylesheet Language (XSL) offers a convenient way to specify 

translations of XML documents. For example if an optimization solution is formatted in 

Optimization Services result Language (OSrL), XSL can be applied to the solution instance to 

easily produce an HTML document that displays the solution data in a user-friendly form. 

Simple 

XML provides both programmers and document authors with a friendly environment, at 

least by computing standards. XML documents are built upon a core set of basic nested 

structures. While the structures themselves can grow complex as layers of detail are added, the 

mechanisms underlying the structures require very little implementation effort. Furthermore, 

XML is well-documented. The W3C’s XML specification and numerous books and resources 

tell people how to read and write XML data. At a low level, XML is a simple data format. 

XML can be written in pure ASCII text as well as a few other well-defined formats. At a higher 

level, XML is self-describing. Even though most of the Optimization Services representations 

are intended to be read by computer programs, they are certainly readable by humans. This 

certainly helps in developing and debugging the Optimization Services components.  

4.2.2 XML basics and MathML 

An XML representation consists of data delimited by <element> tags, much like an 

html representation of the content of a Web page. Each <element> tag can have space-

delimited attributes in the form of “name=value” and can contain embedded elements:   
<element1 attrName1="value1" attrName2="value2"> 

 <element1 ...> 
  ... 
 </element1> 
 <element2 ...> 
  ... 
 </element2> 
</element1> 

Elements have to be closed with a start tag and an end tag such as:  
<element ...>...</element> 

If an element does not contain embedded elements, the start and end tags can be 

combined such as:  
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<element .../> 
to save some space.   

New collections of XML tags are defined for any specialized purpose by specifying a 

schema. One perceived disadvantage of an XML is its verbosity – the considerable file space 

taken up by tags – but in fact the tags only increase file size by a constant factor, which can be 

considerably reduced by use of optional alternatives to an ASCII representation [53].  

An example of XML is given in Figure 4-5, expressed in MathML [96][109], a dialect of 

XML that is of some particular interest in this thesis. A dialect is an implementation of domain-

specific XML notation governed by a standard schema designed to support languages such as 

chemical markup (CML), mathematical markup (MathML) and all the representation-related 

OSxL in Optimization Services. There are two flavors of MathML: Presentation MathML and 

Content MathML. Figure 4-5 shows the nonlinear expression 2
21 )32( XX +  in Presentation 

MathML, so-called because it describes math notation without trying to capture meaning.  

 

Figure 4-5: Expression 2
21 )32( XX +  in Presentation MathML. 

 

Every XML document begins with an XML declaration, the first line in the above 

example. Then we define some overhead such as the schema location to validate the XML. But 

the more important part is that every MathML document starts with the root element <math>. 

Again there is some overhead in the root element such as defining namespaces used to qualify 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN" 
"http://www.w3.org/TR/MathML2/dtd/mathml2.dtd"> 
<math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> 
 <msup> 
  <mfenced> 
   <mrow> 
    <mrow> 
     <mrow> 
      <mn>2</mn> 
      <mo>&InvisibleTimes;</mo> 
      <mi>X1</mi> 
     </mrow> 
     <mo>+</mo> 
     <mrow> 
      <mn>3</mn> 
      <mo>&InvisibleTimes;</mo> 
      <mi>X2</mi> 
     </mrow> 
    </mrow> 
   </mrow> 
  </mfenced> 
  <mn>2</mn> 
 </msup> 
</math> 
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the elements and avoid potential naming conflicts. For simple clarification purposes, in the 

following XML examples, we skip the overhead parts.  

As seen, Presentation MathML is mainly used to describe the layout structure or 

“rendering” of mathematical notation.  Another set of MathML components, Content MathML, 

attempts to represent meaning. Content MathML is intended to provide an explicit encoding of 

the underlying mathematical structure without regard to how it is presented visually. Figure 4-6 

shows the same expression 2
21 )32( XX +  in Content MathML.  

 

Figure 4-6: Expression 2
21 )32( XX +  in Content MathML.  

 

Content MathML still has <math> as its root element. The fundamental idea of Content 

MathML is to apply (therefore the element <apply>) functions and operators to other 

elements. To do this, Content MathML uses prefix notation. Prefix notation is when the 

operator comes first and is followed by operands. There are three functions shown in the above 

example: <power>, <plus>, and <times>. These functions are applied to number tokens 

(e.g. <cn>2</cn>), identifier tokens (e.g. <ci>X1</ci>), or expressions that again start 

with the <apply> element.  

Content MathML allows information interchange to be more precise to software and 

systems that are able to manipulate the mathematics. Since optimization is about numerical 

computing, Content MathML can theoretically be used in optimization problems to represent 

mathematical expressions, especially nonlinear expressions. But in extending our Optimization 

Services instance Language (OSiL) from linear to nonlinear optimization, we decided against 

using Content MathML. Instead we designed our own Optimization Services nonlinear 

<math> 
 <apply> 
  <power/> 
  <apply> 
   <plus/> 
   <apply> 
    <times/> 
    <cn>2</cn> 
    <ci>X1</ci> 
   </apply> 
   <apply> 
    <times/> 
    <cn>3</cn> 
    <ci>X2</ci> 
   </apply> 
  </apply> 
  <cn>2</cn> 
 </apply> 
</math> 
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Language (OSnL) to represent nonlinear expressions in OSiL. We summarize the main reasons 

below.   

• Content MathML is too comprehensive. Content MathML is designed to support the needs 

of a very diverse set of users. It includes far more than is required in the 

modeling/optimization community. A significant number of features in Content MathML 

will never be used by optimization services and modeling systems (e.g. vector calculus, 

inclusion of Presentation MathML). If an instance unintentionally includes unnecessary 

MathML features which shouldn’t be allowed, the MathML schema will still validate even 

though none of the solvers would ever recognize such features. We believe simplicity is a 

virtue and that means including only what is necessary. 

• Content MathML is not specifically designed to represent instances or instance components 

of mathematical programs. OSiL is designed to represent instances of mathematical 

optimization problems and OSnL is designed to natively complement OSiL for nonlinear 

extensions. Certain features in OSnL that are critical in optimization such as XPath node, 

user functions, and variable subscripts are not naturally supported in Content MathML. For 

example, in Content MathML there is no built-in <var> tag to represent variables and 

variable subscripts. In OSiL a variable is naturally expressed as <var idx="1"/> and 

<var idx="2"/>. In the above MathML examples, we used <ci>X1<ci> and 

<ci>X2<ci> to artificially make up the variables. The concatenation of a variable name 

with an index can be confused with other identifiers. Alternatively, we might use 

<ci><sub><mi>x</mi><mn>1</mn></sub></ci> which is a hopelessly verbose 

and memory consuming way to express a subscript. 

• Content MathML is not under control of the optimization community. This is perhaps the 

single most important reason not to use MathML. We can add optimization-related features 

to OSiL as needed. Using MathML to support optimization features is awkward at best, and 

it is unlikely we can get the W3C to adopt optimization-specific features in a timely fashion. 

Control of a standard for optimization is better left to an organization under the control of 

the Operations Research community. 

• OSiL and OSnL are designed to be easily parsed and used by libraries in the OS API. 

Content MathML has elements in the following categories: tokens, constructors, operators 

and functions, qualifiers, constants and symbols, and semantic mapping elements. However, 

for representing mathematical expressions, OSnL has a very consistent recursive and 

object-oriented design where every element is an “nl node” that takes zero to an indefinite 
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number of children as arguments. This design results in extremely convenient parsing. 

There is a one-to-one mapping between XML DOM (see §4.4) parse tree elements and the 

corresponding OS Expression Tree. There is also a one-to-one correspondence between 

each node element in the OS Expression Tree and each node class in the parsing library 

API. Thus parsing an OSiL document is much easier than parsing a Content MathML 

document. 

However, in order to be as consistent with MathML as possible we adopt the MathML 

element names whenever possible, for example <power> for the power function. Figure 4-7 

shows the same expression 2
21 )32( XX +  in OSnL.  

 

Figure 4-7: Expression 2
21 )32( XX +  in Optimization Services nonlinear Language (OSnL).  

 

There are several things worth noticing. First OSnL is usually embedded in OSiL. The root 

element in the above example has an attribute idx=”9” to indicate that it is part of the 9th 

constraint, whose linear expression part is to be found in the 9th row or constraint, of the OSiL 

instance. By separating out linear part from nonlinear part of an expression, we can take 

advantage of sparsity, which is a necessity in large-scale optimization. The second thing to 

notice is that we avoid the nuisance of unnecessary <apply> elements by adopting a 

recursive design. The result is a cleaner and shorter representation. The third thing to notice is 

that OSnL has the built-in <var> element which can take index (“idx”) and coefficient 

(“coef”) as its attribute. Variables appear so often in optimization that they have to be treated 

specially to make optimization practical. By designing an XML language natively tailored to 

optimization, we can achieve both efficiency and effectiveness in representation and 

communication.  

We illustrate one more XML example in the context Optimization Services. Consider the 

following optimization problem instance which is based on an example of Rosenbrock (1960). 

<nl idx="9"> 
 <power> 
  <plus> 
   <var idx="1" coef="2"/>
   <var idx="2" coef="3"/>
  </plus> 
  <number value="2"/> 
 </power> 
</nl> 
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There are two continuous variables, 0x , 1x , in this problem, each with a lower bound of 0, and 

variable 1x 1x  with an objective function coefficient of 7. This information is represented in 

OSiL in Figure 4-8. 

  
Figure 4-8: The OSiL <variables> element for the modified Rosenbrock problem in (4-2).  
 

In the example, there are two kinds of elements: a <variables> element and a <var> 

element. The <var> element has attributes lb, name, type, and objCoef that further 

describe the properties of the variable that <var> represents.   

Next, we describe the most important technical features of XML schema that are used in 

the Optimization Services representation design. 

 

4.3 XML Schema 
In order to facilitate communication between solvers and modeling languages, the instance 

files must conform to an accepted standard. Otherwise, parsing optimization instance files in a 

meaningful way is impossible. XML Schema is a database-inspired method for specifying 

constraints and enforcing standards on XML documents. XML Schema is itself an XML-based 

language.  

Given an XML Schema, standard tools are available for parsing files that correspond to it, 

and for building libraries to display and manipulate the contents of these files [103][119]. For 

each OS representation language that we introduce for working with instances, we specify 

representation rules in XML Schema. Schemas are explained in detail in §4.3.  

We can think of the schema as a class and an XML instance that conforms to the schema 

as an object or instance of the class. Just as a class very explicitly describes member and 

<variables> 
 <var lb="0" name="x0" type="C"/> 
 <var lb="0" name="x1" type="C" objCoef="7.0"/> 
</columns> 
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method names and properties, an XML Schema explicitly describes element and attribute 

names and properties. 

For our <variables> element in Figure 4-8, Figure 4-9 shows a section of our OSiL 

Schema that specifies its structure both graphically and in text. Many of the schema examples 

in the later chapters are shown in this way.   

 

 

 
Figure 4-9: The <variables> element in OSiL Schema both graphically and in text.  

 

In essence the schema means the variables element contains a sequence of 1 or more 

( ∞..1 ) var elements of type also called var, which is defined below in Figure 4-10.  

 

Figure 4-10: The <var> element in OSiL Schema.  

 

This approach is very object oriented. The <var> type defined in Figure 4-10 is analogous to 

an abstract class in Java. In W3C XML Schema terminology it is called a named type. In order 

<xs:element name="variables"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="var" type="var" minOccurs="0" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 

<xs:complexType name="var"> 
 <xs:attribute name="name" type="xs:string" use="optional"/> 
 <xs:attribute name="init" type="xs:string" use="optional"/> 
 <xs:attribute name="type" use="optional" default="C"> 
  <xs:simpleType> 
   <xs:restriction base="xs:string"> 
    <xs:enumeration value="C"/> 
    <xs:enumeration value="B"/> 
    <xs:enumeration value="I"/> 
    <xs:enumeration value="S"/> 
   </xs:restriction> 
  </xs:simpleType> 
 </xs:attribute> 
 <xs:attribute name="lb" type="xs:double" use="optional" default="0"/> 
 <xs:attribute name="ub" type="xs:double" use="optional" default="INF"/> 
 <xs:attribute name="objCoef" type="xs:double" use="optional" default="0.0"/> 
 <xs:attribute name="mult" type="xs:positiveInteger" use="optional" default="1"/> 
</xs:complexType> 
 

“sequence” 
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to actually have an instance file with <var> elements it is necessary to define in the schema, 

an element (a class) named <var> that is of type var. This is done in the part of the OSiL 

Schema illustrated in Figure 4-9. This allows an instance file to actually instantiate an instance 

of the <var> element.  

In defining the <var> type element, only the attributes listed in Figure 4-10 are allowed 

to be present in a var element. All of these attributes are optional. Properties of the attributes 

are explicitly defined. For example, the lb attribute (variable lower bound) and the ub 

attribute (variable upper bound) must be double precision numbers and the type attribute 

(variable type) must be a string value that is either C (continuous), B (binary), I (integer), or 

S (string). In Chapter 6, we discuss in further detail the OSiL and OSnL schemas that are used 

to define an optimization instance representation. We briefly discuss the basic elements in 

XML Schema next. 

 

Simple Types 

We can have simple types and complex types in an XML Schema. The simple type is a 

restriction of the text that appears in an attribute or element.  For example here is a simple type 

definition of an element.  
<element name="source" type="xs:string" />  
In this case, the defined element source cannot have attributes and can only contain text. We 

can define more complicated simple types such as 
<xs:element name="maxOrMin" minOccurs="0"> 

 <xs:simpleType> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="max"/> 
   <xs:enumeration value="min"/> 
  </xs:restriction> 
 </xs:simpleType> 
</xs:element> 

In this example we are defining a simple type called maxOrMin (objective sense) that has as 

its base the type string. But we further restrict the text in the attribute to take on values of 

either max or min. 

 

Complex Types 

Complex types are elements that contain other elements or have attributes. There are two 

different complex types: anonymous and named.  Here is an example of an anonymous 

complex type. In the tag <xs:complexType> there is no name, hence the term anonymous. 
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<xs:element name="con" minOccurs="0" maxOccurs="unbounded"> 
    <xs:complexType> 
        <xs:attribute name="name" type="xs:string" use="optional"/> 
        <xs:attribute name="ub" type="xs:double" use="optional"/> 
        <xs:attribute name="lb" type="xs:double" use="optional"/> 
        <xs:attribute name="mult" type="xs:int" use="optional"/> 
    </xs:complexType> 
</xs:element> 

We could not use con (constraint) as a type in defining other elements. A named complex 

type is much like an abstract class in C++ or Java. That is, you cannot actually have an object in 

the class but you can have objects in classes derived from it. Below is an example of a named 

type intVector.  In the complexType tag there is now an associated name, in this case 

intVector. 
<xs:complexType name="intVector"> 

 <xs:choice> 
  <xs:element name="base64BinaryData" type="base64BinaryData"/> 
  <xs:element name="el" maxOccurs="unbounded"> 
   <xs:complexType> 
    <xs:simpleContent> 
     <xs:extension base="xs:nonNegativeInteger"> 
      <xs:attribute name="mult" type="xs:positiveInteger" use="optional" default="1"/> 
      <xs:attribute name="incr" type="xs:int" use="optional"/> 
     </xs:extension> 
    </xs:simpleContent> 
   </xs:complexType> 
  </xs:element> 
 </xs:choice> 
</xs:complexType> 

Here is another example of a named complexType. 
<xs:complexType name="sparseVector"> 

 <xs:sequence> 
  <xs:element name="idx" type="intVector" maxOccurs="unbounded"/> 
  <xs:element name="nonz" type="doubleVector"/> 
 </xs:sequence> 
</xs:complexType> 

Note that in this definition of a named complexType we are using the named type 

<intVector>. For example, the element idx is of type intVector. We could now use 

this <sparseVector> elsewhere as to define other elements. We can also define an 

anonymous complexType sparseVector that is of named type sparseVector.  That is, 
<xs:element name="sparseVector" type="sparseVector" minOccurs="0" maxOccurs="unbounded"/> 

We can also do a kind of inheritance through extension.  First we define a base class called 

<baseProgramData>. 
<xs:complexType name="baseProgramData" mixed="false"> 

 <xs:sequence> 
  <xs:element name="constraints" type="constraints" minOccurs="0"/> 
  <xs:element name="variables" type="variables"/> 
  <xs:element name="multiObjectives" type="multiObjectives" minOccurs="0"/> 
  <xs:element name="coefMatrix" type="coefMatrix" minOccurs="0"/> 
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 </xs:sequence> 
</xs:complexType> 
Note in this definition the mixed attribute is set to false. This means that the 

<baseProgramData> element can only contain the specified elements. If the mixed 

attribute is set to true, the <baseProgramData> element can contain text or elements. 

Now extend this base class to allow more elements, such as nl (for nonlinear program 

extension) and cones (for cone programming extension).  

 
<xs:complexType name="programData"> 

 <xs:complexContent> 
  <xs:extension base="baseProgramData"> 
   <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
    <xs:element name="nl" type="nl" minOccurs="0" maxOccurs="unbounded"/> 
    <xs:element name="cones" type="cones" minOccurs="0"/> 
    <xs:element name="stages" type="stages" minOccurs="0"/> 
    <xs:element name="stochastic" type="stochastic" minOccurs="0"/> 
    <xs:element name="userFunctions" type="userFunctions" minOccurs="0"/> 
    <xs:element name="simulations" type="simulations" minOccurs="0"/> 
    <xs:element name="xmlData" type="xmlData" minOccurs="0"/> 
   </xs:sequence> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
Similar to the extension, we can also define a restriction on a complex type base. But it is less 

often used.  

 

Substitution Groups 

When deriving a new complex type by extension one can only add new elements or 

attributes to the base type. When deriving a new complex type by restriction one can only put 

additional restrictions on existing elements and attributes.  Substitution groups allow a new 

content model. They are somewhat like the concept of polymorphism in object oriented 

programming in that you can substitute any type in a substitution group for the base type. 

For example, to represent a generic tree node (operator or operand) for a nonlinear 

expression, in our OSnL Schema, we create OSnLNode, a complex type that effectively is like 

a Java abstract class.  
<xs:complexType name="OSnLNode" mixed="false"> 
  <xs:annotation> 
   <xs:documentation>This is a generic node from which we derive operator 
nodes</xs:documentation> 
  </xs:annotation> 
</xs:complexType> 
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The annotation element is just an XML Schema comment that can be ignored. Then we 

create a substitution group based on the named element OSnLNode that is of type OSnLNode. 

So we can think of OSnLNode as a derived class. 
<xs:element name="OSnLNode" type="OSnLNode" abstract="true"> 

 <xs:annotation> 
  <xs:documentation> Set abstract to true in order to create a substitution group</xs:documentation> 
 </xs:annotation> 
</xs:element> 
Note the abstract attribute is set to the value of true in order to create the abstract class. 

Next, we create the actual elements that are in the substitution group for OSnLNode. For 

example, we might have an OSnLNode that corresponds to subtraction.  First we create the 

abstract class for this operation. 
<xs:complexType name="OSnLNodeMinus"> 

 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence minOccurs="2" maxOccurs="2"> 
    <xs:element ref="OSnLNode"/> 
   </xs:sequence> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
From this abstract class OSnLNodeMinus we create the derived element minus that is in the 

substitution group OSnlNode.  

<xs:element name="minus" type="OSnLNodeMinus" substitutionGroup="OSnLNode"/> 

Note that the minus element requires exactly two child elements.  

In a similar fashion, we define all other OSnL nodes such as plus, times, sin, sum, 

PI, var, geq, if, PI, xPath, userF, quadratic. For nodes such as sin, the 

corresponding OSnLNodeSin requires exactly one chide element, as the sin operator is a 

unary type. For nodes such as sum, the corresponding OSnLNodeSum requires one or more 

child elements, as the sum operator is an indefinite type. For nodes such as PI, the 

corresponding OSnLNodePI requires zero child elements, as the PI operator is a constant.  

Essentially every operator or operand that appears in an expression tree is generically 

regarded as a node of type OSnLNode. This objected-oriented style treatment provides a 

significantly simple and powerful way to construct a nonlinear expression So for example, to 

add nonlinear extensions to our OSiL, we simply define an element nl that holds the nonlinear 

term for a row specified by the attribute idx, which indicates a row number of an objective or 

constraint. As shown below, each nl element has exactly one child elements, the expression 

tree root, which can be anything in the substitution group for OSnLNode. Of course, we do not 
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know ahead of time whether the tree root will be a plus or a times node. But whatever it 

may become, it has to be of a generic type OSnLNode.  
<xs:element name="nl" type="nl" minOccurs="0" maxOccurs="unbounded"/> 

<xs:complexType name="nl"> 
 <xs:sequence minOccurs="1" maxOccurs="1"> 
  <xs:element ref="OSnLNode"/> 
 </xs:sequence> 
 <xs:attribute name="idx" use="required" type="xs:int"/> 
</xs:complexType> 

When a concrete expression tree is finally constructed, it may look like  
<nl idx="9"> 

 <power> 
  <plus> 
   <var idx="1" coef="2"/> 
   <var idx="2" coef="3"/> 
  </plus> 
  <number value="2"/> 
 </power> 
</nl> 

for the nonlinear expression 2
21 )32( XX +  that appears in the 9th row (or constraint) of a 

mathematical program. Every node in this expression tree has to follow the constraints 

specified by the node’s corresponding type, e.g. the number of child nodes it can have.  

 

Namespaces 

It is possible for different XML vocabularies to use the same element name, yet the 

element has a different meaning depending on the vocabulary. For example in one vocabulary 

the element <title> might have a very different meaning than in another vocabulary. 

Furthermore, when developing vocabulary a.xsd one might wish to borrow elements from 

another vocabulary b.xsd or allow elements from vocabulary b.xsd to be used instead of 

elements from a.xsd. For example, we have developed our instance representation language 

OSiL.  A user might wish to use our other optimization languages and services but use, for 

example, MathML for instance representation. This is easily accomplished through the use of 

namespaces. The local element together with the name space determines a globally unique 

name known as a qualified name.  

Assume a user wishes to represent a math program using MathML rather than OSiL. They 

can simply put the nonlinear program inside the <math> tag and use the appropriate name 

space. For example, one approach is:  
<math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://www.w3.org/1998/Math/MathML 

http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd"> 
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<apply> 
    <power/> 
        <ci>x</ci> 
        <cn>2</cn> 
</apply> 
</math> 
This syntax declares that the <math> element and all of its children are in the MathML 

vocabulary. That is, all of the elements are qualified and are in the default namespace MathML.  

An alternative way to qualify the elements is through the use of a prefix. 
<ml:math xmlns:ml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://www.w3.org/1998/Math/MathML 

http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd"> 
    <ml:apply> 
        <ml:power/> 
            <ml:ci>x</ml:ci> 
            <ml:cn>2</ml:cn> 
    </ml:apply> 
</ml:math> 

 Now, if we had written <ci>x</ci> instead of <ml:ci>x</ml:ci>, then the <ci> 

would be unqualified and potentially confused with an element defined in other schemas that is 

named the same. 

 The namespace that we use to qualify all the OSxL schemas is 

“os.optimizationservices.org” and it should be different from any other 

namespaces in the world as we have reserved the domain name “optimizationservcies.org.”  

 

Import and Include 

When working in the same name space it is often convenient to organize a set of schemas 

in different files. We can then use one schema in another through the include element.  For 

example, in the instance language OSiL.xsd, we need to define the nlNode element that is 

in the nonlinear language OSnL.xsd. To do this, we use the include statement as follows. 
<xs:include schemaLocation="OSnL.xsd"/> 

When schemas are in different name spaces we need the import element.  For 

example, in OSiL, we allow the use of MathML to describe a nonlinear program.  In 

order to validate a document against the os.optimizationservices.org 

namespace we need to import the MathML namespace.  This is done as follows. 

First, in the root element we include the attribute: 
xmlns:mathML="http://www.w3.org/1998/Math/MathML" 
Then we include an <import> element as follows: 
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<xs:import namespace="http://www.w3.org/1998/Math/MathML" 

schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd"/> 
Then in the schema we declare a <math> element.  
<xs:element ref="mathML:math" minOccurs="0"/> 
In this the case the <math> element is in the MathML namespace.  However, we can 

achieve the same result with 
<xs:element name="math" type="mathML:math.type" /> 
in which case the <math> element is in the os.optimizationservices.org 

namespace. 

As a second example in OSiL we build up our nonlinear terms recursively through 

the abstract element OSnLNode. We can allow users to include an OSnLNode 

element that is a MathML expression. First we import the MathML namespace as we 

illustrated above. Next we define the <math> root element in the MathML vocabulary 

as follows: 
<xs:element name="math" type="mathML:math.type" substitutionGroup="nlNode"/> 
Then we define an OSnLNode which is really MathML. 
<nl idx="2"> 
    <math xmlns:mathML="http://www.w3.org/1998/Math/MathML"> 
        <mathML:apply> 
            <mathML:power/> 
                <mathML:ci>x</mathML:ci> 
                <mathML:cn>2</mathML:cn> 
        </mathML:apply> 
    </math> 
</nl> 
In this example, the element <math> is actually in the namespace 

os.optimizationservices.org, but its children are in the MathML namespace1.  

 

4.4 Other XML Technologies 
In this section, we briefly describe other XML technologies used in the Optimization 

Services project and their corresponding references. 

 

SAX and DOM Parsing Models 

Our OSiL instance is used to link modeling languages with solvers, typically over a 

network. In our design, we expect a library/API to sit between the two and translate the XML 
                                                 
1 In the first release of OSiL, we have taken out all the MathML related elements. It may or may not be 
added in the later releases.   



 
 
 

104 
 

 
 
 

instance into a format that the solver can understand. To this end, the XML file must be parsed. 

There are two basic approaches to parsing an XML file: Simple API for XML (SAX) [78] and 

Document Object Model (DOM) [105]. Both are APIs that are used to translate XML 

documents to some format suitable for use by computer programs. To construct an XML 

document, DOM is used. To parse an XML document, both DOM and SAX can be used.  

SAX is a set of streaming interfaces that decompose the XML documents into a sequence 

of predefined method calls and fire events when elements and attributes are read. SAX does not 

store the information in an element or attribute after it is initially read. Because of this, SAX is 

very efficient and has low memory requirements. But when reading through an XML 

document, all the previously read sections have to be remembered (stored in memory) for 

parsing the later sections, so SAX may become less desirable to use. This is the case in reading 

an optimization instance.  

DOM is a set of traversal interfaces that decompose the XML documents into a hierarchal 

tree of generic nodes. With this approach, the XML document is read into a tree-like data 

structure and held in memory. In most of our parser library implementations, we use the DOM 

instead of SAX and then transfer the information from the DOM into our OS Expression Tree. 

We selected the DOM because it is easier to work with. For example, we have numerous error 

checking routines to make sure the data is consistent and these routines require keeping 

information about the problem in memory – information that is lost using SAX.  

 

XML Authoring Tools 

XML Authoring tools assist in editing XML documents or validating XML syntaxes. 

XML documents can be XML Schemas as well as regular XML instances. The Optimization 

Services project, for example, uses Altova’s XML Spy [1] and Progress Software’s Stylus 

Studio [96]. Both XML Spy and Stylus Studio are comprehensive IDEs for developing XML 

projects. They provide efficient and flexible environments for creating and editing XML 

Schemas, XML instances, XQuery and XSLT style sheets. This thesis mostly uses both XML 

Spy’s text view (Figure 4-11) and graphical view (Figure 4-12) for design illustrations.    
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Figure 4-11: Text view of an XML file (OSiL) in XML Spy.   
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Figure 4-12: Graphical view of an XML file (OSiL) in XML Spy.   
 

XSL Transformation Tools  

XML Transformation tools assist in transforming XML into something that can be 

displayed in a browser or other rendering device. XSL [114], and its associated language XSLT 

[115], is the main tool here. XSLT, is an acronym for Extensible Stylesheet Language 

Transformation, is itself an XML-based declarative programming language to transform XML 

files into HTML files, or other XML files, or any other plain text files. The following XSL 

example retrieves all the variable names from an Optimization Services instance Language 

(OSiL, Chapter 6).   
<?xml version="1.0" encoding="UTF-8"?> 

<xsl:stylesheet xmlns:os="os.optimizationservices.org" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
version="1.0"> 
 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/> 
 <xsl:template match="/"> 
  <html> 
   <body> 
    <hr/> 
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    <h1>Optimization Services instance Language Variables</h1> 
    <p/> 
    <xsl:for-each select="os:OSiL/os:programData/os:variables/os:var"> 
     <p/>varialbe: <xsl:value-of select="@name"/> 
    </xsl:for-each> 
    <hr/> 
   </body> 
  </html> 
 </xsl:template> 
</xsl:stylesheet> 
The result looks something like:  

 

Optimization Services instance Language Variables 

variable: x1  

variable: x2 

variable: y1 

variable: y2
 

Figure 4-13 shows how the combination of XML and XSLT can serve at least the same purpose 

as HTML over the Internet. XSLT can be used for example to nicely display optimization 

results formatted in Optimization Services result Language (OSrL, Chapter 6).   

 
Figure 4-13: An illustration of how the combination of XML and XSL style sheet can serve as the 

same purpose of HTML.  
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XLink and XPointer 

XLink [108] and XPointer [111] are used to link and reference information within an 

XML document. XLink is a generalization of the HTML link concept, though it is at a higher 

abstraction level intended for general XML – not just hypertext. Thus it has more expressive 

power, such as multiple destinations, special behaviors, and link bases. Linking elements are 

identified by an xlink:form attribute with either the value “simple” or “extended.” 

Furthermore, each linking element contains an href attribute whose value is the URI of the 

linked resource. An XLink example is shown below:  
<OSiLSchema xlink:form=“simple” href=“http://www.optimizationservices.org/schemas/OSiL.xsd”>Optimization 

Services instance Language</OSiLSchema> 
HTML links generally point to a particular document. Additional anchors (pointing to a 

particular section, chapter, or paragraph of a particular document) are not well-supported. 

Unlike HTML anchors, XPointers not only allow pointing to a point in a document, but also 

allow pointing to ranges or spans, such as the root element of an XML document. An XPointer 

is usually appended to an XLink or URL separated by a “#” sign as in the following example:  
http://www.optimizationservices.org/schemas/OSoL.xsd#root() .  

 XPointer is sort of an extension to XPath (described next) to support linking. It 

specifies connections between XPath expressions and Uniform Resource Identifiers 

(URIs or more plainly, globally unique addresses). XPath, XLink and XPointer are especially 

useful when some of the function evaluations in optimization problems can only be obtained 

from a remote Web service.  

 

XPath  

XPath [110] is used to locate data in an XML file. It is a declarative language used to 

identify subsets (nodes and fragments) of an XML document. XPath is designed standalone, but 

it can also be used in XSLT (for pattern matching), XPointer (for addressing), XQuery (for 

selection and iteration) and XML Schema (for uniqueness and scope description).  

Unlike many other XML technologies, XPath uses a compact, non-XML format to 

facilitate use within URIs and attribute values. XPath views an XML document as a tree, 

containing different kinds of nodes. The XML node types include root, element, text, attribute, 

namespace etc. XPath imposes a document order (order of occurrence of element start tags) 

defined on all nodes except attribute and namespace nodes. The root is always the first node. 

Root and element nodes have an ordered list of children. An element node is the parent of the 
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associated set of attribute/namespace nodes, the attributes/namespaces are not children of the 

associated element node.  

For example, given the following XML file: 
<?xml version="1.0" encoding="UTF-8"?> 

<stocks> 
 <stock name="ge" idx="2" ret=".03" mininv=".1"> 
  <cov name="msft" idx="0" val="25"/> 
  <cov name="pg" idx="1" val="37"/> 
  <cov name="ge" idx="2" val="19"/> 
 </stock> 
 <stock name="msft" idx="0" ret=".07" mininv=".1"> 
  <cov name="msft" idx="0" val="24"/> 
  <cov name="pg" idx="1" val="-10"/> 
  <cov name="ge" idx="2" val="25"/> 
 </stock> 
 <stock name="pg" idx="1" ret=".09" mininv=".1"> 
  <cov name="msft" idx="0" val="-10"/> 
  <cov name="pg" idx="1" val="75"/> 
  <cov name="ge" idx="2" val="37"/> 
 </stock> 
</stocks> 

 the XPath to find the return value of the Microsoft stock (ticker: msft) is:   
stocks/stock[@name=’msft]’/@ret[1] 

Since XPath 2.0, the XPath language has become a strict syntactic subset of XQuery 1.0, 

described next.  

XQuery  

XQuery [112] is a query language for retrieving data items from an XML document. 

XQuery is designed to meet the needs of the database world and the document processing 

world. XQuery is to XML what SQL is to relational databases. XQuery is used in our 

Optimization Services (OS) Registry (Chapter 8) implementation to find registered OS solvers 

in a native XML database. 

From the W3C XQuery [112] introduction page: “The mission of [XQuery] is to provide 

flexible query facilities to extract data from real and virtual documents on the Web, therefore 

finally providing the needed interaction between the web world and the database world. 

Ultimately, collections of XML files will be accessed like databases.” With XQuery, we now 

have a standard syntax by which XML processors can access XML data or non-XML data 

exposed as virtual XML documents.  XQuery expressions can replace procedural code that 

generates new XML structures from other XML data. Thus XQuery enables robust queries 

across a large set of XML documents or virtual XML data sources. The OSmL modeling 

language we present in Chapter 9 is based upon the XQuery standard and is designed to convert 
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raw data in XML format into problem instances that conform to the Optimization Services 

instance language (OSiL) standard.  

Like XPath, XQuery uses a compact, non-XML format. XQuery is essentially an 

extension to XPath. Where XPath serves simply to address XML document components and 

return result sets, XQuery adds the ability to combine the result set with locally-defined 

elements in order to create new XML structures. XQuery includes looping and conditional 

constructs that XPath 1.0 does not have. XQuery also adds a large number of new functions, as 

well as built-in support for XML Schema data types. 

For example given the following XML file: 

<bib> 

 <book> 
  <title>Large Scale Linear and Integer Optimization: A Unified Approach</title> 
  <author>Martin</author> 
  <publisher>Kluwer Academic Press</publisher> 
 </book> 
 <book> 
  <title>The Essential Guide to Internet Business Technology</title> 
  <author>Honda</author> 
  <author>Martin</author> 
  <publisher>Prentice Hall</publisher> 
 </book> 
 <book> 
  <title>AMPL</title> 
  <author>Fourer</author> 
  <author>Gay</author> 
  <author>Kernighan</author> 
  <publisher> Duxbury Press </publisher> 
 </book> 
</bib> 
the XQuery to find the titles of all the books written by each distinct author is: 
for  $a in fn:distinct-values(//author) 

return (xs:string($a), 

for $b in //book[author = $a] 

return $b/title) 

and the XQuery result is: 
Martin 

<title>Large Scale Linear and Integer Optimization: A Unified Approach</title> 
<title>The Essential Guide to Internet Business Technology</title> 
Honda 
<title>The Essential Guide to Internet Business Technology</title> 
Fourer 
<title>AMPL</title> 
Gay 
<title>AMPL</title> 
Kernighan 
<title>AMPL</title> 
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4.5 Web Services and Simple Object Access Protocol (SOAP) 
Web services are an evolving, middleware platform that facilitate program-to-program 

interactions. W3C’s official definition of Web services [116] is as follows: 

“A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-processable 

format (specifically WSDL). Other systems interact with the Web service in a manner 

prescribed by its description using SOAP-messages, typically conveyed using HTTP with 

an XML serialization in conjunction with other Web-related standards.” 

More plainly, Web services are platform and implementation independent components 

that are described using a service description language, published to a registry of services, 

discovered through a standard  mechanism (at runtime or design time), invoked through a 

declared API (usually over a network), and composed with other services.  

“Platform and implementation independent” means a client of the service can not tell 

what language, operating system, or computer type the service uses. It is achieved through the 

Simple Object Access Protocol (SOAP, see in this section below).  

“Described” means that a Web service must describe itself, mainly in terms of what 

requests are allowed, what the arguments are and which transport it uses. This is achieved 

through the protocol of Web Services Description Language (WSDL, §4.7).  

“Published” means that a Web service must tell a registry service where it is located (like 

"yellow pages"). It is achieved through the protocols of Web Services Inspection Language 

(WSIL, §4.8), Universal Description, Discovery and Integration (UDDI §4.8), or customized 

domain specific registry services as in the case of the Optimization Services registry (Chapter 

8).  

“Discovered” means that a Web service’s potential clients can find it in a registry service. 

This is also achieved through the same protocols and registry services as those in the Web 

service publication.  

“Invoked” means that the arguments and return types are known. This is achieved through 

the protocol of SOAP.  

“Composed” means that a service can also be a client. It is also achieved through the 

protocol of SOAP. 

In Chapter 5, we illustrate all the above mechanisms in the context of Optimization Services.  
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The core of Web services is the SOAP protocol for information exchange. The World Wide 

Web Consortium (W3C) released its first recommended version, SOAP 1.2, on June 24, 2003. 

SOAP Version 1.2 is a relatively simple and powerful XML-based protocol intended for 

exchanging structured information in a decentralized, distributed environment such as the Web. 

A W3C Recommendation is the equivalent of a Web standard, indicating that this W3C-

developed specification is stable, contributes to Web interoperability, and has been reviewed by 

the W3C Membership, who favors its adoption by industry. 

SOAP allows calls to remote objects’ methods and access to remote objects’ data using 

standard Web services, the standard HTTP protocol for those services, and XML to describe 

the call. SOAP is intended to serve as a more general and flexible successor to DCOM and 

CORBA mentioned in the beginning of this chapter. Figure 4-14 gives an illustration from the 

architecture view, the protocol view, the SOAP envelope structure view and the actual 

HTTP/SOAP message view.  

In the architecture view, a user constructs an application in any language (e.g. Visual 

Basic). The purpose of the application is to call, as a client, a remote application or Web service 

on the network, again written in any language (e.g. Java). The client’s VB structure is serialized 

(that is transformed from binary to ASCII) through a SOAP client and into a SOAP message. 

The SOAP message is then transmitted via the network to the remote application service. At the 

remote end, the SOAP message is deserialized from its ASCII XML form into a binary Java 

structure, before the application service executes the request call. A response is returned in the 

same way.  
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Figure 4-14: SOAP illustration from high to low level. 

 

In the network view protocol, all the information needed for the client call is stored in a 

SOAP envelope. A SOAP envelope is usually packed inside an HTTP protocol. From that point 

on, the HTTP packet is transmitted over a TCP/IP transport the same way that an HTTP request 

for a Web page is transmitted. The only difference is that a request for a Web page usually 

contains HTTP content such as GET or POST methods for an HTML document, whereas a 

request for a Web service always contains a SOAP envelope. 

Suppose we want to send the problem in (4-3) to the Lindo solver service hosted at 

http://www.optimizationservices.org/os/LindoSolverService.jws.   
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We can call the method String solve(String OSiL)in LindoSolverService.jws. The 

argument OSiL is an instance representation of problem (4-3). The returned String is an 

instance representation of the problem solution. There are many libraries (including the OS 

library in Appendix B) that help parsing and sending XML instances.  

First an HTTP header with the POST method is prepared like the following:  
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POST /os/ossolver/LindoSolverService.jws HTTP/1.0 

Content-Type: text/xml; charset=utf-8 
Accept: application/soap+xml, application/dime, multipart/related, text/* 
User-Agent: Axis/1.2beta3 
Host: http://www.optimizationservices.org 
Cache-Control: no-cache 
Pragma: no-cache 
Content-Length: 2488 

 
<soapenv:Envelope …> 
… 

</soapenv:Envelope> 

Since this is an HTTP POST, we attach the POST data – the SOAP envelope – at the end of the 

HTTP header with a line separation (i.e. two new line characters).  

 Inside the SOAP envelope, it is essentially a SOAP encoding of the LindoSolverService 

method String solve(String OSiL) with the actual OSiL string argument: 
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema"  

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

<soapenv:Body> 

<ns1:solve soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 

xmlns:ns1="http://www.optimizationservices.org/os/ossolver/LindoSolverService.jws"> 
    <OSiL ...> 
     ... 

      </OSiL> 

</ns1:solve> 

</soapenv:Body> 

</soapenv:Envelope> 
Optimization Services Protocol further specifies that the method signature 

solve(String) should be exactly the same as specified in the Optimization Services 

hookup Language (OShL Chapter 7) and the actual OSiL string argument should follow the 

OSiL Schema (Chapter 6):  
<OSiL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="os.optimizationservices.org   http://www.optimizationservices.org/schemas/OSiL.xsd"> 

 <programDescription> 
  <!--simulation--> 
  <maxOrMin>min</maxOrMin> 
  <numberObjectives>1</numberObjectives> 
  <numberConstraints>1</numberConstraints> 
  <numberVariables>2</numberVariables> 
 </programDescription> 
 <programData> 
  <constraints> 
   <con ub="0.0"/> 
  </constraints> 
  <variables> 
   <var lb="0" name="x1" type="C"/> 
   <var lb="0" name="x2" type="C"/> 
  </variables> 
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  <nl idx="-1"><plus> <power><minus><number type="real" value="1.0"/><var coef="1.0" 
idx="1"/></minus><number type="real" value="2.0"/></power><times><number type="real" 
value="100"/><power><minus> <var coef="1.0" idx="0"/><power><var coef="1.0" idx="1"/><number type="real" 
value="2.0"/></power></minus><number type="real" value="2.0"/></power></times></plus></nl> 
  <nl idx="0"><minus><plus> <var coef="1.0" idx="0"/><var coef="1.0" idx="1"/></plus><number 
type="real" value="100"/></minus></nl> 
 </programData> 
</OSiL> 

SOAP, however, has its own set of encoding rules; for example it represents < with &lt; 

and > with &gt;. So in an actual SOAP message over the network, the above OSiL string 

looks like 
&lt;OSiL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="os.optimizationservices.org   http://www.optimizationservices.org/schemas/OSiL.xsd"&gt; 
 &lt;programDescription&gt; 
  &lt;!--simulation--&gt; 
  &lt;maxOrMin&gt;min&lt;/maxOrMin&gt; 
  &lt;numberObjectives&gt;1&lt;/numberObjectives&gt; 
  &lt;numberConstraints&gt;1&lt;/numberConstraints&gt; 
  &lt;numberVariables&gt;2&lt;/numberVariables&gt; 
 &lt;/programDescription&gt; 
 &lt;programData&gt; 
  &lt;constraints&gt; 
   &lt;con ub="0.0"/&gt; 
  &lt;/constraints&gt; 
  &lt;variables&gt; 
   &lt;var lb="0" name="x2" type="C"/&gt; 
   &lt;var lb="0" name="x1" type="C"/&gt; 
  &lt;/variables&gt; 
  &lt;nl idx="-1"&gt;&lt;plus&gt; &lt;power&gt;&lt;minus&gt;&lt;number type="real" value="1.0"/&gt;
 &lt;var coef="1.0" idx="1"/&gt;&lt;/minus&gt;&lt;number type="real" 
value="2.0"/&gt;&lt;/power&gt;&lt;times&gt;&lt;number type="real" value="100"/&gt;&lt;power&gt;&lt;minus&gt;
 &lt;var coef="1.0" idx="0"/&gt;&lt;power&gt;&lt;var coef="1.0" idx="1"/&gt;&lt;number type="real" 
value="2.0"/&gt;&lt;/power&gt;&lt;/minus&gt;&lt;number type="real" 
value="2.0"/&gt;&lt;/power&gt;&lt;/times&gt;&lt;/plus&gt;&lt;/nl&gt; 
  &lt;nl idx="0"&gt;&lt;minus&gt;&lt;plus&gt; &lt;var coef="1.0" idx="0"/&gt;&lt;var coef="1.0" idx="1"/&gt;
 &lt;/plus&gt;&lt;number type="real" value="100"/&gt;&lt;/minus&gt;&lt;/nl&gt; 
 &lt;/programData&gt; 
&lt;/OSiL&gt; 

Usually a SOAP envelope contains two sections: SOAP header (optional and not shown in 

the above example) and SOAP body. The SOAP Header mainly has some administrative 

information to complete a call. The SOAP body contains the major request and response 

information, for example call methods and arguments. The SOAP body also contains a 

subsection, SOAP fault, which specifies exception errors returned by the called Web service. 

For example, if the problem is solved successfully, the Lindo solver service should return an 

optimal solution of (1.0, 1.0) with an objective value 0.0 for the problem  (4-3) in the following 

SOAP envelope (again with < encoded as &lt; and > encoded as &gt; for the result string):  
HTTP/1.1 200 OK  

Set-Cookie: JSESSIONID=A8AF406536A271018100F64CFA462FA0; Path=/os  
Content-Type: text/xml;charset=utf-8  
Date: Sun, 20 Mar 2005 21:28:40 GMT  
Server: Apache-Coyote/1.1  
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Connection: close   
 
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"  
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
 <soapenv:Body> 
  <ns1:solveResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"  
  xmlns:ns1="http://www.optimizationservices.org/os/ossolver/LindoSolverService.jws"> 
   <solveReturn xsi:type="xsd:string"> 
    &lt;OSrL xmlns="os.optimizationservices.org"  

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="os.optimizationservices.org 
http://www.optimizationservices/schemas/OSrL.xsd"&gt; 

     &lt;result&gt; 
      &lt;status type="optimal"/&gt; 
      &lt;objective&gt; 
       &lt;objectiveValue value="0.000"/&gt; 
      &lt;/objective&gt; 
      &lt;variables&gt; 
       &lt;variableSolution&gt; 
        &lt;description/&gt; 
        &lt;var idx="0" varName="x1" value="1.0"/&gt; 
        &lt;var idx="1" varName="x2" value="1.0"/&gt; 
       &lt;/variableSolution&gt; 
      &lt;/variables&gt; 
     &lt;/result&gt; 
    &lt;/OSrL&gt; 
   </solveReturn> 
  </ns1:solveResponse> 
 </soapenv:Body> 
</soapenv:Envelope> 
Notice the HTTP status of 200 OK in the first line. Optimization Services Protocol further 

specifies that the actual returned string argument should follow the OSrL (Optimization 

Services result Language Chapter 6) schema.  

If the problem is not solved successfully or a networking error occurs, the following 

message would be returned with a SOAP fault element:  
HTTP/1.1 500 Internal Server Error 

Set-Cookie: JSESSIONID=8AEFE9B91BD586ABFD237F7EEDAAC267; Path=/os 
Content-Type: text/xml;charset=utf-8 
Date: Sun, 20 Mar 2005 23:07:20 GMT 
Server: Apache-Coyote/1 
Connection: close 
 
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"  
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

<soapenv:Body> 
 <soapenv:Fault> 
  <faultcode>soapenv:Server.userException</faultcode> 
  <faultstring>java.lang.NullPointerException</faultstring> 
  <detail> 
   <ns1:hostname xmlns:ns1="http://xml.apache.org/axis/"> A null pointer 
exception</ns1:hostname> 
  </detail> 
 </soapenv:Fault> 
</soapenv:Body> 

 </soapenv:Envelope>  
Notice the HTTP status of 500 Internal Server Error in the first line.  
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As shown in the actual message part of Figure 4-14 and also illustrated in the above 

examples, the realization of SOAP Envelope, Header, Body and Fault is purely through XML 

representation. This is one major difference between SOAP and all other major networking 

protocols. It starts a standard for newly developed network protocols, including Optimization 

Services Protocol.   

 

4.6 Service Oriented Architecture (SOA) 
Early in the Web services history, people noticed a pattern. Each time they applied Web 

services technologies to an integration solution, the pattern would appear. They generalized the 

pattern and named it Service-oriented architecture (SOA). SOA is a simple concept. Figure 

4-15 shows the main components and operations of an SOA.  

 
Figure 4-15: Serviced-oriented Architecture.   
 

Any Service-oriented Architecture contains three components (or roles): a (service) 

registry, a service request agent, and a service provider.  

The registry is a match-maker between service request agent and service provider because 

its address is known to all the service request agents and it contains information about all the 

service providers. Once the registry makes the match, it is no longer needed as the rest of the 

interaction is directly between the service request agent and the service provider.  

The service request agent first discovers some service descriptions published to the 

registry. The act of discovery can be thought of as sending a query to a database. The service 

request agent states some query criteria, such as service types, quality requirements etc. The 

registry matches the query against its collection of published service descriptions. The result of 

the discover operation can be a list of service locations with optional descriptions (e.g. WSDL 
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documents, see §4.7) that match the query criteria. The service request agent then uses the 

location information to hook to or call the service provider. This operation can be quite 

complex and highly dynamic, such as on-the-fly generation of a client-side proxy based on the 

service description used to invoke the service provider. Of course if the service description is 

standardized, as in the case of Optimization Services, the client-side proxy can be pre-built and 

the process becomes more efficient. Examples in the Optimization Services context are 

provided in Chapter 7.  

The service provider joins the registry by publishing a service description to the registry. 

The software itself is not published. It then waits for service request agents to make 

invocations. The act of joining by publication can be thought of as advertising. There is usually 

some contract between the registry and the service provider. The actual details of the advertised 

information and the contract depend on how the service registry is implemented.  If the service 

provider is well known, potentially many service request agents can directly invoke the service 

without first discovering it in the registry.   

As briefly described in Chapter 2, Optimization Services also adopts the Service-oriented 

Architecture. In Figure 4-16 we redraw Figure 2-1: A typical optimization system and 

component interaction. We highlight the Service-oriented Architecture “triangle.” Circle 4 is 

the service request agent and all the circles to its left can be thought of as the clients of the 

SOA-based distributed system. Circle 5 is an optimization service registry that keeps 

information of all the solvers (or analyzers). Circle 7 (or circle 6 or circle 8) is the solver (or 

analyzer or simulation engine) service provider. This is discussed in Chapter 5.  

 
Figure 4-16: A typical optimization system and component interaction and the Service-oriented 
architecture view by Optimization Services.  
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4.7 Web Services Description (WSDL) 
Web Services Description Language (WSDL) [116] is another XML document type that 

defines the XML tags used in accessing a Web service. WSDL is optional if a user knows 

exactly where an Optimization Service is and how the Optimization Service should be invoked. 

WSDL helps significantly in registering, discovering and automation of heterogeneous Web 

services. Links to WSDL descriptions can be given through UDDI listings (§4.8). In 

Optimization Services, we use WSDL mainly as a formal language to describe communication 

standards.  

 Two types of information in WSDL are specified. One is about interface semantics and the 

other is about administrative details of a call to a Web service. Interface semantics includes 

elements of portType (equivalent to a program interface), operation (equivalent to a 

method signature/prototype), message (equivalent to input and output) and types 

(equivalent to data types). Administrative details includes elements of binding (specifies 

transport and encoding protocols), port (specifies network addresses), service (specifies a 

collection of ports), and definitions (root element of WSDL that contains all the above 

elements). In our communication based Optimization Services Protocols (Chapter 7),  we 

enforce standards on call interface and arguments, fix certain values by default and suggest 

recommendations that are most suitable for Optimization Services, thus simplifying the 

invocation processes.  

Figure 4-17 shows an abbreviated WSDL definition. Each WSDL document has definition 

as its root element that is usually prefixed with the wsdl namespace abbreviation. Illustrated 

elements about interface, protocol and address are of the most relevance to Optimization 

Services. The entire program, called SimpleSolver in this example contains (in the 

portType element) only one operation (or function, method, procedure etc.): 

favoriteSolver, which takes a favoriteSolverRequest as an input and 

favoriteSolverResponse as an output. Both favoriteSolverRequest and 

favoriteSolverResponse are defined in their corresponding message element. For 

example favoriteSolverRequest has only one part (or argument) in it, which has a 

name question and is of type string. The protocol related binding element specifies that 

the SOAP call is to be an RPC (Remote Procedure Call) and is to be transported over HTTP. 

The address related service element specifies a location (in the port element) that tells where 

the actual Web service is.   
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Figure 4-17: An abbreviated WSDL document of SimpleSolver, which specifies one operation: 
favoriteSolver. 
 

4.8 Web Services Registration and Discovery (UDDI and WSIL) 
After a Web service is deployed, potential users must have a way to discover and use that 

service. For Web pages/sites, search engines like Google and Yahoo assume this function, 

though search information is of non-standard form. Web services, unlike Web pages, are to be 

invoked by computers, rather than viewed by humans; thus Web services registration and 

searching require a more rigid set of rules. Universal Description, Discovery, and Inspection 

(UDDI, [102]) and Web Services Inspection Language (WSIL, [64]) handle the situations for 

general Web services through standardization. In Optimization Services, we use our own 

specialized Optimization Services Registry and corresponding OS protocols (Chapter 8) to 

register and discover Optimization Services, because more domain-specific information needs 

to be integrated into an Optimization Services registry. However both WSIL and UDDI provide 

the design inspiration for many of our registry related Optimization Services Protocols. We 

briefly give an overview of the two standards below.  

UDDI is a specification for an online registry of Web services. Service providers can list 

their services in this registry, and users can seek out services by searching the registry in a 

standard way. UDDI is heavyweight and is intended to be maintained by centralized registries; 

it concerns itself not only with service data information (Figure 4-18) but also with service 

provider’s vendor (or business entity, Figure 4-19) information. UDDI usually requires 
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infrastructure to be deployed with substantial overhead and costs. Two main sets of standard 

functions (or APIs) are provided: vendors register services and data via SOAP and users 

discover the services via SOAP query requests (Table 4-1). 

 
Figure 4-18: Service data information in a UDDI registry.  
 

 
Figure 4-19: Business entity information in a UDDI registry. 
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SOAP Discover APIs SOAP Register APIs 

• find_binding 
• find_business 
• find_relatedBusinesses 
• find_service 
• find_tModel 
• get_bindingDetail 
• get_businessDetail 
• get_businessDetailExt 
• get_serviceDetail 
• get_tModelDetail 

 

• add_publisherAssertions 
• delete_binding 
• delete_business 
• delete_publisherAssertions 
• delete_service 
• delete_tModel 
• discard_authToken 
• get_assertionsStatusReport 
• get_authToken 
• get_publisherAssertions 
• get_registeredInfo 
• save_binding 
• save_business 
• save_service 
• save_tModel 
• set_publisherAssertions 

Table 4-1: Major SOAP discover and register operations provided by a UDDI registry. 
 

WSIL is similar in scope to UDDI, but intended to be complementary rather than 

competitive. If WSIL is comparable to business cards, then UDDI is more like yellow pages, 

under which multiple "businesses” are grouped, listed along with goods or services offered and 

business contact information.  

WSIL can be used to point to UDDI repositories. Service description information can be 

distributed to any location using a simple extensible XML document format. Compared with 

UDDI, WSIL is more decentralized, more lightweight and of lower functionality. WSIL works 

under the assumption that you are already familiar with the service provider. Both WSIL and 

UDDI rely on other service description mechanisms such as WSDL and they are located using 

existing Web infrastructure. On the other hand, in the Optimization Services situation, we no 

longer need WSDL information in the registry as all the Optimization Services invocations are 

standardized. Thus all services’ WSDL documents will be the same except for location 

information which can be provided independent of WSDL.  

WSIL avoids one of the current difficulties with UDDI: entries in UDDI registries are not 

moderated and a user can not be sure that a service actually belongs to the service provider who 

advertises it within the UDDI registry. So Quality of Service and information reliability can be 

issues with a general UDDI registry.  

Figure 4-20 shows an abbreviated example of a WSIL document. Most information is self-

explanatory in this example. Each WSIL document has inspection as its root element. It 

contains an abstract about the Web service, a service section detailing the description of the 
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service, and a link to other related Web services. In the service section, the WSDL document 

location is provided in the description element.  

 

 
Figure 4-20: An abbreviated WSIL document. 
 

4.9 Open Grid Services Architecture (OGSA) 

The Globus Alliance [42] is building fundamental grid computing technologies. By its 

definition, “grids are persistent environments that enable software applications to integrate 

instruments, displays, computational and information resources that are managed by diverse 

organizations in widespread locations.” A major research effort of Globus Alliance is its 

Globus Project on developing the Globus Toolkit, which is an open source software toolkit to 

build grids. A growing number of projects and companies are using the Globus Toolkit which 

has become a de facto standard for major protocols and services, although at the present time its 

popularity is overshadowed by the recent success of Web services championed by major 

research institutes and companies.  

Globus Alliance’s Open Grid Services Architecture (OGSA) [43] represents an evolution 

towards a Grid system architecture based on Web services concepts, to take advantage of Web 

services’ standard interface definition mechanisms, multiple protocol bindings, multiple 

implementations, local/remote transparency, etc. All services also have to adhere to specified 

Grid service interfaces and behaviors. At this point, OGSA is evolving quickly, currently at its 

fourth version, but far from complete or perfect.  

Compared with Web services, OGSA is (potentially) strong in the following areas 

• Authentication and authorization 

• Global naming and references 

• Lifetime management 

WSDL Document
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• Resource registration and discovery 

• Resource monitoring, upgradeability, concurrency, and manageability 

• Reliable remote service invocation and notification 

• High-performance remote data access 

OGSA’s major disadvantages lie in its protocol deficiencies; it has been implemented on a 

heterogeneous basis of HTTP, LDAP, FTP, etc. It also lacks (though actively intends to fix) 

standard means of invocation, notification, error propagation, authorization, termination and 

other functionalities. Little work has been done on total system properties including 

dependability, end-to-end Quality of Service, and reasoning about system properties.   

 One major difference between Web services and Grid services is that Web services 

addresses discovery and invocation of persistent services while Grid Services also supports 

transient service instances.  

 Web services combined with Grid is a good idea. It is becoming a topic in the major super 

computing conferences. It should not be a question of who wins. Both technologies will 

provide things that are valuable toward our development of Optimization Services. As a matter 

of fact, some of the design issues in our Optimization Services are based on the fact that 

components from both technologies can be leveraged upon their maturities. We hope that the 

two technologies will eventually converge with no distinction.  
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CHAPTER 5 OPTIMIZATION SERVICES (OS) 
 

Optimization Services is a unified framework for the next generation distributed 

optimization systems, mainly optimization over the Internet. The corresponding Optimization 

Services Protocol is intended to be a set of industrial standards. The phrase “next generation” 

emphasizes the fact that Optimization Services is a state-of-the-art design and is not adapted 

from any existing system.  

In Chapter 4, we provided the necessary background on modern computing and distributed 

technologies in order to read from this chapter on. In Chapter 1, we gave a general non-

technical description of Optimization Services (OS) and the corresponding Optimization 

Services Protocols (OSP).  We describe Optimization Services in a more technical detail here.  

From the system design view, Optimization Services is a SOAP protocol based and 

service-oriented architecture centered framework for optimization over distributed and 

decentralized systems. Through the corresponding Optimization Services Protocol, 

Optimization Services specifies behaviors of its standard components on a distributed system. 

We described in Chapter 2 all the system components that are targeted in the OS framework’s 

standardization process.  

 

5.1 Standardization, OSP and OSxL  
The Optimization Services framework is mainly concerned with standardization in three 

areas:  

1 Optimization (instance) representation (Chapter 6); 

2 Optimization communication that includes accessing, interfacing and component 

orchestration (Chapter 7); 

3 Optimization service registration, publication, discovery and quality control (Chapter 

8).  

For the sake of uniformity, we specify Optimization Services Protocols in all these three 

areas by standard 4-letter acronyms of the form OSxL, standing for Optimization Services x 

Language, where “x” is aother defined letter. Figure 5-1 shows a tree view of all the current 

Optimization Services x Languages. 
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Figure 5-1: A tree view of Optimization Services x Languages (OSxL).  
 

We explain the OSxL languages in each of the three areas below.  

1). In §2.1 and §2.3, we discussed the differences between a model and an instance. The 

Optimization Services framework is not intended to standardize high level models. The 

framework only concerns itself with the low level communication between machine and 

software components. 

All the instance representations are specified in the XML Schema language (§4.3). The 

most important instance is the representation of an optimization problem. The format of this 

instance is specified by the Optimization Services instance Language (OSiL). An OSiL instance 

is usually transmitted from a modeling language environment (MLE) to a solver.  

There are other kinds of instances. The Optimization Services result Language (OSrL) 

specifies the result format of the solver output. It is usually transmitted back from a solver to an 

MLE. Optimization Services analysis Language (OSaL) specifies the analysis format of the 

analyzer output. It is usually transmitted from an analyzer to an MLE and helps in discovering 

solvers in an Optimization Services registry. Optimization Services option Language (OSoL) 

specifies the option format of solver (or analyzer) algorithm directives.  It is usually transmitted 

along with an OSiL instance. Optimization Services simulation Language (OSsL) specifies the 

input and output format of a simulation service. It is usually transmitted between a solver and a 
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simulation engine. It facilitates optimization over simulation where simulations are located in 

places other than the solver.  

Many of the generic and common data structures are specified in the Optimization Services 

general Language (OSgL) and imported by other representation schemas. All the nonlinear 

functions, operators and operands are specified in the Optimization Services nonlinear 

Language (OSnL). OSnL is used by the OSiL schema for nonlinear optimization extension.  

2). In §2.4, we listed the interface and communication agent as a distinct component in an 

optimization system. The Optimization Services framework standardizes all the 

communications between any two Optimization Services components on an OS distributed 

system. The framework does not standardize local interfacing. Related projects such as COIN 

OSI  [23] discussed in §3.1.4 and derived research from Optimization Services (briefly 

mentioned in the following chapters) such as the Optimization Services instance Interface 

(OSiI), Optimization Services option Interface (OSoI) and Optimization Services result 

Interface (OSrI) are intended to do this job.  

Invocations of all Optimization Services are specified by WSDL (§4.7) and all the 

interfaces and transport parts (i.e. except for the location information) in the WSDL documents 

are standardized. So WSDL documents are not necessarily needed to dynamically generate the 

communication APIs (stubs and skeletons) as we know them ahead of time already, although 

they can be used for illustrations or as references to construct Optimization Services 

beforehand.  

The most common communication is the invocation of solvers. This is specified by the 

Optimization Services hookup Language (OShL). OShL also applies to hooking up to 

analyzers, as solvers often analyze an optimization problem and analyzers may potentially 

solve the problem. The invocation of simulation services is essentially calling a function (§2.8) 

and it is specified by the Optimization Services call Language (OScL).  

Communication is not just about invocations. As we build all the Optimization Services 

components into a distributed system, the sequence of invocations is an issue. For example, if a 

solver service is known to a client, the client can directly contact the service. Of course the 

client can still contact a registry and get the location information and then call the solver. But if 

the client does not know the type of the optimization problem, he may first invoke an analyzer 

service, and then use the analysis result to query the right solver from the registry. Even more 

complex, before invoking the analyzer service, the client may need to find the analyzer’s 

location in the registry. There can be many combinations of sequences. Optimization Services 
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flow Language (OSfL), an XML document in BPEL (Business Process Execution Language 

[91]), predefines certain standard flows.  

3). Representations and communications related with the Optimization Services registry are 

separately grouped in the area of service registration, publication, discovery and quality control. 

Differences between an optimization registry and an optimization sever are detailed in §2.5.  

At the core of our Optimization Services registry implementation is a database and we 

chose to use a more expressive XML-based native database as versus a relational database. The 

logic is explained in Chapter 8. The organization of the native XML database is according to 

the Optimization Services yellow-page Language (OSyL) which is a schema on the syntax of 

the stored data. To query the database, clients use the Optimization Services query Language 

(OSqL) which is a schema of the query language format. In the OS registry implementation, an 

OSqL query is then converted to an XQuery (§4.4) that is executed against the XML database 

in the registry. The communication of sending the OSqL query to the OS registry is specified in 

the Optimization Services discover Language (OSdL), a WSDL document. In turn the clients 

get the location information from the registry that is listed as a sequence of URIs (or URLs). 

The syntax is specified in the Optimization Services uri Language (OSuL).  

 On the other side of the discover process is the register process. The database in the 

Optimization Services registry is essentially a list of static entity information (e.g. solver types, 

owner information, service location). The entity information is specified by the Optimization 

Services entity Language (OSeL) items, an XML schema. Optimization Services yellow-page 

Language (OSyL) can be roughly viewed as a sequence of Optimization Services entity 

Language (OSeL) items, so we can think of OSyL as a table and OSeL as a row in the table. 

Besides static entity information, the Optimization Services registry also keeps dynamic 

process information (e.g. whether the service is running, and number of jobs being solved) 

using Optimization Services process Language (OSpL). Independent benchmarks are carried 

out on registered solvers and the benchmark information is kept in Optimization Services 

benchmark Language (OSbL).  OSeL, OSpL, and OSbL are all the information the registry 

knows about all the registered services.  

 Service providers join the registry with OSeL information. The WSDL document 

Optimization Services join Language (OSjL) specifies how this is done. During runtime, the 

Optimization Services registry periodically “knocks” on the registered services to make sure 

they are live and running and to get the OSpL information. The WSDL document Optimization 

Services knock Language (OSkL) specifies how this is done. Service providers can also publish 

the OSeL, OSpL and OSbL information on their own Web site. To facilitate standardization, 
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the standard XSL transformation style sheet (§4.4) OStL (Optimization Services transformation 

Language) is provided so individual Web publications have the same look-and-feel. The OStL 

style sheet, as a matter of fact, can be used with any Optimization Services XML 

representations for publication and presentation.  

 The decentralized Optimization Services system leaves open the question of how 

optimization “jobs” will be scheduled to run on available solver services. Centralized schemes, 

such as that used by the NEOS server, usually maintain one queue for each solver/format 

combination, along with a list of the workstations on which each solver can run.  

In Optimization Services, we want to maintain this scheduling control, while at the same 

time making the scheduling decisions more distributed. Optimization Services process 

Language can play an important role in dynamic optimization scheduling in a decentralized 

environment.  

 

5.2 Architecture Design 
In Chapter 2, we showed a general architecture of optimization systems and discussed the 

major system components of an optimization system. Most of the current centralized 

optimization systems, such as the two examples illustrated in Chapter 3, serve as the initial 

motivation for Optimization Services. The Optimization Services simplified view of any 

centralized optimization system is shown in Figure 5-2.  

 
Figure 5-2: Optimization Services’ simplified architecture view of a centralized optimization 
system. 
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All the components shown in Figure 5-2 were discussed in detail in Chapter 2. The 

optimization client is often a modeling language environment (MLE) or some customized 

graphical user interface (GUI) with prewritten optimization models behind it. Dotted arrows 

indicate data flow and corresponding numbers show a typical flow sequence. The data are 

usually some instance representations. Arrows that do not go through the central server mean a 

direct local invocation, so a communication agent is usually bundled together with the 

optimization client. The communication agent can actually be bundled with any component that 

needs to make a remote connection. The simulation can be called by the optimization solver 

either remotely or locally. If locally, the simulation is usually a simple function or expression 

tree(§2.8). The arrows (3) between solver and simulation are in bold because the data flow 

between the two can be highly iterative.   The model component mentioned in Chapter 2 is not 

part of the Optimization Services framework. It belongs to the user end and is isolated from the 

software system by the optimization client. The analyzer component is usually not separated 

out in a centralized optimization system.   

Figure 5-3 matches the system components in Figure 3-9 with those in Figure 5-2  and 

shows how the Motorola Labs Intelligent Optimization System discussed in Chapter 3 fits in 

the Optimization Services view of a centralized optimization architecture. A similar analysis 

can be done on the AMPL-NEOS system also discussed in Chapter 3.  

 
Figure 5-3: Optimization Services’ simplified architecture view of Motorola Lab’s Optimization 
System (Chapter 3). 
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Optimization Services’ own approach to the next generation architecture design is an 

approach of decentralization shown in Figure 5-4. The advantage of the decentralized scheme 

over the centralized scheme was mentioned in Chapter 1 and described in detail in §2.5.  

 

 
Figure 5-4: Optimization Services’ simplified architecture approach of a decentralized 
optimization system; compare with Figure 5-3. 
 

The optimization client in Figure 5-4 still invokes the communication agent, but the agent 

no longer connects to the optimization solver through a server. The registry replaces the server 

in a centralized scheme. All the components in the distributed system talk in a peer to peer 

mode. After the communication agent discovers a solver from the registry, it contacts the solver 

directly. In a decentralized system, the analyzer plays an important role as argued in §2.6. But 

from the architecture view, the optimization solver and analyzer are of no difference as they are 

both services provided over the distributed system and both can be discovered in the registry. 

As in the centralized scheme, the simulation service is usually iteratively invoked by a solver 

either locally or remotely, except that the invocation is no longer routed through the server. 

Also notice that there is a link between the registry and all the services as the registry can 

periodically check these services to get their latest process information.  Dotted arrows that 

indicate data flow no longer have corresponding numbers showing a typical flow sequence. 

There can be many process flows as explained in the next section. From the Optimization 
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Services standardization perspective, the most important parts of the system components are 

instances (data flow on the dashed arrows) and communication agents. 

Figure 5-3 matches the system components in Figure 3-2 with those in Figure 5-4  and 

shows how the AMPL-NEOS system discussed in Chapter 3 can be adapted to the “next-

generation NEOS” that is built on the decentralized Optimization Services architecture. The 

exact effects of Optimization Services on NEOS can be multifaceted and are discussed in 

§3.1.4.  

 
 
Figure 5-5: Optimization Services’ simplified next-generation architecture approach of AMPL-
NEOS system (Chapter 3). 
 

5.3 Optimization Services Process 
Optimization Services can have various process starting points. For better illustration from 

a user perspective, we start the process with a modeler. Suppose the modeler has an 

optimization model shown in (5-1).  
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All that the modeler cares is to have the model solved by an appropriate solver and get the 

optimized result (Figure 5-6).  

 
 
Figure 5-6: A modeler starts with a model and some data and wants the model solved.  
 

But in practice there is no direct connection between the model/data and the solver (Figure 

5-7). No solver understands the optimization model (5-1). 

 
Figure 5-7: There is no direct connection between the model and the solver.  
 

The user has to formulate his model in a formal modeling language such as AMPL 

(Chapter 3) or OSmL (Chapter 9). Alternatively the user can construct an application as a 

graphical user interface with prewritten optimization models underneath, or in a spreadsheet 

(Figure 5-8). Optimization Services is not intended to standardize these user environments. 

What is natural for one modeler may not be for another. But Optimization Services does require 

all these user environments translate the user’s model into the standard Optimization Services 

instance Language (OSiL, Chapter 6). From this point on the modeler is “isolated” from the 

computing system world and no longer knows what is happening inside. In fact, by 

standardizing the underlying system communications, the Optimization Services framework 

promotes the flexibility for users to express models differently with various modeling 

languages and tools, as they will no longer be limited by the choices of software due to 

interface compatibility issues.   



 
 
 

134 

 
 
 

 
 
Figure 5-8: The modeler has to formulate his model in an MLE (or GUI, spreadsheet etc.) and the 
model gets translated into an OSiL instance.   
 

Suppose the modeler chooses to formulate the optimization model (5-1) in the OSmL 

modeling language (Figure 5-9). The OSmL engine will compile the model into an OSiL 

instance and delegate a communication agent to send the OSiL instance to the appropriate 

solver on the OS network (Figure 5-10).   

 
Figure 5-9: The model can be formulated in the OSmL modeling language.  
 

The communication agent (in this case a solver agent) knows everything about hooking up 

with any OS solver. It takes OSiL as an input and contacts an OS solver using the OShL 

communication protocol in OSP (Chapter 7). OShL is explained in Chapter 7. It roughly 

corresponds to invoking an operation (or method) in a local environment, so OSiL can be 

thought of as an input argument of this operation; this corresponds to the part “OShL 

return 

<mathProgram> 

<obj maxOrMin="min" name="Rosenbrock"> 

100*(x2 - x1^2)^2 + (1 - x1)^2 

</obj> 

<constraints> 

<con> 

x1 + x2 <= 100 

</con> 

</constraints> 

</mathProgram> 

user world computing system world 
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(OSiL)” in Figure 5-10.  In all the following figures we use this convention by putting input 

and output instances in parentheses.  

A solver can be developed independently from Optimization Services and its API 

(Application Program Interface) may be different from that specified by OShL. For example, 

OShL specified an operation name called “solve(String osil)” but the solver may be 

using the name “optimize” and its own data representation So in order to be OS-compatible, 

the solver has to expose a standard OS API. The solver can do that by hiding the original solver 

in a wrapper class and make the wrapper class implement the standard interface with all the 

methods specified in the OShL WSDL document. For example the solver can implement the 

following wrapper class:  
String solve(String osil){ 

 convert osil into solver’s own data representation; 
 solver_own_result = optimize(solver_own_representation); 
 convert solver’s own result to the standard result and return; 
} 

All the OS solvers are hosted in an OS server just as all the web pages are hosted in a Web 

server. We provide the OS Server software to host the OS solver. The solver developer can, 

however, implement their own Optimization Services solver server, as long as the exposed 

service API follows the OSP protocols. After the solver solves the problem represented by 

OSiL, it returns the result in Optimization Services result Language (OSrL, Chapter 6). 

 
Figure 5-10: After the model is translated into the OSiL instance, an agent is delegated to send the 
instance to a solver. The agent hooks up the solver using the OShL communication protocol. All 
OS solvers expose themselves with a standard OS API and return the output in OSrL.  An OS 
server is needed to host the solver and all other Optimization Services. We provide the OS Server 
software.  
 

 After the agent gets the OSrL result back, it returns the result to the calling environment. 

None of the OSxL instances are meant for humans to read. A standard OStL (Optimization 

Services transformation Language, Chapter 6) style sheet is provided to present the OSxL 

instances. OSrL is among the instances whose contents need to be understood by humans most 
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frequently.

 
Figure 5-11: The agent returns the OSrL and possibly with the standard OStL style sheet to the 
MLE (or GUI, spreadsheet, etc.) and the result gets nicely presented to the modeler.   
 

Since different users have different tastes, modeling environments can choose not to use 

the provided OStL style sheet (Chapter 6), and instead present the OSrL in a different way. In 

situations where post-processing of OSrL is necessary, names and indexes of the original model 

may be different from those in the instance, so OStL may not be appropriate to use. For 

example the OSmL modeling environment presents the optimized result without using the 

OStL as shown in Figure 5-12. 

 
Figure 5-12: The OSmL modeling environment presents the result (without the OStL style sheet).    
 

The agent can talk to any solver service on the Optimization Services network (Figure 

5-13). This is possible because all the solver services expose the same standard OS API. All the 

solvers can be invoked with an operation specified by OShL, they all take OSiL as an input, 

and they all return OSrL as an output. But all these are based on the assumption that the agent 
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knows where the solvers are. Each solver is at a unique address (URI) but either it may not be 

known to the agent or it may change frequently.  

 
Figure 5-13: The agent can talk to any solver on the Optimization Services network. This is 
possible because all the solver services are standardized; they can be invoked with an operation 
specified by OShL, they all take OSiL as input, and they all return OSrL as output.  
 

So the agent needs to first contact the OS registry (Figure 5-14). The location of the OS 

registry is well known or is easily found. For example our test OS registry is currently at the 

address http://gsbkip.chicagogsb.edu/os/osregistry/NEOSRegistryService.jws.  

The agent discovers the right solvers in the OS registry with an OSdL (Optimization 

Services discover Language, Chapter 8) operation which passes the OSqL (Optimization 

Services query Language, Chapter 8) query as an input. The OS registry returns the locations of 

the solvers that match the OSqL query in OSuL (Optimization Services uri Language, Chapter 

8).  
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Figure 5-14: The agent knows how to hook up any solver, but first it needs to know where the 
solvers are. So the agent discovers the solver in the OS registry with an OSdL operation, which 
passes OSqL as an input. The OS registry returns the matched locations in OSuL.  
 

The OS registry has all the solver information because all the OS solvers have to join the 

registry by publishing their OSeL (Optimization Services entity Language, Chapter 8) 

information to the registry with an OSjL (Optimization Services join Language, Chapter 8) 

operation. OSeL describes the static information about all the solvers. Usually the information 

can be filled in on a Web form and when the service provider submits the Web form, an OSjL 

operation is used to register the solver service. The OS registry in return sends back the OStL 

style sheet with which the solver providers publish their solver information (in OSeL) on their 

individual Web sites. Besides the OSeL information, the registry also separately benchmarks all 

the registered solvers and holds the benchmark information in OSbL (Optimization Services 

bench Language, Chapter 8). The OS registry’s own Web site also publishes the OSeL and 

OSbL information. To facilitate a uniform look-and-feel of publications over the OS network, 

all the service providers have to use the provided OStL style sheet. The “triangle” between the 

agent, the solver and the registry is called a Service-oriented Architecture (SOA, §4.6). 
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Figure 5-15: The OS registry has all the solver information because all the OS solvers have to join 
the registry by publishing their OSeL information with an OSjL operation beforehand. The OS 
registry in return sends back the OStL style sheet with which the solver providers publish their 
OSeL information on their own Web site. The “triangle” between the agent, the solver and the 
registry is called a Service-oriented Architecture (SOA). 
 

In reality, the Optimization Services process can be more complex. Before sending a query 

to the OS Registry, the solver agent may not know what query to send, as it can be hard to 

determine the optimization type from an optimization instance. This was discussed in §2.6. So 

the solver agent may first send the OSiL instance to an analyzer for analysis (Figure 5-16). All 

the OS analyzers on an OS network are invoked in the same way as OS solvers, i.e. using 

OShL. The OS analyzer takes OSiL as an input, but unlike the OS solvers, sends back OSaL 

(Optimization Services analysis Language, Chapter 6) as an output. Of course if the agent does 

not know the location of the OS analyzer, it again needs to first discover the analyzer in the OS 

registry, just like it discovers OS solvers.  

Figure 5-16 also shows some other process complications. For example, the solver may 

need to call a remote simulation service to get function values. The solver calls using an OScL 

(Optimization Services call Language, Chapter 7) operation. Both input and output of calling 

the simulation are specified in OSsL (Optimization Services simulation Language, Chapter 6) 

as their formats are simple and similar.   

Many of these processes are so common that they are predefined in OSfL (Optimization 

Services flow Language, Chapter 7). OSfL, unlike most other communication related OSxL’s, 

is an XML document in BPEL (Business Process Execution Language, [91]) that descriptively 

lists all the flows. 
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Figure 5-16: Before sending a query to the OS Registry, the agent may first send the OSiL problem 
instance to an analyzer using OShL. The analyzer sends back OSaL as an output. On the other 
hand, the solver may need to call a simulation service to get function values. The solver calls using 
an OScL operation. Both the input and output of calling the simulation are specified in OSsL.  
Some of the standard process flows are predefined in OSfL.  
 

In all the figures above, the OS registry is not drawn inside an OS server. But in fact, the 

OS registry is itself also an Optimization Service hosted in our own OS server and has a 

standard OS API exposed (Figure 5-17). Besides the discovery and registration services that the 

OS registry provides, the OS registry also provides a validation service. For example any 

component on the OS network can send an OSxL instance representation to the registry for 

validation using the OSvL (Optimization Services validate Language, Chapter 8) operation. 

The OS registry will return an error message if there is any warning or error in the OSxL 

instance submitted. Otherwise it returns a null or empty string.  

On the other hand, the OS registry, as a client, can “knock” on all the services with an 

OSkL (Optimization Services knock Language, Chapter 8) operation and all the services are 

required to send the current process information in OSpL (Optimization Services process 

Language, Chapter 8). This is possible because all the services are required to implement the 

standard interface with all the methods specified in the OSkL WSDL document. So a solver 

now has to implement operations specified both in OShL and OSkL.  

OSeL (entity), OSbL (benchmark) and OSpL (process) information is all that the OS 

registry knows about any registered service. All the three types of information play important 

roles for the registry to find the most appropriate service against a submitted query.  
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Figure 5-17: The OS registry is in fact also an Optimization Service hosted in an OS server and has 
a standard OS API exposed. For example any service on the OS network can send an OSxL 
instance representation to the registry for validation (OSvL) and the OS registry will return an 
error message if there is any. Otherwise it returns a null or empty string. On the other hand, the 
OS registry can “knock” on all the services with an OSkL operation and all the services are 
required to send the current process information in OSpL.  
 

As described in Chapter 1, Optimization Services and the Internet are closely related 

because of the decentralized architecture. In Figure 5-18, we show that most of the components 

in the Optimization Services system have a corresponding similar part in the Internet 

architecture. The similarity is not the initial intention of the OS project; rather it is the result 

that both are good designs based on a decentralized architecture.  

Writing the model/data in a modeling language environment (MLE) more or less 

corresponds with an Internet user filling in a Web form in a browser, only that the model/data 

construction can be more complex. The MLE converts the model/data into an OSiL instance 

and delegates the communication agent to send the instance, whereas the browser converts the 

Web form into an html file and delegates a socket to send the html. The agent uses the OSP 

communication protocol (in this case OShL) to contact the remote service (in this case a 

solver), whereas in the Internet architecture, the socket uses the HTTP protocol to contact the 

remote Web page. The solver is hosted in an OS server, whereas the Web page is hosted in a 

Web server. As a matter of fact our OS server implementation is based on an existing Web 

server and adds in extra plug-ins for all the Optimization Services operations. The location of 
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an OS service is in URI format, whereas a Web address is in plain URL format , a subset of 

URI but practically the same. A Web page is usually a static html page whereas a solver is 

more dynamic and mostly about computation. But many Web pages are also generated on the 

run. If the codes behind a Web page dynamically compute the Web contents, it may use CGI 

(Common Gateway Interface) or other dynamic Web technologies to wrap the codes behind the 

static html page. This more or less corresponds the standard OS API that wraps the solver 

codes. Like a dynamic Web page, which can get extra data from a remote database, the solver 

can get function values from a simulation. The OS registry naturally plays the role of any 

Internet search engine, only that the OS registry is intended for machine or software and is 

highly standardized and automated while the search engine is more for humans. Services like 

the analyzer are more or less like many of the HTML checker Web sites (e.g. W3C) that look 

into an instance and report an analysis result.  

 
Figure 5-18: A close analogy between Optimization Services and Internet.  
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CHAPTER 6 OPTIMIZATION SERVICES REPRESENTATION 
 

In this chapter, we present the instance representation part of Optimization Services 

Protocol (OSP). The instance representations are a set of low-level formats for data 

communication between different Optimization Services components. The difference between 

low-level instances and high level models is explained in Chapter 2. All the registry related 

OSxL representations are covered in Chapter 8. We provide open-source libraries (Appendix B) 

for reading and writing all the instances to facilitate parsing and simplify exchange of 

information. All the representation schemas and libraries are available at 

www.optimizationservices.org [92] and www.optimizationservices.net [93].   

Standards for instance representation are not new. In Chapter 2, we list all the major 

instance formats. But they are all limited to optimization problem input and highly fragmented 

in representing different input types. The scope of Optimization Services representations is 

much more general and comprehensive. Currently all the major optimization problem types are 

supported.     

We are also not the first to incorporate XML into optimization representations. Fourer, 

Lopes, and Martin proposed the LPFML Schema [53] for representing instances of mixed 

integer linear programs. Chang [19] and Kristjánsson [69] also proposed XML representations 

for linear-program instances. Bradley [15] proposed an XML markup grammar for networks 

and graphs. But all these XML representations deal mainly with one or two optimization types 

and none support the general nonlinear optimization problems.  

The Optimization Services representation project started with the Optimization Services 

instance Language (OSiL, §6.2) for representing general optimization input instances. OSiL has 

its roots in LPFML for representing linear program instances (Figure 6-1). For linear 

programming, an instance can be represented as a list of nonzero coefficients of variables in the 

objective and constraint functions, along with bounds on the variables and constraint functions. 

LPFML also has slight support for solver options and optimization outputs. OSiL extends and 

improves LPFML’s idea for linear program design and adds other optimization types. There is 

no separate linear instance representation in Optimization Services. We reserve the acronym 

OSlL (Optimization Services linear Language) in honor of LPFML for providing us the base 

and insight in linear program representations and for its early adoption of XML technologies in 

optimization. Optimization Services, however, has its own separate supports for optimization 
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options and results through OSoL (Optimization Services option Language, §6.5) and OSrL 

(Optimization Services result Language, §6.4).  

 
<xs:element name="mathProgram"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="sparseVector" type="sparseVector" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="sparseMatrix" type="sparseMatrix" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="linearProgramDescription" type="linearProgramDescription"/> 
   <xs:element name="linearProgramData" type="linearProgramData" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="linearProgramSolution" type="linearProgramSolution" minOccurs="0" 
maxOccurs="unbounded"/> 
   <xs:element name="linearProgramIterative" type="linearProgramIterative" minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 

 
Figure 6-1: LPFML Schema at the root level.  
 

The key benefit of defining the OSxL Schemas is that they impose standards for 

representing optimization instances. This is critical for parsers that read an instance that can be 

validated against OSxL Schemas. However, as useful as the validation concept is, validation is 

about syntax, not semantics. For example, a problem instance that validates against the OSiL 
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Schema may list a value for the <numberVariables> element that is not consistent with the 

actual number of <var> elements in the <variables> elements. These problems are not 

detected by XML validation software and require additional checking on the part of a parser. 
 

6.1 Optimization Services general Language (OSgL) 
The OSgL schema is located at http://www.optimizationservices.org/schemas/OSgL.xsd. 

OSgL defines general elements and data types used by many other OSxL schemas. Thus OSgL 

is usually included in the beginning of another OSxL schema by 
<xs:include schemaLocation="OSgL.xsd"/> 

In the subsequent sections, we will frequently refer to many of the elements and types 

defined in OSgL.  Figure 6-2, for example, shows the <intVector> data type in OSgL that 

is used in OSiL for defining a vector of row or column indexes.  

 

 
<xs:complexType name="intVector"> 
 <xs:choice> 
  <xs:element name="base64BinaryData" type="base64BinaryData"/> 
  <xs:element name="el" maxOccurs="unbounded"> 
   <xs:complexType> 
    <xs:simpleContent> 
     <xs:extension base="xs: int "> 
      <xs:attribute name="mult" type="xs:positiveInteger" use="optional" default="1"/> 
      <xs:attribute name="incr" type="xs:int" use="optional" default="0"/> 
     </xs:extension> 
    </xs:simpleContent> 
   </xs:complexType> 
  </xs:element> 
 </xs:choice> 
</xs:complexType> 
 
Figure 6-2: <intVector> data type in OSgL.  

   

An <intVector> may have one or more <el> children or a <base64BinaryData> 

child if the data in the <el> elements are compressed. The compression is explained in detail 

in the LPFML paper [53]. Each <el> element has a mult attribute (for multiplicity) with a 

default value 1 and an incr attribute (for increment) with a default value 0. For example 

<el>0</el><el>0</el><el>0</el><el>0</el><el>0</el> and 
<el>0</el><el>1</el><el>2</el><el>3</el><el>4</el> 

is more concisely expressed as  

choice
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<el mult="5">0</el> and <el mult="5" incr="1">0</el> 

There is also a similar <doubleVector> data type defined in OSgL.   

<listMatrix> (Figure 6-3) is another commonly used data type. It stores the nonzero 

elements of a sparse matrix. It has three child elements. The first child is <start> of type 

intVector. The ith <el> element in the intVector points to the start of the nonzero 

elements for column (row) i ( 0≥ ). The number of <el> elements should be the number of 

columns (rows) plus 1. The first <el> element should always be 0 and the last <el> element 

should always be the number of nonzero elements. The second child of <listMatrix> is 

<rowIdx> (or <colIdx>) again of type intVector for storing row (or column) indices if 

the matrix is stored by column (or row). The third element is <value> of  type 

doubleVector for storing all nonzero values in the matrix.  

 
Figure 6-3: <listMatrix> data type in OSgL.  
 

In Table 6-1, we list some common data types defined in OSgL.  
Type Name Brief Description 

intVector vector of integers 
doubleVector vector of doubles 
elType el element with a name and a value attribute and a description text 
mapType a sequence of  el elements (name-value pairs) 
base64Binary compression of a sequence of data usually expressed in el elements; see the LPFML paper 

[53] 
sparseVector sparse vector with an idx array and a nonz value array 
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listMatrix       typical sparse matrix storage type with a start array, a choice of rowIdx or colIdx 
array, and a nonzero value array 

mpsMatrix 
 

MPS style sparse matrix storage with a sequence of col (or row) elements; each col (or 
row) element is in turn a sequence of row (or col) elements 

matrixMarket common sparse matrix storage used in linear algebra with a sequence of el elements; each 
element is a double value (for a matrix entry) with a row and  a col attribute (for matrix 
indexes) 

xmlData 
(see § 6.2.2) 

a sequence of any data 

networkAndGraph 
(see Appendix A) 

comprehensive description of a network and graph topology through a set of nodes and 
arcs elements and definitions of nodeProperties and arcProperties; Reserved 
for future use.  

Table 6-1: Common data types defined in OSgL.  
 

In Table 6-2, we list typical function-related elements. Many of these functions are 

distribution functions. All the distribution functions can have an optional cdf boolean attribute 

which is false by default. If true, the distribution function is a cumulative distribution function. 

If false, the distribution is a probability distribution function (pdf, for continuous distributions) 

or probability mass function (pmf, for discrete distributions). Many of these functions have 

parameters which are expressed as element attributes. The distribution functions are widely 

used in the OSiL extension to stochastic programming.  
Function Name Brief Description 

userFunctions a sequence of userFunction elements; each userFunction element contains one 
OSnLNode as an expression tree root for expressing a function (see § 6.2.2) 

userVariables a sequence of userVariable elements; each userVariable element contains one 
OSnLNode as an expression tree root for expressing a user defined variable (see §6.2.2) 

discreteUniform Discrete Uniform function with a parameter N 
bernoulli  Bernoulli function with a parameter p 
binomial Binomial function with parameters N, p 
hypergeometric Hypergeometric function with parameters N, M, n 
poisson Poisson function with a parameter lamda 
geometric Geometric function with a parameter p 
negativeBinomial Negative Binomial function with a parameter p, r 
empiricalDiscrete Empirical Discrete function with a sequence of el elements; each el element is a 

double value and has a prob attribute 
empiricalContinuous Empirical Continuous function with a sequence of el elements; each el element 

contains one OSnLNode as an expression tree root for expressing a function and a from 
and a to attribute for the function domain 

uniform Uniform function with parameters a, b 
normal  Normal function with parameters mu, sigma 
stdNormal Standard normal function 
exponential Exponential function with a parameter lamda 
weibull Weibull function with parameters location, scale, shape 
erlang Erlang function with parameters lamda, n 
gamma Gamma function with parameters location, scale, shape 
beta Beta function with parameters degree1, degree2 
betaGeneral General Beta function with parameters degree1, degree2, min, max 
lognormal Lognormal function with parameters mu, sigma 
cauchy Cauchy function with parameters location, scale 
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t  Student T function with a parameter degree 
chiSquare Chi Square function with a parameter degree 
f F function with parameters degree1, degree2 
logistic  Logistic function with parameters mu and beta 
logLogistic Log Logistic function with parameters mu and beta 
logarithmic Logarithmic function with parameters a, b 
pareto Pareto function with parameters shape and scale 
rayleigh Rayleigh function with a parameter beta 
pert Pert function with parameters a, c, b 
triangular Triangular function with parameters a, c, b 
multivariateDiscrete Multivariate Discrete function with a sequence of 2 or more scenario elements; each 

scenario is a sequence of 2 or more el elements of double values 
multinomial Multinomial function with a parameter N and a sequence of el elements of 

probability values  
bivariateNormal Bivariate Normal function with parameters mu1, sigma1, mu2, sigma2, rho 
multivariateNormal Multivariate Normal function with a sequence of 3 or more mu elements and a 

covariance matrix of matrixMarket type 
linearTransformation Linear transformation function with a numberRows and a numberColumns 

attribute; it contains one constants element of type doubleVector, one 
matrix element of type matrixMarket, and a randomVariables 
element  to indicate a multivariate distribution 

Table 6-2: Common function related types defined in OSgL.  
 

Elements of similar types can be grouped and referenced together. For example the 

discreteDistributionGroup group shown in Figure 6-4 is used to group all the 

discrete distribution functions shown in Table 6-2. 

 
<xs:group name="discreteDistributionGroup"> 
 <xs:choice> 
  <xs:element ref="empiricalDiscrete"/> 
  <xs:element ref="discreteUniform"/> 
  <xs:element ref="bernoulli"/> 
  <xs:element ref="binomial"/> 
  <xs:element ref="hypergeometric"/> 
  <xs:element ref="poisson"/> 
  <xs:element ref="geometric"/> 
  <xs:element ref="negativeBinomial"/> 
 </xs:choice> 
</xs:group> 
Figure 6-4: <discreteDistributionGroup> group in OSgL.  
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A continuousDistributionGroup is similarly defined. The more general 

distributionGroup is a group of discreteDistributionGroup and 

continuousDistributionGroup as shown in Figure 6-5.  

 
<xs:group name="distributionGroup"> 
 <xs:choice> 
  <xs:group ref="discreteDistributionGroup"/> 
  <xs:group ref="continuousDistributionGroup"/> 
 </xs:choice> 
</xs:group> 
 
Figure 6-5: <distributionGroup> group in OSgL. 
 
 

6.2 Optimization Services instance Language (OSiL) 
 

The OSiL schema is located at http://www.optimizationservices.org/schemas/OSiL.xsd.  

OSiL is definitely the most critical instance representation. OSiL should be interpreted as 

Optimization Services input instance Language. The contents of many other OSxL 

representations such as the Optimization Services result Language and Optimization Services 

analysis Language are based on and driven by the OSiL design. In explaining the Optimization 

Process in §5.3, we see that OSiL is transmitted from and to nearly all the major components on 

the OS network.   

As explained in Chapter 2, there are many modeling languages and even more solvers for 

computing solutions to mathematical programs. If there are M  modeling languages and 

N solvers, then NM ×  drivers are required for complete interoperability. One way to 

encourage modeler-solver compatibility is to use a standard problem instance representation, so 

that all modeling languages and all solvers deal with problem instances in the same form. With 

a standard representation, only NM +  software drivers are needed for complete 

interoperability: each modeling language environment supplies its own driver to output the 

standard instance and each solver supplies its own driver to read the standard instance.  

There are derived research projects in Optimization Services such as Optimization 

Services instance Interface (OSiI), Optimization Services result Interface (OSrI) and 

Optimization Services option Interface (OSoI) to standardize local interfaces. An instance is 

parsed into a standard set of data structures in OSiI. If all the solvers adopt the standard local 

interfaces, there is potentially only one driver at the solver side instead of N drivers. In reality, 
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solvers are implemented in different languages. Suppose there are L (a number N<< ) 

programming languages used; then ideally only L driver copies of the same OSiI local interface 

specification are implemented. Our ultimate goal is thus to have a very small number of drivers. 

The same logic applies to the adoption of Optimization Services result Language and the 

corresponding OSrI local interface. More is explained in the examples illustrated in §7.1.  

Figure 6-6 shows the root element <OSiL> of the OSiL schema. This is the convention 

of all the OSxL schemas: their root elements are the same as their schema names.  

 

 
 
Figure 6-6: OSiL Schema at the root level <OSiL>.  
 

The <OSiL> element has two children <programDescription> and 

<programData>. The <programDescription> element is used to convey the basic 

properties of an optimization instance. All its children are shown in Figure 6-7 and are self-

explanatory. Elements in dashed rectangles are optional.   

 
 
Figure 6-7: <programDescription> element in OSiL.  
 
 

Consider the following optimization problem:  

sequence 

optional 

required 
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(6-1) 

 

There are two continuous variables, 0x  and 1x , each with a lower bound of 0. There is one 

nonlinear objective function. There are two constraints, each with a lower bound (or left-hand 

side) of ∞−  and an upper bound (or right-hand side) of 10. The first constraint is linear and 

the second constraint is nonlinear. 

The <programDescription> element for the math program instance is: 
<OSiL xmlns="os.optimizationservices.org" xmlns:xs="http://www.w3.org/2001/XMLSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="os.optimizationservices.org 

http://www.optimizationservices.org/schemas/OSiL.xsd"> 

 <programDescription> 
  <source>Optimization Services, Jun Ma's Thesis</source> 
  <description>Adapted from an example of Rosenbock (1960)</description> 
  <objName>adaptedRosenbrock</objName> 
  <maxOrMin>min</maxOrMin> 
  <objConstant>0.0</objConstant> 
  <numberObjectives>1</numberObjectives> 
  <numberConstraints>2</numberConstraints> 
  <numberVariables>2</numberVariables> 
 </programDescription> 
 <programData> 
 . . . 
 </programData> 
</OSiL> 

The actual math program data are contained in <programData> (Figure 6-8). 
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Figure 6-8: <programData> element in OSiL. 
 
6.2.1 Base program data 
 

As mentioned in the beginning of this chapter, OSiL has its roots in LPFML for 

representing linear programs. Our approach for a general nonlinear optimization problem is to 

write the problem as a linear program (the baseProgramData part in Figure 6-8) plus a set 

of nonlinear expressions for each objective or constraint function (the <nl> elements). This 

allows us to take advantage of the sparsity of most of the linear structures and save space for 

general nonlinear programs.  

In the base program data part, there are four parts, <constraints>, <variables>, 

<multiObjectives>, and <coefMatrix>, which we next describe in sequence.  

1. The <constraints> element is shown in Figure 6-9.  

 

 

 

extensions 

base 
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<xs:complexType name="constraints"> 
  <xs:sequence> 
   <xs:element name="con" type="con" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
<xs:complexType name="con"> 
 <xs:attribute name="name" type="xs:string" use="optional"/> 
 <xs:attribute name="ub" type="xs:double" use="optional" default="INF"/> 
 <xs:attribute name="lb" type="xs:double" use="optional" default="-INF"/> 
 <xs:attribute name="mult" type="xs:positiveInteger" use="optional" default="1"/> 
</xs:complexType> 
Figure 6-9: <constraints> element in OSiL.  

 

The <constraints> element contains a sequence of 1 or more <con> elements.  Each 

<con> element has an optional name attribute. The constraint name is optional because each 

constraint is referenced by its index (starting from 0) according to the order the <con> element 

is listed in the <constraints> element. The <con> element also has an optional ub 

attribute which by default is INF (positive infinity), and an lb attribute which by default is -

INF (negative infinity). The optional attribute mult (for multiplicity) is similar to the mult 

attribute of the intVector element explained in the OSgL section (§6.1).  

2. The <variables> element is shown in Figure 6-10.  

 
<xs:complexType name="variables"> 
 <xs:sequence> 
  <xs:element name="var" type="var" maxOccurs="unbounded"/> 
 </xs:sequence> 
</xs:complexType> 
<xs:complexType name="var"> 
 <xs:attribute name="name" type="xs:string" use="optional"/> 
 <xs:attribute name="init" type="xs:string" use="optional"/> 
 <xs:attribute name="type" use="optional" default="C"> 
  <xs:simpleType> 
   <xs:restriction base="xs:string"> 
    <xs:enumeration value="C"/> 
    <xs:enumeration value="B"/> 
    <xs:enumeration value="I"/> 
    <xs:enumeration value="S"/> 
   </xs:restriction> 
  </xs:simpleType> 
 </xs:attribute> 
 <xs:attribute name="lb" type="xs:double" use="optional" default="0"/> 
 <xs:attribute name="ub" type="xs:double" use="optional" default="INF"/> 
 <xs:attribute name="objCoef" type="xs:double" use="optional" default="0.0"/> 
 <xs:attribute name="mult" type="xs:positiveInteger" use="optional" default="1"/> 
</xs:complexType> 
Figure 6-10: <variables> element in OSiL.  
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The <variables> element contains a sequence of 1 or more <var> elements.  Each <var> 

element has an optional name element. Like constraints, a variable is referenced by its index 

(starting from 0) according to the order the <var> element is listed in the <variables> 

element. The <var> element also has an optional init attribute of string (not double) 

type. This is because in certain optimization problems (such as those typically solved by 

constraint programming), variables may assume non-numeric values. The optional type 

attribute has four possible values: C for continuous (default), B for binary, I for integer, and S 

for string. The optional ub attribute is by default INF.  The optional lb attribute is by default 0. 

The optional objCoef attribute is by default 0. The optional attribute mult (for multiplicity) 

is similar to the mult attribute of the intVector element explained in the OSgL section 

(§6.1).  

3. The <coefMatrix> element is shown in Figure 6-11. 

 
Figure 6-11: <coefMatrix> element in OSiL.  

The coefficient matrix contains the linear part of the constraints. The <coefMatrix> 

can contain a choice of listMatrix and mpsMatrix. Both types of matrices can be 

combined with a sparseSDPA matrix, if a sparseSDPA matrix is mixed with a regular linear 

choice

sequence
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matrix. The listMatrix and mpsMatrix elements are briefly explained in the OSgL 

section (§6.1). The sparseSDPA matrix is for semidefinite programming and is mainly an 

XML version of the sparse SDPA format [89]. There can be other common semidefinite 

formats, so the semidefinite programming representation may adapt to a better one in the future.  

 The linear part of the objective function in (6-1) is 17x . The first constraint 

( 1057 10 ≤+ xx ) is linear. The linear part of the second constraint is 10 57 xx + . By using the 

con elements to store upper and lower bounds on the constraints, the var elements to store the 

upper and lower bounds on the variables and the objective function coefficients, and the 

coefMatrix element to store the linear part of the constraint matrix, all of the information 

necessary to represent a linear programming instance, or the linear part of a nonlinear program 

is represented. For example we can represent the linear part of (6-1) as: 
<programData> 

 <constraints> 
  <con ub="10.0"/> 
  <con ub="10.0"/> 
 </constraints> 
 <variables> 
  <var name="x0" objCoef="0"/> 
  <var name="x1" init="1" lb="0" ub="INF" type="C" objCoef="7"/> 
 </variables> 
 <coefMatrix> 
  <listMatrix> 
   <start> 
    <el>0</el> 
    <el>2</el> 
    <el>4</el> 
   </start> 
   <rowIdx> 
    <el>0</el> 
    <el>1</el> 
    <el>0</el> 
    <el>1</el> 
   </rowIdx> 
   <value> 
    <el>1</el> 
    <el>7</el> 
    <el>7</el> 
    <el>5</el> 
   </value> 
  </listMatrix> 
 </coefMatrix> 
. . . 
<programData> 

Some of the optional attributes in the above example are explicitly shown for the purpose of 

illustration. The listMatrix element is listed in column major form using the rowIdx 

element. It can be listed in row major form using the colIdx element in a similar fashion. 

Alternatively the coefMatrix can be represented using the mpsMatrix element:  
< coefMatrix > 
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 <mpsMatrix> 
  <col idx="0"> 
   <row idx="0">1</row> 
   <row idx="1">7</row> 
  </col> 
  <col idx="1"> 
   <row idx="0">7</row> 
   <row idx="1">5</row> 
  </col> 
 </mpsMatrix> 
</ coefMatrix > 

4. The <mutlObjectives> element is shown in Figure 6-12. This element is for 

optimization with respect to more than one objective. 

 
<xs:complexType name="multiObjectives"> 
 <xs:sequence> 
  <xs:element name="obj" maxOccurs="unbounded"> 
   <xs:complexType> 
    <xs:complexContent> 
     <xs:extension base="obj"/> 
    </xs:complexContent> 
   </xs:complexType> 
  </xs:element> 
 </xs:sequence> 
</xs:complexType> 
<xs:complexType name="obj"> 
 <xs:sequence> 
  <xs:element name="el" maxOccurs="unbounded"> 
   <xs:complexType> 
    <xs:simpleContent> 
     <xs:extension base="xs:double"> 
      <xs:attribute name="varIdx" type="xs:nonNegativeInteger" use="required"/> 
     </xs:extension> 
    </xs:simpleContent> 
   </xs:complexType> 
  </xs:element> 
 </xs:sequence> 
 <xs:attribute name="name" type="xs:string" use="optional"/> 
 <xs:attribute name="maxOrMin" use="required"> 
  <xs:simpleType> 
   <xs:restriction base="xs:string"> 
    <xs:enumeration value="min"/> 
    <xs:enumeration value="max"/> 
   </xs:restriction> 
  </xs:simpleType> 
 </xs:attribute> 
 <xs:attribute name="weight" type="xs:double" use="optional" default="1.0"/> 
 <xs:attribute name="constant" type="xs:double" use="optional" default="0.0"/> 
</xs:complexType> 
Figure 6-12: <multiObjectives> element in OSiL.  

 

The <mutlObjectives> element has a sequence of 1 or more <obj> elements. Each 

<obj> child element has an optional name attribute. Again like constraints and variables, each 
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objective is referenced by its index; the first objective starts with an index -1, the second with -

2, and downwards. Since constraint indexes start from 0 upwards, the objective and constraint 

indexes do not conflict with each other and together all potential the row indexes span the 

entire integer domain.  If the optimization has only one objective (objNumber = 1 in the 

programDescription element), it is recommended that the single objective be specified 

using the regular mechanism described above and not go inside the <multiObjectives> 

element. Each <obj> has a required maxOrMin attribute which can take on a value of either 

max or min. Each <obj> can also have an optional weight attribute (1 by default), and an 

optional constant attribute (0 by default). The <obj> element contains a sequence of 1 or 

more double-valued <el> elements to specify objective coefficients. Each <el> element has a 

required varIdx attribute to indicate to which variable the coefficient belongs.  

 
6.2.2 Extension elements 

There are currently eight extension elements in the programData (Figure 6-8) of OSiL. 

They are <nl> for nonlinear programming, <cones> for cone programming, <stages> for 

any math programming that uses stage information (e.g. dynamic programming, stochastic 

programming), <stochastic> for stochastic programming, <userFunctions> for user-

defined functions, <userVariables> for user-defined variables, <simulations> for 

definitions of simulations, and <xmlData> for data representation in XML form. The 

extension to semidefinite programming is already included in the baseProgramData part 

through the representation of constraint matrix in sparseSDPA. The extensions to quadratic 

programs, constraint programs, and complementarity problems are included in the nonlinear 

programming extension through incorporation of special nonlinear nodes described in §6.3. We 

go through each of the eight extensions below.  

 1. <nl> for nonlinear programming (including quadratic programming, constraint 

programming, complementarity programming) 

In keeping with the philosophy of separating out the linear and nonlinear parts of an 

optimization instance, the nonlinear terms in an instance are defined using the OSnL schema. 

The OSiL schema then imports the OSnL schema. The OSnL schema represents a wide 

variety of general nonlinear operators, functions and operands and is made simple to parse by 

adoption of a recursive design. OSnL is detailed in §6.3. 

 For nonlinear extensions, an alternative to the OSiL approach is Content MathML as 

described in §4.2.2. In that same section, we listed reasons why we decided against using 
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Content MathML to represent general nonlinear optimization problems. However, in order to 

be as consistent with MathML as possible, we adopt the MathML element names whenever 

possible, for example <ln> for natural logarithm.   

  The way OSiL uses OSnL is through the use of a sequence of 0 or more <nl> elements 

immediately after the last element in the base program data as shown in Figure 6-8. Figure 6-13 

shows the definition of the <nl> element in OSiL.  

 
<xs:complexType name="nl"> 
 <xs:sequence> 
  <xs:element ref="OSnLNode"/> 
 </xs:sequence> 
 <xs:attribute name="idx" type="xs:int" use="required"/> 
</xs:complexType> 
 
Figure 6-13: <nl> element in OSiL.  

 
The <nl> element has a required attribute idx, to indicate that it is part of an objective 

or constraint function whose index is equal to idx. Objectives are indexed by negative 

integers, with the first one being -1, the second one -2, and so on. Constraints are indexed by 

nonnegative integers, with the first one being 0, the second one 1, and so on. So <nl 
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idx=”0”> indicates the nonlinear expression belongs to the first constraint; and <nl 

idx=”-1”> indicates the nonlinear expression belongs to the first objective function.  

The <nl> element contains one and only one OSnLNode element. This single child 

element is the root element of the nonlinear expression. OSnLNode is an abstract element 

defined in OSnL. In a real instance, it is represented by a concrete element, such as plus, 

times, sum, PI, number, var. That is why in the <nl> schema, the child element is written 

as <xs:element ref="OSnLNode"/>, using a ref attribute rather than a type 

attribute. The concrete elements are all defined in OSnL. There are more than 200 concrete 

elements that represent various operators, functions, and operands. All inherit from the abstract 

OSnLNode element through the idea of substitution groups. Inheritance through substitution 

groups was described in §4.3 and is illustrated in detail in §6.3.   

 Each concrete OSnLNode element can have 0 or more concrete child elements that also 

inherit from OSnLNode. For example, if the concrete element is plus, it has exactly two child 

concrete elements that inherit from OSnLnodes. If the concrete element is an operand (e.g. a 

constant PI), it has no children. This recursive design allows us to build an entire expression 

tree in a clean, effective and scalable way.  

 

Figure 6-14:  Objective function nonlinear part 2
0

22
01 )1()(100 xxx −+−  represented in <nl> 

and the corresponding vertical tree view of the expression.  
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The nonlinear part of the objective function (idx = -1) in (6-1) is 2
0

22
01 )1()(100 xxx −+− . 

Its XML representation (horizontal tree) and the corresponding tree visualization (vertical tree) 

is shown in Figure 6-14. The first constraint in (6-1) is linear; it does not have a corresponding 

<nl> element. The linear part of the second constraint (idx = 1) is )ln( 10 xx .  It is represented 

as 
<nl idx="1"> 

 <ln> 
  <times> 
   <var idx="0"/> 
   <var idx="1"/> 
  </times> 
 </ln> 
</nl> 

Thus the entire optimization problem (6-1) has been characterized in XML.  

2. <cones> for cone programming 

The cone programming extension mainly addresses second-order cone programming (SOCP). 

SOCP is usually solved with some kind of primal-dual interior point method. The objective 

function is usually linear, while the constraints are an intersection of an affine set and the direct 

product of quadratic cones. See [75] for more details. OSiL extension to cone programming 

using the <cones> element is explained in detail in Appendix A.  

 3. <stages> for math programs using stage information 

Information of stages is used in several optimization types, such as dynamic programming, and 

stochastic programming. OSiL extension to these problems types using the <stages> element 

is explained in detail in Appendix A.  

 4. <stochastic> for stochastic programming 

For a complete review of stochastic programming, refer to [11]. The OSiL stochastic 

programming extension is designed to make it convenient and powerful to transform existing 

deterministic linear or nonlinear programs into stochastic programs by adding dynamic and 

stochastic structure information. It was first designed totally independent of the SMPS 

format[10] and later, through working with Horand Gassmann, one of the coauthors of the 

original SMPS format, added many new ideas. OSiL extension to these problems types using 

the <stages> element is explained in detail in Appendix A.  

 5. <userFunctions> for user-defined functions in terms of OSnLNode expression 

trees 

Figure 6-15 shows the <userFunctions> element.  
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<xs:element name="userFunction" maxOccurs="unbounded"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element ref="OSnLNode"/> 
  </xs:sequence> 
  <xs:attribute name="name" type="xs:ID" use="required"/> 
  <xs:attribute name="numArg" type="xs:nonNegativeInteger" use="required"/> 
 </xs:complexType> 
</xs:element> 
 
Figure 6-15: <userFunctions> element in OSiL.  

 

The <userFunctions> element contains a sequence of one or more 

<userFunction> elements. Each <userFunction> has a required name and numArg 

(number of arguments) attribute. <userFunction> has one and only one OSnLNode 

element. This single child element is the root element of the nonlinear expression that 

represents a user-defined function.  The use of OSnLNode is just like defining any nonlinear 

expression in the <nl> element, except that it uses some <arg> elements. The definition of 

the user function should be independent of the mathematical program represented by the OSiL 

instance. For example, it is required that the user function definition can not use math program 

variables (<var> elements) because the variable indexes change between instances of the 

same optimization problem; instead, the <arg> element from OSnL is provided to define the 

user function. If a modeler wants to define “user” variables using the math program variables, 

he should use the <userVariables> element described below. For example, suppose the 

nonlinear term 22
01 )(100 xx − in the objective function of (6-1) is defined by a user function 

called myFunction as 22
0110 )arg(arg100)arg,(arg −=myFunction . It is represented 

using the <userFunctions> element as  
<userFunctions> 

 <userFunction name="myFunction" numArg="2"> 
  <times> 
   <number value="100"/> 
   <power> 
    <minus> 
     <arg idx="1"/> 
     <power> 
      <arg idx="0"/> 
      <number value="2"/> 
     </power> 
    </minus> 
    <number value="2"/> 
   </power> 
  </times> 
 </userFunction> 
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</userFunctions> 
In the above example, we should not use <var idx="0"/> instead of <arg idx ="0"/>. 

With the definition of the user function, we can represent the nonlinear part of the objective 

function in OSiL as: 
<nl idx="-1"> 

 <plus> 
  <userF name="myFunction"> 
   <var idx="0"/> 
   <var idx="1"/> 
  </userF> 
  <power> 
   <minus> 
    <number value="1"/> 
    <var idx="0"/> 
   </minus> 
   <number value="2"/> 
  </power> 
 </plus> 
</nl>  

The <userF> nonlinear node is explained in §6.3.  

6. <userVariables> for user-defined variables in terms of OSnLNode expression trees 

Figure 6-16 shows the <userVariables> element, which contains a sequence of 

<userVariable> child elements.  

 
<xs:complexType name="userVariables"> 
 <xs:sequence> 
  <xs:element name="userVariable" maxOccurs="unbounded"> 
   <xs:complexType> 
    <xs:sequence> 
     <xs:element ref="OSnLNode"/> 
    </xs:sequence> 
    <xs:attribute name="name" type="xs:ID" use="required"/> 
   </xs:complexType> 
  </xs:element> 
 </xs:sequence> 
</xs:complexType> 
 
Figure 6-16: <userVariables> element in OSiL.  

 

The use of the <userVariables> element is very similar to that of 

<userFunctrions>, only that the user-defined variables are defined over the math program 

variables declared in the <variables> element and therefore there are no arguments to pass 

to each userVariable. So, unlike the user functions, user variables highly depend on the 

math program instance.  
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Like <userFunction>, each <userVaraible> has one and only one OSnLNode 

element which defines the root element of the nonlinear expression that represents a user-

defined variable.   

Suppose the nonlinear term 22
01 )(100 xx − in the objective function of (6-1) is defined by 

a user-defined variable called myVariable. It is represented using the <userVariables> 

element as  
<userVariables> 

 <userVariable name="myVariable" numArg="2"> 
  <times> 
   <number value="100"/> 
   <power> 
    <minus> 
     <var idx="1"/> 
     <power> 
      <var idx="0"/> 
      <number value="2"/> 
     </power> 
    </minus> 
    <number value="2"/> 
   </power> 
  </times> 
 </userFunction> 
</userFunctions> 
In the above example, there are no <arg> elements as there are not going to be arguments 

passed in. We directly use <var idx="0"/> and <var idx="1"/> from the math 

program instance. In a sense, every <userVariable> element has all the <var> elements 

as their predefined arguments. With the user variable definition, the nonlinear part of the 

objective function is represented in OSiL as:  
<nl idx="-1"> 

 <plus> 
  <userVar name="myVariable"/> 
  <power> 
   <minus> 
    <number value="1"/> 
    <var idx="0"/> 
   </minus> 
   <number value="2"/> 
  </power> 
 </plus> 
</nl>  
The <userVar> nonlinear node is explained in §6.3. 

 7. <simulations> for definition of black-box calculations of any type 

Figure 6-17 shows the <simulations> element.  
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<xs:complexType name="simulations"> 
 <xs:sequence> 
  <xs:element name="simulation" maxOccurs="unbounded"> 
   <xs:complexType> 
    <xs:sequence> 
     <xs:element name="uri"> 
      <xs:complexType> 
       <xs:attribute name="value" type="xs:anyURI" use="required"/> 
      </xs:complexType> 
     </xs:element> 
     <xs:element name="OSsL" type="OSsL"/> 
    </xs:sequence> 
    <xs:attribute name="name" type="xs:ID" use="required"/> 
   </xs:complexType> 
  </xs:element> 
 </xs:sequence> 
</xs:complexType> 
 
Figure 6-17: <simulations> element in OSiL.  

 

The <simulations> element contains a sequence of one or more <simulation> 

elements.  Each <simulation> has a required name attribute. A simulation is similar to a 

user function as described in §2.8, except that there is no longer a closed form expression for 

the function. Instead, three things have to be specified for the simulation: input, output, and the 

simulation’s address. Thus each <simulation> has a required <uri> child to specify an 

address in URI format and a required OSsL element to specify the input and output of the 

simulation. OSsL is specified in the Optimization Services simulation Language of §6.7. 

Suppose the nonlinear term 22
01 )(100 xx − in the objective function of (6-1) is one of the 

multiple outputs from a simulation called simpleSimulation shown in Figure 6-18. Of 

course, in reality the simulation calculation can be extremely complex.  

 
Figure 6-18: simpleSimulation with two inputs (a, b), two outputs (f1, f2) and an address at 
http://www.optimizationservices.org/os/ossimulation/SimpleSimulationService.jws. 
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The simpleSimulation element is represented using the <simulations> element as  
<simulations> 

 <simulation name="simpleSimulation"> 
  <uri value="http://www.optimizationservices.org/os/ossimulation/SimpleSimulationService.jws"/> 
  <OSsL> 
   <input> 
   <el name="a"/> <el name="b"/> 
   </input> 
   <output> 
   <el name="f1"/><el name="f2"/> 
   </output> 
  </OSsL> 
 </simulation> 
</simulations> 

Notice simpleSimulation has two outputs and we only need the first output f1. Now the 

objective function is written as  1
2

0110 7)1(),( xxfxxonmySimulati +−+→  and the 

nonlinear part of the user function is represented as 
<nl idx="-1"> 

 <plus> 
  <sim name="simpleSimulation"> 
   <simInput inputName="a"> <var idx="0"/> </simInput> 
   <simInput inputName="b"> <var idx="1"/> </simInput> 
   <simOutput outputName="f1"/> 
  </sim> 
  <power> 
   <minus> 
    <number value="1"/> 
    <var idx="0"/> 
   </minus> 
   <number value="2"/> 
  </power> 
 </plus> 
</nl> 

The <sim> nonlinear node is explained in more detail in §6.3. The process of invocation of 

simulation services in simulation optimization is explained in more detail in §7.2.  

8. <xmlData> for data definition in XML form 
 
Figure 6-19: <xmlData> element in OSiL. 

Figure 6-19 shows the <xmlData> element.  

 
<xs:complexType name="xmlData"> 
 <xs:sequence> 
  <xs:any processContents="skip" maxOccurs="unbounded"/> 
 </xs:sequence> 
</xs:complexType> 
 
Figure 6-19: <xmlData> element in OSiL. 
 



 
 
 

166 

 
 
 

In an optimization instance, there is usually no need to separately keep a data list, as all the 

data are substituted into the instance. But occasionally there is the need to keep separate data. 

For example, in constraint programming, a parameter can be indexed over variables such as 

p[x[0], x[1]]. Parameter values are not known at compile time. It is not until run time, when the 

variable values (x[0], x[1]) are known, can parameter values be retrieved. A simple example of 

keeping the parameters ( ],[ jip ) in xmlData is shown below:  

<xmlData> 

 <p> 
  <i> 
   <j>1.2</j><j>1.3</j> 
  </i> 
  <i> 
   <j>0.4</j><j>0.5</j> 
  </i> 
  <i> 
   <j>3.1</j><j>4.5</j> 
  </i> 
 </p> 
</xmlData> 

In the example 2.1]0,0[ =p , 3.1]1,0[ =p , 4.0]0,1[ =p , 5.0]1,1[ =p , 1.3]0,2[ =p  and 

5.4]1,2[ =p . Notice almost all the databases and spreadsheets are xml-enabled, meaning that 

they can at least export the data in XML formats, which can then be retrieved with the standard 

XPath language (§4.4).  So this simple example has its universal appeal in practice. For 

example to get the value of ]0,2[p  (the 1st <j> element in the 3rd <i> element; xPath starts 

element index with 1), we construct the following XPath:  
xmlData/p/i[position()="3"]/j[position()="1"] 

Of course, in an optimization process, we pass in x[0] and x[1] instead of the numbers “3” and 

“1”. We will explain more on the <xPath> nonlinear node in §6.3; the nonlinear node uses 

the XPath syntax to retrieve data values from any XML data.  

 

6.3 Optimization Services nonlinear Language (OSnL) 
The OSnL schema is located at http://www.optimizationservices.org/schemas/OSnL.xsd. 

In keeping with the philosophy of separating out the linear and nonlinear parts of an 

optimization instance, the nonlinear expressions in an instance are defined using the OSnL 

schema. OSnL itself is not a nonlinear program instance representation. As described in the 

OSiL section (§6.2), all types of optimization instances are described using OSiL. More 

appropriately OSnL should be interpreted as Optimization Services nonlinear node Language. 

OSnL defines nonlinear nodes and nodes only. The nodes can be operators, functions or 

terminal operands. Operators always have child nodes. Function may or may not have child 
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nodes. Terminal operands do not have children. Examples of terminal nodes are the number 

node and constant nodes such as PI and E.  

OSnL is then included in the OSiL schema to support nonlinear instance representation in 

OSiL. The way OSiL uses OSnL is through the use of a sequence of 0 or more <nl>; each 

<nl> element has an only child OSnLNode as an expression tree root to define a nonlinear 

function. This is described in detail in the OSiL section (§6.2).  

In §4.3, we described schema type inheritance through the idea of substitution groups. For 

a nonlinear expression, we use an expression tree and view every node in the expression tree as 

a generic node, which we call “OSnLNode.” Each OSnLNode can have 0 or more OSnLNode 

children. A terminal node is just an OSnLNode without children. To represent a generic node, 

at the beginning of the OSnL schema, we create a complex type OSnLNode:   
<xs:complexType name="OSnLNode" mixed="false"> 

 <xs:annotation> 
  <xs:documentation>This is a generic node from which we derive operator nodes</xs:documentation> 
 </xs:annotation> 
</xs:complexType> 

The annotation element is just an XML schema comment. Next we create a 

substitution group based on the named element OSnLNode, which is of the above type 

OSnLNode.  
<xs:element name="OSnLNode" type="OSnLNode" abstract="true"> 

 <xs:annotation> 
  <xs:documentation> Set abstract to true in order to create a substitution group</xs:documentation> 
 </xs:annotation> 
</xs:element> 

So we can think of OSnLNode as a derived class. Note the abstract attribute is set to 

the value of true in order to create the abstract class. Now with the substitution group defined, 

throughout the rest of the OSnL schema, we create concrete OSnLNode elements that are in the 

substitution group for OSnLNode. For example, the first concrete element we define is an 

OSnLNode for addition:  
<xs:complexType name="OSnLNodePlus"> 

 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence minOccurs="2" maxOccurs="2"> 
    <xs:element ref="OSnLNode"/> 
   </xs:sequence> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="plus" type="OSnLNodePlus" substitutionGroup="OSnLNode"/> 

We first define the complex type OSnLNodePlus and we then create the derived element 

plus that is in the substitution group OSnLNode. Note that the plus element requires 
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exactly two child elements (<xs:sequence minOccurs="2" maxOccurs="2">), both of 

which should be in the OSnLNode substitution group too (<xs:element 

ref="OSnLNode"/>). In a similar fashion, we define all other OSnL nodes such as minus, 

divide, arcsin, sum, E, var, leq, if, complements, xPath, userF, quadratic. 

For nodes such as sum, as the sum operator is an indefinite type, the corresponding 

OSnLNodeSum requires one or more child elements:  
<xs:complexType name="OSnLNodeSum"> 
 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence minOccurs="1" maxOccurs="unbounded"> 
    <xs:element ref="OSnLNode"/> 
   </xs:sequence> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="sum" type="OSnLNodeSum" substitutionGroup="OSnLNode"/> 
 
For nodes such as E, as E is a constant, the corresponding OSnLNodeE has no children: 
<xs:complexType name="OSnLNodeE"> 

 <xs:complexContent> 
  <xs:extension base="OSnLNode"/> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="E" type="OSnLNodeE" substitutionGroup="OSnLNode"/> 

  he recursive design provides a significantly simple and powerful way to construct a 

nonlinear expression. As shown in Figure 6-13  in the OSiL section (§6.2), the definition of an 

<nl> element for the nonlinear extension is only six short lines.   

When a concrete expression tree is finally constructed, it may look like:   
<sum> 
 <times> 
  <var idx="0" coef="3"/> 
  <var idx="1"/> 
 </times> 
 <power> 
  <var idx="0" coef="4"/> 
  <number value="2"/> 
 </power> 
 <divide> 
  </PI> 
  <var idx="0"/> 
 </divide> 
</sum> 

for the nonlinear expression 0
2
010 /4)3( xxxx π++ . 

 The OSnL schema is very compressive; over 200 elements are supported. They fall 

broadly into the following 8 categories:  

1. Arithmetic operators 

2. Elementary functions 
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3. Trigonometric functions 

4. Statistical and probability functions 

5. Terminals and constants 

6. Optimization related elements 

7. Logic and relational operators 

8. Special elements 

The input and output of all the currently defined operators/functions are scalars 

( 1RR n → ). Set or vector valued function elements may be added in the future. Next we 

describe elements in each category.  

1. Arithmetic operators 

In Table 6-3, we list the arithmetic operator elements.  
Name Child # Note Name Child # Note 

plus 2 + divide 2 ÷  
sum 1 or more ∑  quotient 2 \; e.g. 11 quotient 4 = 2 
minus 2 - rem 2 remainder, e.g. 11 rem 4 = 3 
negate 1 (-) power 2 ^ ; base is the 1st child; exponent is the 2nd child 
times 2 ×  

 

product 1 or more ∏
 

Table 6-3: Arithmetic operators in OSnL.  
 
“Child #” indicates the number of OSnLNode children that an element can take as operands. 

Elements with 1 operand are of unary type. Elements with 2 operands are of binary type. 

Elments with n (n>2) operands are of n-nary type. Some of the subsequent element types have 

n-nary functions.  Elements such as sum and product are of indefinite types. As useful as the 

validation concept is, validation is about syntax not semantics. For example, the OSnL schema 

can make sure there are exactly 2 child elements for the <divide> element, but the schema 

cannot make sure the second child evaluates to a non-zero. Similarly the schema does not check 

whether the child elements of the integer-based quotient and rem operators evaluate to 

integers. These require additional checking and interpretation on the part of a parser.  

2. Elementary functions 

In Table 6-4, we list the elementary function elements.  
Name Child # Note Name Child # Note 

abs 1  || a  ln 1 natural log of a  
squareRoot 1 a  log 2 log (a, b) = balog  
square 1 2a  log10 1 log10(a) = b10log  
floor 1  a  round* 2 see blow 

ceiling 1  a  roundToInt 1 round to integer 
factorial 1  !n  

 

gcd 2 greatest common divisor 
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exp 1 ae   lcm 2 least common multiple 

combination 2 
kn C   truncate* 2 see below 

permutation 2 
kn P   rand* 1 see below 

percent 1 %a   gammaFn 1 gamma function 
sign 1 1 or -1  gammaLn 1 natural log of the gamma function 

Table 6-4: elementary functions in OSnL.  
 

Most of the elementary functions are self-explanatory.  

The round function takes 2 children. The first child is the number to be rounded. The 

second child is the number of digits to round; a negative number rounds to the left of the 

decimal point; zero to the nearest integer.  

The truncate function truncates a number to an integer by removing the fractional part 

of the number. It takes 2 children. The first child is the number to be truncated. The second 

child indicates truncation precision; negative number truncates to the left of the decimal point; 

zero to the nearest integer.  

The rand function takes 1 child as a seed. It returns a random number from a continuous 

uniform distribution 0≥ and 1< . 

3. Trigonometric functions  

All the 24 standard trigonometric functions are defined in OSnL (Table 6-5).   
Name Name Name Name Name Name 

sin cos tan cot sec csc 
sinh cosh tanh coth sech csch 
arcsin arccos arctan arccot arcsec arccsc 
arcsinh 

 

arccosh 

 

arctanh 

 

arccoth 

 

arcsech 

 

arccsch 
Table 6-5: Trigonometric functions in OSnL.  
 
A trigonometric function takes one and only one child.  

4. Statistical and probability functions 

 In Table 6-6, we list the statistical function elements that take one list of data, and hence 

are of indefinite types. 
Name (no notes) Name Note 

mean Absdev average of absolution deviations from the mean 
geometricMean Stddev standard deviation 
harmonicMean Cv coefficient of variance (standard deviation / mean)  
count Large the nth  largest number in a data list; n (>0) is the 1st child 
median Small the nth  smallest number in a data list; n (>0) is the 1st child 
mode Percentile the nth  percentile in a data list; n )1,0( ≤≥  is the 1st child 
min interQuantileRange thirdQuartile -  firstQuartile 
max 

 

Range max - min 
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skewness trimMean* see below; fractional value is the 1st child  
kurtosis Npv net present value; discount rate r is the 1st child 
firstQuartile Irr internal rate of return 
thirdQuartile autocorrelation1 regular autocorrelation with lag = 1 
variance 

 

autocorrelation general correlation with lag = n )1(≥ ;  n  is the 1st child 

Table 6-6: Statistical functions that take a list of data in OSnL (indefinite types).  

 

Each entry in the data list corresponds to a child node. The parameters (if any) of a statistical 

function go before the data list children.  For example the large function takes a number n as 

its first child to indicate the nth largest number in the rest of the children. Most of the statistical 

functions are self-explanatory.  

The trimMean function takes 2 or more children. The first child is a number ( ]1,0[∈ ) 

indicating the fraction of data points to exclude from the top and bottom of the data list. The 

rest of the children (from the second on) are the data list.  

In Table 6-7, we list the statistical function elements that take two data lists as operands.  
Name Note 

covariance covariance of two data lists; 1st data list is the 1st half of the children  
correlation correlation of two data lists; 1st data list is the 1st half of the children 
pearsonCorrelation Pearson product moment correlation coefficient; 1st data list is the 1st half of the children 
rankCorrelation rank correlation of two data lists; 1st data list is the 1st half of the children 

Table 6-7: Statistical functions that take two lists of data in OSnL (indefinite types).   
 
Each entry in the 2 data lists corresponds to a child node. The parameters (if any) of a statistical 

function go before the data list children. After the parameter children, there should be even 

number of the rest of the children; the first half of these children corresponds to the first data 

list; the second half of these children corresponds to the second data list.  

In Table 6-8, we list the probability function elements. Almost all probability functions 

can have three versions: density, cumulative, and inverse; child arguments for the three 

versions are exactly the same. An OSnL element is created for each version (if there is one). 

Density type elements are suffixed with “Dist”, cumulative type elements are suffixed with 

“Cum”, and inverse type elements are suffixed with “Inv.”  

 
Name 

(Density) 
Name 

(Cumulative) 
Name 

(Inverse) 
Child 

# 
Sequence of Children  

(param1, ..., param2, x) 
discreteUniformDist discreteUniformCum discreteUniformInv 2 (N, x) 
bernoulliDist bernoulliCum bernoulliInv 2 (p, x) 
binomialDist binomialCum binomialInv 3 (N, p, x) 
multinomialDist multinomialCum multinomialInv 3 or 

more 
(N, p1, p2,..., pn, x) 
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hypergeometricDist hypergeometricCum hypergeometricInv 4 (N, M, n, x) 
poissonDist poissonCum poissonInv 2 (lamda, x) 
geometricDist geometricCum geometricInv 2 (p, x) 
negativeBinomialDist negativeBinomialCum negativeBinomialInv 3 (p, r, x) 
uniformDist uniformCum uniformInv 3 (a, b, x) 
normalDist normalCum normalInv 3 (mu, sigma, x) 
stdNormalDist stdNormalCum stdNormalInv 1 (x) 
bivariateNormalDist bivariateNormalCum / 7 (mu1, sigma1, mu2, 

sigma2, pho, x1, x2) 
exponentialDist exponentialCum exponentialInv 2 (lamda, x) 
weibullDist weibullCum weibullInv 4 (location, scale, shape, 

x) 
erlangDist erlangCum erlangInv 3 (lamda, n, x) 
gammaDist gammaCum gammaInv 4 (location, scale, shape, 

x) 
betaDist betaCum betaInv 3 (degree1, degree2,x) 
betaGeneralDist betaGeneralCum betaGeneralInv 5 (degree1, degree2, min, 

max, x) 
lognormalDist lognormalCum lognormalInv 3 (mu, sigma, x) 
cauchyDist cauchyCum cauchyInv 3 (location, scale, x) 
tDist tCum tInv 2 (degree, x) 
chiSquareDist chiSquareCum chiSquareInv 2 (degree, x) 
fDist fCum fInv 3 (degree1, degree2, x) 
logisticDist logisticCum logisticInv 3 (mu,beta, x) 
logLogisticDist logLogisticCum logLogisticInv 3 (mu,beta, x) 
logarithmicDist logarithmicCum logarithmicInv 3 (a, b, x) 
paretoDist paretoCum paretoDist 3 (shape, scale, x) 
rayleighDist rayleighCum rayleighInv 2 (beta, x) 
pertDist pertCum pertInv 4 (a, c, b, x) 
triangularDist triangularCum triangularInv 4 (a, c, b, x) 

Table 6-8: Probability functions (density, cumulative, inverse) in OSnL. 
 
All the probability functions and related parameters are quite standard; they are named to be 

indicative of what are used in common practice. The last child (or last two in bivariate cases) 

always evaluates to a number that corresponds to the distribution function variable (or 

variables). The parameters of a probability function (if any) go before the variable child (or 

children).  

5. Terminals and constants  

In Table 6-9, we list the terminal elements, which do not have children.  
Name Attributes 

number value, type, id 
identifier Name 

Table 6-9: Terminals in OSnL.   
 

The number schema is shown below:  
<xs:complexType name="OSnLNodeNumber"> 
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 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:attribute name="value" type="xs:string" use="required"/> 
   <xs:attribute name="type" use="optional" default="real"> 
    <xs:simpleType> 
     <xs:restriction base="xs:string"> 
      <xs:enumeration value="real"/> 
      <xs:enumeration value="string"/> 
      <xs:enumeration value="random"/> 
     </xs:restriction> 
    </xs:simpleType> 
   </xs:attribute> 
   <xs:attribute name="id" type="xs:ID" use="optional"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 

<xs:element name="number" type="OSnLNodeNumber" substitutionGroup="OSnLNode"/> 

 

The <number> element has three optional attributes value, type, and id. The value 

attribute is required and is of string type. The type attribute is optional and can take on a 

value of either real (default), string, or random. A “string-valued” number is often used 

in constraint programming. A “random” number is often used in stochastic programming and 

in this case the value attribute of number can either be treated as an initial value or ignored. 

The id attribute is optional. But if there is one, it has to be unique as it of type ID. A number 

with an id can be located. For example, in stochastic programming, we may need to change 

the number to different values in different scenarios. For example, all the following are valid 

number elements:  
<number value="100"/> 

<number value="100" type="real"/> 
<number value="Chicago" type="string"/> 
<number value="3.2" type="random" id="n4"/>  

 The identifier schema is shown below:   
<xs:complexType name="OSnLNodeIdentifier"> 

 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:attribute name="name" type="xs:string" use="required"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="identifier" type="OSnLNodeIdentifier" substitutionGroup="OSnLNode"/>  
The <identifier> element has one required name attribute. It is seldom used in numerical 

optimization. It can potentially be used for symbolic optimization. The following is an example 

of an identifier element:  
<identifer name="a"/> 

 A variable is not always a terminal node, as it may take a child operand as its index. This is 

explained later.  
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In Table 6-10, we list the constant elements, which do not have children.  
Constants PI, E, TRUE, FALSE, EULERGAMMA,  

INF (infinity), EPS (epsilon),  NAN (Not a Number) 
Table 6-10: Constants in OSnL.   
 
Most of these constants are well supported in various programming languages. So parser 

implementation can leverage on the support from the programming languages. TRUE and 

FALSE are not double values, but parsers may for example choose to use a positive number to 

represent TRUE and a negative number to represent FALSE.  

6. Optimization related elements 

In Table 6-11, we list the three optimization related elements.  
Name Child # Attributes 

var 0 or 1 idx, coef 
objective 0 or 1 idx 

constraint 0 or 1 idx, valueType 

Table 6-11: Optimization related elements in OSnL.   
 
The var element schema is shown below:  

<xs:complexType name="OSnLNodeVar"> 

 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence minOccurs="0"> 
    <xs:element ref="OSnLNode"/> 
   </xs:sequence> 
   <xs:attribute name="idx" type="xs:nonNegativeInteger" use="optional"/> 
   <xs:attribute name="coef" type="xs:double" use="optional" default="1"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="var" type="OSnLNodeVar" substitutionGroup="OSnLNode"/> 

 

<var>1 has two optional attributes, idx and coef. The idx attribute is nonnegative and if 

it’s not there, an optional child can be used to evaluate to the variable index. This can be useful 

in, for example, constraint programming in which a variable’s index can sometimes be an 

integer-valued variable or expression. The coef attribute is designed as a shorthand to avoid 

explicitly expressing a constant times a variable, which appears frequently in optimization. By 

default, coef is 1. For example, all the following are valid variable elements:  

]0[x : <var idx="0"/>  

]10[3x  : <var idx="10" coef="3"/> 

]]2[1[5 xx +  : <var coef="5.0">   <plus><number value="1"/><var idx="2"/></plus>   </var> 

                                                 
1 We did not choose to use <variable> because variables appear too often in an optimization instance.  
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The objective element schema is shown below:  
<xs:complexType name="OSnLNodeObjective"> 

 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence minOccurs="0"> 
    <xs:element ref="OSnLNode"/> 
   </xs:sequence> 
   <xs:attribute name="idx" type="xs:int" use="optional" default="-1"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="objective" type="OSnLNodeObjective" substitutionGroup="OSnLNode"/> 
 

<objective> has one optional attribute idx; idx is negative and by default -1, which 

corresponds to the first objective. The element evaluates to the objective value corresponding to 

the index. Like the var element, an optional child can be used to evaluate to the objective 

index. The following is an example of an objective element: 
<objective idx="-1"/> 

The Constraint element schema is shown below:  
<xs:complexType name="OSnLNodeConstraint"> 

 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence minOccurs="0"> 
    <xs:element ref="OSnLNode"/> 
   </xs:sequence> 
   <xs:attribute name="idx" type="xs:int" use="required"/> 
   <xs:attribute name="valueType" use="optional" default="value"> 
    <xs:simpleType> 
     <xs:restriction base="xs:string"> 
      <xs:enumeration value="value"/> 
      <xs:enumeration value="status"/> 
      <xs:enumeration value="surplus"/> 
      <xs:enumeration value="shortage"/> 
     </xs:restriction> 
    </xs:simpleType> 
   </xs:attribute> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="constraint" type="OSnLNodeConstraint" substitutionGroup="OSnLNode"/> 

The <constraint> element has two optional attributes idx, and valueType. The idx 

attribute is nonnegative. Like the var and objective elements, an optional child can be 

used to evaluate to the constraint index. The value of the valueType attribute can be either of 

“value” (default), “status” (whether the constraint is satisfied, a boolean), “surplus” 

( +− )( ubvalue ), or “shortage” ( +− )( valuelb ). The following are valid examples of a 

constraint element: 
<constraint idx="2"/> 

<constraint idx="3" valueType="status"/> 
<constraint idx="0" valueType="surplus"/> 
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<constraint idx="11" valueType="shortage"/> 

7. Logic and relational operators 

In Table 6-12, we list the standard logic and relational operator elements.  
Name Child 

# 
Note Name Child # Note 

Lt 2 <  and 2 && 
Leq 2 ≤  or 2 | | 
Gt 2 >  not 1 ! 
geq 2 ≥  xor 2 exclusive or 
Eq 2  =  implies 2 → : true if both children are true or false 
neq 2 =!  

 

if 3  If(a, b, c): if a is true, then b, else c 

Table 6-12: Standard logic and relational operators in OSnL.  
 

In Table 6-13, we list the extended logic and relational operator elements.  

Name Child # Note Example 
forAll 1 or 

more 
true if all the 
child nodes 
evaluate to 
true 

<forAll> 
 <constraint idx="0" valueType="status"/> 
 <constraint idx="1" valueType="status"/> 
 <or> 
  <constraint idx="3" valueType="status"/> 
  <constraint idx="4" valueType="status"/> 
 <or/> 
</forAll> 

exists 1 or 
more 

true if any of 
the child 
nodes 
evaluate to 
true  

<exists> 
   <gt><var idx="0"/><number value="1.2"/></gt> 
   <geq><constraint idx="2"/><number value="1.2"/></geq> 
   <implies> 
 <constraint idx="3" valueType="status"/> 
 <constraint idx="4" valueType="status"/> 
   <implies/> 
</exists> 

logicCount 1 or 
more 

number of 
child nodes 
that evaluate 
to true 

<logicCount> 
 <neq><var idx="0"/><number value="3"/></neq> 
 <and> 
  <constraint idx="0" valueType="status"/> 
  <constraint idx="1" valueType="status"/> 
 <and/> 
</logicCount> 

allDiff  1 or 
more 

true if all the 
child nodes 
evaluate to 
different 
values 

<allDiff> 
 <constraint idx="0" valueType="value"/> 
 <plus><var idx="0"/><var idx="1"/></plus> 
 <objective idx="-1"/> 
</allDiff> 

atMost 2 or 
more 

1st child 
evaluates to 
an integer n; 
true if at most 
n of the rest 
of the child 
nodes are true  

<atMost> 
 <number value="2"/> 
 <if> 
  <eq><var idx="1"/><PI/></eq> 
  <FALSE/> 
  <TRUE/> 
 </if> 
 <constraint idx="1" valueType="status"/> 
 <neq><var idx="0"/><number value="1.2"/></neq> 
</atMost> 

atLeast 2 or 
more 

1st child 
evaluates to 
an integer n; 
true if at least 

<atLeast> 
 <number value="1"/> 
 <xor> 
  <constraint idx="1" valueType="status"/> 
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n of the rest 
of the child 
nodes are true  

  <constraint idx="2" valueType="status"/> 
 <xor/> 
 <lt><var idx="0"/><number value="1.2"/></lt> 
</atLeast> 

exactly  2 or 
more 

1st child 
evaluates to 
an integer n; 
true if exactly 
n of the rest 
of the child 
nodes are true  

<exactly> 
 <number value="2"/> 
 <not><constraint idx="1" valueType="status"/></not> 
 <constraint idx="2" valueType="status"/> 
 <leq><var idx="0"/><number value="1.2"/></leq> 
</exactly> 

inSet 2 or 
more 

true if 1st 
child’s value 
is equal to 
one of the rest 
of the child 
nodes  

<inSet> 
 <number value="2"/> 
 <constraint idx="0" valueType="value"/> 
 <plus><var idx="0"/><var idx="1"/></plus> 
</inSet> 

inRealSet 1 true if the 
child is a real 
number 

<inRealSet> 
 <var idx="2"/> 
</inRealSet> 

inPositiveRealSet 1 true if the 
child is a 
positive real 
number  

<inPositiveRealSet> 
 <constraint idx="6" valueType="surplus"/> 
</ inPositiveRealSet> 

inNonnegativeRealSet 1 true if the 
child is 
nonnegative 
real number 

<inNonnegativeRealSet> 
 <constraint idx="4" valueType="shortage"/> 
</ inNonnegativeRealSet > 

inIntegerSet 1 true if the 
child is an 
integer 
number 

<inIntegerSet> 
 <divide><var idx="4"/><number value="2"/><divide/> 
</inIntegerSet> 

inPositiveIntegerSet 1 true if the 
child is a 
positive 
integer 
number 

<inPositiveIntegerSet> 
 <minus><var idx="4"/><number value="2"/><minus/> 
</inPositiveIntegerSet> 

inNonnegativeIntegerSet 1 true if the 
child is a 
nonnegative 
integer 

<inNonnegativeIntegerSet> 
 <ceiling><objective idx="-2"/><ceiling/> 
</inNonnegativeIntegerSet > 

Table 6-13: Extended logic and relational operators in OSnL.  
 
For instance, the first example (forAll) in the table:   
<forAll> 
 <constraint idx="0" valueType="status"/> 
 <constraint idx="1" valueType="status"/> 
 <or> 
  <constraint idx="3" valueType="status"/> 
  <constraint idx="4" valueType="status"/> 
 <or/> 
</forAll> 
means that the forAll operator is true if constanint 0 and constraint 1 are both true, and one 

of the constraints, constraint 3 or constraint 4, is true.  

All of the extended logic and relational operators are explained with an example in the 

above table. Most of these are used in combinatorial and discrete optimization such as 
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constraint programming. Potentially more logic and relational operators will be added, 

especially the set-valued operators. For more details, refer to [47].   

8. Special elements 

In Table 6-14, we list the special elements.  
Name Children Attributes 

quadratic 1 or more qpTerm elements (only for quadratic programs) none 
qpTerm 0 or 1 child; the optional child evaluates to the coefficient value of 

the quadratic term which must evaluate to a constant term (only 
under the <quadratic> element ) 

idxOne (required) 
idxTwo (required) 
coef (optional, default = 1) 

userF 0 or more children as the userF arguments  name (required) 
arg no children idx (required, nonnegative) 
userVar no children  name (required) 
sim 0 or  more simInput elements, the last child is simOutput name (required) 
simInput 0 or 1 child; the optional evaluates to the simInput value simName (optional)  

inputName (required) 
simOutput 0 or 1 child; the optional evaluates to the simOutput value simName (optional)  

outputName (optional) 
xPath 0 or more xPathIndex elements uri (optional, default= “.”)  

path (required) 
xPathIndex 0 or 1 child; the optional child evaluates to the index value indexName (required) 

indexValue (optional) 
complements 2 children none 
nodeRef 0 or 1 child; the optional child evaluates to the node property 

value 
nodeID (optional, nonnegative) 
propName (required) 

arcRef 0 or 1 child; the optional child evaluates to the arc property value arcID (optional, nonnegative) 
propName (required) 

Table 6-14: Special elements in OSnL. 
 
Unlike most of the previous elements, many of these special elements have complex 

attributes and indefinite number of children. The special elements are described below.  Several 

elements are explained using the Markowitz [76] optimization problem in (6-2) using a three 

stock instance where ix represents the percentage of the portfolio invested in stock i . Assume 

the portfolio is re-balanced  when returns and covariances are updated.  
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quadratic, qpTerm 
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 The <quadratic> and <qpTerm> schemas are shown below:  
<xs:complexType name="OSnLNodeQuadratic"> 

 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence maxOccurs="unbounded"> 
    <xs:element ref="qpTerm"/> 
   </xs:sequence> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="quadratic" type="OSnLNodeQuadratic" substitutionGroup="OSnLNode"/> 
 
<xs:complexType name="OSnLNodeQpTerm"> 
 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence minOccurs="0"> 
    <xs:element ref="OSnLNode"/> 
   </xs:sequence> 
   <xs:attribute name="idxOne" type="xs:nonNegativeInteger" use="required"/> 
   <xs:attribute name="idxTwo" type="xs:nonNegativeInteger" use="required"/> 
   <xs:attribute name="coef" type="xs:double" use="optional" default="1"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="qpTerm" type="OSnLNodeQpTerm" substitutionGroup="OSnLNode"/> 

Although the instance of any quadratic program is easily represented as a general 

nonlinear program using OSnLNode elements, a more compact representation is provided for 

quadratic terms. A <qpTerm> element is used to represent each quadratic term. The 

<quadratic> element sums up all its <qpTerm> child elements. The <qpTerm> element 

has two required integer attributes (idxOne, indxTwo) that specify the two variable indices 

in the quadratic term. The coefficient of the quadratic term is specified using either a third 

optional double attribute coef or by a single child element. One advantage of using the 

<qpTerm> elements is that quadratic programming solvers typically take coefficient lists 

rather than nonlinear expressions. An added advantage is that if an analyzer applied to the 

problem instance discovers that the only nonlinear terms are <quadratic> and <qpTerm>  

terms, it can classify the problem as a quadratic program. Suppose in the instance 

representation of (6-2), the variable index for ][msftx  is 0, for ][ pgx  is 1, and for ][gex  is 2. 

The objective function is represented as 
<quadratic> 

 <qpTerm idxOne="0" idxTwo="0" coef="24"/> 
 <qpTerm idxOne="1" idxTwo="1" coef="75"/> 
 <qpTerm idxOne="2" idxTwo="2" coef="19"/> 
 <qpTerm idxOne="0" idxTwo="1" coef="20"/> 
 <qpTerm idxOne="0" idxTwo="2" coef="50"/> 
 <qpTerm idxOne="1" idxTwo="2" coef="74"/> 
</quadratic> 

 

userF, arg 
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Often a problem instance has an expression that is repeated numerous times. As in 

programming, where a method (subroutine) simplifies repeated logic, the <userF> element is 

used to simplify instance representation by calling a pre-defined user function. Consider the 

constraint set (3)-(5) of (6-2). These constraints require that if a nonzero investment is made in 

stock i , then at least %10 of the portfolio must be invested in stock i . Rather than repeat the 

same logic for each stock, it is much cleaner to first write the logic only once in a user defined 

function: 01.arg0arg)(arg 000 elsethenifminInv −>= , where 0arg is to be passed a 

value of ix . User functions are defined in OSiL though the <userFunction> element 

(discussed in the OSiL section §6.2). The representation for the minInv function looks like:  
<userFunction name="minInv" numArg="1"> 

 <if> 
  <gt> 
   <arg idx="0"/> 
   <number value="0"/> 
  </gt> 
  <minus> 
   <arg idx="0"/> 
   <number value="0.1"/> 
  </minus> 
  <number value="0"/> 
 </if> 
</userFunction> 

 

 The <userF> and <arg> schemas are shown below:  
<xs:complexType name="OSnLNodeUserF"> 

 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
    <xs:element ref="OSnLNode"/> 
   </xs:sequence> 
   <xs:attribute name="name" type="xs:IDREF" use="required"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="userF" type="OSnLNodeUserF" substitutionGroup="OSnLNode"/> 
 
<xs:complexType name="OSnLNodeArg"> 
 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:attribute name="idx" type="xs:nonNegativeInteger" use="required"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="arg" type="OSnLNodeArg" substitutionGroup="OSnLNode"/> 

As mentioned in §6.2.2, the definition of the user function should be independent of the 

optimization problem instance represented by the OSiL instance; thus it is required that the user 

function definition use the <arg> elements instead of the math program variables <var> 

elements. The <arg> element has one required index attribute (idx) which is a nonnegative 



 
 
 

181 

 
 
 

number. The numArg attribute of userFunction is used to check that all the argument 

indexes are 0≥  and 1−≤ numArg .  

Now with the minInv user function definition, we can write constraint set (3)-(5) of (6-2) 

using the <userF> element as:  
<nl idx="2"> 

 <userF name="minInv"> 
  <var idx="0"/> 
 </userF> 
</nl> 
<nl idx="3"> 
 <userF name="minInv"> 
  <var idx="1"/> 
 </userF> 
</nl> 
<nl idx="4"> 
 <userF name="minInv"> 
  <var idx="2"/> 
 </userF> 
</nl> 

In this example, the <userF> element’s required attribute name is minInv. <userF> can 

take 0 or more children as function arguments to pass. Here, we only have one argument which 

is <var idx="…"/>.  

userVar  

Sometimes a problem has some “new” variables defined over other math program decision 

variables and these user-defined variables are used repeatedly in the objective or constraint 

functions. The <userVar> element is used to simplify instance representation by calling a 

pre-defined user variable. Notice user variables are not math program variables and thus not 

counted in the total number of math program variables. <userVar>  is just another special 

nonlinear node and is very similar to the use of <userF>, only that <userVar> no longer 

carries any child elements as its arguments, as all its arguments are from the already defined 

math program variables. Consider constraint (2) of (6-2), which is the unity constraint that 

requires the percentages of stock investments add up to one. We can define a new variable 

called total such that total 210 xxx ++= . User variables are defined in OSiL though the 

<userVariable> element (discussed in the OSiL section §6.2). The representation for the 

total variable looks like:  
<userVariable name="total"> 

 <sum> 
  <var idx="0"/> 
  <var idx="1"/> 
  <var idx="2"/> 
 </sum> 
</userVariable> 
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The <userVar> schema is shown below:  
<xs:complexType name="OSnLNodeUserVar"> 

 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:attribute name="name" type="xs:IDREF" use="required"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="userVar" type="OSnLNodeUserVar" substitutionGroup="OSnLNode"/> 

As mentioned in §6.2.2, the definition of the user variable is entirely dependent on the 

variables already defined in the mathematical program represented by the OSiL instance, that is, 

it becomes meaningless outside of the OSiL context. In practice, a userVariable definition 

can be a more complex nonlinear expression than just the variable summation. Now with the 

total user variable definition, we can write constraint (2) of (6-2) using the <userVar> 

element simply as:  
<nl idx="1"> 

 <userVar name="total"/> 
</nl> 

<userVar> is a terminal node and does not take any children. In this example, the 

<userVar> element’s required attribute name is total. Of course in more complex 

examples, <userVar> is used in more than one constraint or objective function and can be 

inside a bigger expression.  

sim, simInput, simOutput 

In some optimization problems there may not be a closed form expression for all functions 

– they may be black boxes. This case is handled by the <sim> element. As explained in §2.8, a 

simulation is similar to a user function, only that there is no longer a closed-form that can be 

expressed; three things have to be specified for the simulation: input, output, and the 

simulation’s address. The simulation definition, like the user function definition is specified in 

OSiL. This was discussed in the OSiL section (§6.2).  

Suppose the above minInv user function is now calculated by a simulation called 

stockSimulation shown in Figure 6-20. 
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Figure 6-20: stockSimulation with two inputs (ticker, amount), three outputs (minInv, price, day) 
and an address (http://www.optimizationservices.org/os/ossimulation/StockSimulationService.jws). 
 
There are two inputs of the simulation service: ticker for the stock symbol and amount for the 

percentage of the stock in the portfolio. Notice the stockSimulation engine provides more 

“services” than just calculating the minimum investment. It can look up a stock price according 

to a stock ticker (a string). It also outputs the day of the week (no input needed for this 

function). So it has three outputs: mininv, price and day.  

The stockSimulation element is then be represented using the <simulation> 

element of OSiL (§6.2.2) as  
<simulation name="stockSimulation"> 

 <uri value="http://www.optimizationservices.org/os/ossimulation/StockSimulationService.jws"/> 
 <OSsL> 
  <input> 
   <el name="ticker"/> 
   <el name="amount"/> 
  </input> 
  <output> 
   <el name="minInv"/> 
   <el name="price"/> 
   <el name="day"/> 
  </output> 
 </OSsL> 
</simulation> 

The format of the OSsL child is described in detail in the OSsL section (§6.7). It contains 

information about inputs and outputs. Note that simulations generally refer to inputs and 

outputs by name rather than by order.  

The <sim>, <simInput>, and <simOutput> schemas are shown below:  
<xs:complexType name="OSnLNodeSim"> 

 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence> 
    <xs:element ref="simInput" minOccurs="0" maxOccurs="unbounded"/> 
    <xs:element ref="simOutput"/> 
   </xs:sequence> 
   <xs:attribute name="name" type="xs:IDREF" use="required"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="sim" type="OSnLNodeSim" substitutionGroup="OSnLNode"/> 
 
<xs:complexType name="OSnLNodeSimInput"> 
 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence minOccurs="0"> 
    <xs:element ref="OSnLNode"/> 
   </xs:sequence> 
   <xs:attribute name="simName" type="xs:IDREF" use="optional"/> 
   <xs:attribute name="inputName" type="xs:IDREF" use="required"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
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<xs:element name="simInput" type="OSnLNodeSimInput" substitutionGroup="OSnLNode"/> 
 
<xs:complexType name="OSnLNodeSimOutput"> 
 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence minOccurs="0"> 
    <xs:element ref="OSnLNode"/> 
   </xs:sequence> 
   <xs:attribute name="simName" type="xs:IDREF" use="optional"/> 
   <xs:attribute name="outputName" type="xs:string" use="optional"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 

<xs:element name="simOutput" type="OSnLNodeSimOutput" substitutionGroup="OSnLNode"/> 
Now with the stockSimulation definition, we can write constraint set (3)-(5) of (6-2) 

using the <sim> element as:  
<nl idx="2"> 

 <sim name="stockSimulation"> 
  <simInput inputName="amount"> 
   <var idx="0"/> 
  </simInput> 
  <simOutput outputName="minInv"/> 
 </sim> 
</nl> 
<nl idx="3"> 
 <sim name="stockSimulation"> 
  <simInput inputName="amount"> 
   <var idx="1"/> 
  </simInput> 
  <simOutput outputName="minInv"/> 
 </sim> 
</nl> 
<nl idx="4"> 
 <sim name="stockSimulation"> 
  <simInput inputName="amount"> 
   <var idx="2"/> 
  </simInput> 
  <simOutput outputName="minInv"/> 
 </sim> 
</nl> 

In this example, the <sim> element’s required attribute name is stockSimulation. 

<sim> can take 0 or more <simInput> child elements, followed by one required 

<simOutput> child element because we must have one output value to further calculate an 

objective or constraint function value. So <sim> always has at least one child. Here, we only 

have one <simInput> element  which is <var idx="…"/>. Each <simInput> element 

has a required inputName attribute, which refers to an input defined in the corresponding 

<simulation> definition. Each <simInput> element also has an optional simName 

attribute. If the attribute is not there, as in the above example, it defaults to the name of the 

parent <sim> element.  So in the above example we can also write <simInput 

simName=”stockSimulation” inputName="amount"> with an explicit simName 

attribute.  The same rule applies to the <simOutput> element. <simInput> can have an 
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optional child that evaluates to an input value and <simOutput> can have an optional child 

that evaluates to an output value. If the child is not there, <simInput> or <simOutput> 

takes the value from the OSsL element (<el>) with the same input or output name. In our 

example <simOutput> is a taker. If there is a child of <simInput>, it supplies the value to 

the OSsL element with the same input name. In our example <simInput> is a supplier. If 

there is a child of <simOutput>, it constructs a new value from the OSsL elements.  

 Of course the example is somewhat simplified. The child element of <simInput> can be 

more complex than just one single <var> node. In reality, the child can be a more complex 

expression tree with many nodes. Also <simOutput> may not just directly take the minInv 

output value. For example we can say if the day output from stockSimulation is 1 (Monday), 

we want to add a fixed amount (say 0.05) to the minimum investment requirement for the stock 

ge. This corresponds to constraint (4). So constraint (4) now looks like:  
<nl idx="4"> 

 <sim name="stockSimulation"> 
  <simInput inputName="amount"> 
   <var idx="2"/> 
  </simInput> 
  <simOutput> 
   <if> 
    <eq> 
     <simOutput outputName="day"/> 
     <number value="1"/> 
    </eq> 
    <plus> 
     <simOutput outputName="minInv"/> 
     <number value="0.05"/> 
    </plus> 
    <simOutput outputName="minInv"/> 
   </if> 
  </simOutput> 
 </sim> 
</nl> 
Here <simOutput> constructs a new output. That is why, unlike <simInput> whose 

inputName attribute is required, the outputName attribute of <simOutput> is optional. 

Such a construction can be commonly used in optimization via stochastic simulation, where the 

simulation usually outputs a variance value as well as a mean value, and the optimization uses 

some combination of both the mean and the variance.   

xPath, xPathIndex 

In practice, problem parameters are often dynamic over time. If the value of a parameter 

changes, a new instance must be created using the modeling language. These problems are 

eliminated using <xPath> and <xPathIndex> elements. By allowing xPath nodes in an 

OSiL instance representation it is  possible to reference data in an external XML data file. Thus 
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a modeler, in a distributed environment, can generate a model, send it to the server, and the 

server can operate with current data without the necessity of the modeling language creating a 

new instance file. 

 The <xPath> and <xPathIndex> schemas are shown below:  
 
<xs:complexType name="OSnLNodeXPath"> 
 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence> 
    <xs:element ref="xPathIndex" minOccurs="0" maxOccurs="unbounded"/> 
   </xs:sequence> 
   <xs:attribute name="uri" type="xs:anyURI" use="optional" default="."/> 
   <xs:attribute name="path" type="xs:string" use="required"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="xPath" type="OSnLNodeXPath" substitutionGroup="OSnLNode"/>' 
 
<xs:complexType name="OSnLNodeXPathIndex"> 
 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence minOccurs="0"> 
    <xs:element ref="OSnLNode"/> 
   </xs:sequence> 
   <xs:attribute name="indexName" type="xs:string" use="required"/> 
   <xs:attribute name="indexValue" type="xs:string" use="optional"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="xPathIndex" type="OSnLNodeXPathIndex" substitutionGroup="OSnLNode"/> 
 

The <xPath> element has an optional uri attribute which specifies where the XML data 

file is. It is by default “.” which is the current OSiL instance file, that is, the data are included in 

the <xmlData> element as explained in the OSiL section (§6.2).  The <xPath> element also 

has a required path attribute which is a string of XPath syntax (§4.4), used to locate values 

within the XML data. An XPath string may contain one or more “XPath variables” indicated by 

an initial “$” sign.  

The <xPath> element can have zero or more <xPathIndex> child elements. Each 

<xPathIndex> has a required indexName attribute and an optional indexValue 

attribute. An optional child of xPathIndex can be used that evaluates to the index value if 

indexValue is missing. The indexName attribute is used to match the xPathIndex with a 

$variable in the path attribute of <xPath> and indexValue is used to supply the 

value for the variable. So the number of xPathIndex child elements has to be exactly the 

same as the number of variables in the path attribute of <xPath>.  
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As an example, consider the Markowitz optimization problem (6-2). Assume the data on 

returns and covariances are located within the file stockdata.xml in same directory as the OSiL 

instance (uri = “./stockdata.xml”). The xml data file is shown below: 
<?xml version="1.0" encoding="UTF-8"?> 

<stocks> 
 <stock name="msft" idx="0" ret=".07" minInv=".1"> 
  <cov name="msft" idx="0" val="24"/> 
  <cov name="pg" idx="1" val="-10"/> 
  <cov name="ge" idx="2" val="25"/> 
 </stock> 
 <stock name="pg" idx="1" ret=".09" minInv=".1"> 
  <cov name="msft" idx="0" val="-10"/> 
  <cov name="pg" idx="1" val="75"/> 
  <cov name="ge" idx="2" val="37"/> 
 </stock> 
 <stock name="ge" idx="2" ret=".03" minInv=".1"> 
  <cov name="msft" idx="0" val="25"/> 
  <cov name="pg" idx="1" val="37"/> 
  <cov name="ge" idx="2" val="19"/> 
 </stock> 
</stocks> 

There are three stocks each corresponding to a <stock> element. Each <stock> contains 

information about its ticker (name), index (idx), return (ret), minimum investment 

requirement (minInv) and covariances with all the stocks (<cov>). The data within the XML 

file at the indicated uri are located using the path attribute of XPath syntax. So if we use the 

<xPath> elements to locate the coefficients (stock return values) for each variable in 

constraint (1) of  (6-2) instead of directly specifying the values inside the instance, we come up 

with the following representation for constraint (1):  
<nl idx="0"> 

 <sum> 
  <times> 
   <var idx="0"/> 
   <xPath uri="./stockdata.xml" path="/stocks/stock[@name='msft'/@return"/> 
  </times> 
  <times> 
   <var idx="1"/> 
   <xPath uri="./stockdata.xml" path="/stocks/stock[@name='pg'/@return"/> 
  </times> 
  <times> 
   <var idx="2"/> 
   <xPath uri="./stockdata.xml" path="/stocks/stock[@name='ge'/@return"/> 
  </times> 
 </sum> 
</nl> 

Alternatively we can use xPathIndex if the name of the stocks are variables:   
<nl idx="0"> 
 <sum> 
  <times> 
   <var idx="0"/> 
   <xPath uri="./stockdata.xml" path="/stocks/stock[@name=$stockName/@return"> 
    <xPathIndex indexName="stockName" indexValue="msft"/> 
   </xPath> 
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  </times> 
  <times> 
   <var idx="1"/> 
   <xPath uri="./stockdata.xml" path="/stocks/stock[@name=$stockName/@return"> 
    <xPathIndex indexName="stockName" indexValue="pg"/> 
   </xPath> 
  </times> 
  <times> 
   <var idx="2"/> 
   <xPath uri="./stockdata.xml" path="/stocks/stock[@name=$stockName/@return"> 
    <xPathIndex indexName="stockName" indexValue="ge"/> 
   </xPath> 
  </times> 
 </sum> 
</nl> 

The above two examples are equivalent, but by using the variable $stockName and 

xPathIndex to supply the values (“msft”, “pg”, “ge”),  the 3 xPath elements become the 

same and we can potentially simplify the syntax by designing a user function using an 

argument to pass the stock names.  

The library that reads the OSiL instance can use the xPath element to locate the stock 

return data before sending the instance to the solver. It is also possible to carry the XML data 

with the instance file. If this is desired, it is done by putting the data in the xmlData element. 

complements 

 The <complements> element allows complementarity problems to be constructed for 

solvers to search for a feasible solution. The <complements> element is explained in detail 

in Appendix A. 

nodeRef, arcRef 

As the first release of OSiL does not include network and graph extension, the 

<nodeRef> and <arcRef> elements, which are used to reference node and arc property 

values in a network, are reserved for future use. See Appendix A for more descriptions.  

 

6.4 Optimization Services result Language (OSrL) 
The OSrL schema is located at http://www.optimizationservices.org/schemas/OSrL.xsd. 

OSrL is a general optimization result format specification, mainly outputted by solvers.  

OSrL is among the instances whose contents need to be understood by humans most 

frequently. The optional OStL transformation style sheet (§6.8) allows OSrL to be presented in 

a clear and nice form. Of course as OSrL is well structured, it can also be analyzed and reused 

in the middle of a large computation where sub-problems are constantly solved and results are 

resubmitted for subsequent calculations.  
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OSrL, an output format, can be thought of as the counterpart to the input format OSiL. The 

structure and contents of OSrL is based on and driven by the OSiL design. But compared with 

OSiL, OSrL is more straightforward. The separation of OSrL from OSiL helps in reducing 

network traffics and enhancing flexibility.  

Figure 6-21 shows the root element <OSrL> of the OSrL schema.  

 
Figure 6-21: OSrL Schema at the root level <OSrL>.  
 

The <OSrL> element has an optional <solverMessage> child, an optional 

<status> child, and 1 or more <result> children for all the solutions. In 

<solverMessage>, a solver can put a general message on the whole optimization process 

(not on each solution). The <status> element has a required type attribute used to indicate 

various predefined standard status types on the general optimization process, e.g. “success”, 

warning, and “error.” The <status> element can have 0 or more <subStatus> elements. 

As sub-statuses are not standardized, each <subStatus> element has a required name 

attribute for sub-status name and a value for sub-status value, and inside the <subStatus> 

element, a description can be put. The following is an example of the <status> element:  
<status type="error"> 

 <subStatus name="inputError" value="array out of bound"> 
   variableNumber inconsistent with the number of var elements 
  </subStatus> 
 <subStatus name="internalError" value="out of memory"> 
   data too large to handle 
  </subStatus> 
</status> 

There has to be at least one <result> child element under the root <OSrL>. Each 

<result> element corresponds to one optimization solution. In most cases, there is only one 

<result> child in the root <OSrL> element. But in situations such as nonlinear optimization 

where several locally optimal points are found, or multi-objective optimization where a set of 

pareto-optimal solutions are returned, we may have more than 1 <result> element. The 

<result> element is shown in Figure 6-22.  
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Figure 6-22: <result> element in OSrL.  

 
The <message> and <status> are similar to the <solverMessage> and 

<status> elements directly defined under the root <OSrL> element, only that now they are 

message and status on each result. Status types are standardized and can be “optimal”, 

“infeasible”, “unbounded”, “error” etc. Sub-statuses are again not standardized.  

Objective-related results should be put in the <objective> element. The 

<multiObjectives>, <variables>, <constraints> elements are provided for 

similar purposes. These are explained below.  

When solving an optimization problem, a solver may gather additional analysis of the 

problem. The <analysis> element is provided for this purpose. The <analysis> element 

is of the Optimization Services analysis Language (OSaL) format explained in §6.6. Results 

that do not belong to the above categories should go into the <other> elements. The 

<other> element has a required resultName attribute and a required value attribute. A 

description can be put in the <otherResult> element.  

1. The <objective> element is shown in Figure 6-23. 

 
Figure 6-23: <objective> element in OSrL.  
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 The <objective> element currently contains one predefined standard element 

<objectiveValue>. More standard objective related elements may be added in the future. 

Like most of the elements in OSrL, the <objectiveValue> element is optional, as a solver 

may not be able to find any solution. Of course, even if there is a solution, the objective value 

can be constructed from the variable solution. So it is not absolutely necessary for solvers to 

explicit output the value. But if a solver does output the value, it has to be put inside the 

<objectiveValue> element.  A sequence of 0 or more <otherObjective> elements 

follows <objectiveValue>.  If a solver provides objective results other than the objective 

value, they should go inside these elements.  As these non-standard results vary between 

solvers, each <otherObjectiveResult> element has a required resultName and 

value attribute. A description can go inside the <otherObjectiveResult> element for 

further clarification. 
2. The <multiObjectives> element is shown in Figure 6-24. 

 
Figure 6-24: <multiObjectives> element in OSrL.  
 
The <multiObjectives> element currently contains one predefined standard element 

<multiObjectiveValue>. More standard multi-objective related elements may be added 

in the future. Like the <objectiveValue> element, <multiObjectiveValue> is 

optional.  The <multiObjectiveValue> element has an optional value attribute if there 

is a multi-objective function value. It can have an optional <description> element for 

further elaboration. There are 0 or more <obj> elements after <description>, each 

corresponding to one objective component of the multi-objective function. Each <obj> has a 

required value attribute to specify the objective value. An <obj> element also has an 

optional idx and objName attribute. The idx attribute is optional only if the <obj> 

elements are listed in the same order as those in the OSiL input instance. Again objectives are 

indexed from -1 downward; thus the idx attribute is a negative number. If a solver provides 

other multi-objective results, they should go in the <otherMultiObjectiveResult> 



 
 
 

192 

 
 
 

elements.  As these non-standard results vary between solvers, each 

<otherMultiObjectiveResult> element has a required resultName attribute and an 

optional <description> child for further elaboration. 

<otherMultiObjectiveResult> also has an optional value for the specified result on 

the entire multi-objective. The individual result for each objective component should go inside 

the <obj> children, each having a required value attribute. <obj> also has an optional idx 

and objName attribute, just like the <obj> elements in <multiObjectiveValue>.  

3. The <variables> element is shown in Figure 6-25. 

 
Figure 6-25: <variables> element in OSrL.  
 
The <variables> element currently contains two predefined standard elements 

<variableSolution> and <variableUnboundedDirection>. Each has a 

<description> element for further elaboration, following which are 0 or more <var> 

elements to specify variable solutions, and/or unbounded directions. More standard variable 

related elements may be added in the future. The corresponding variable values should go 

inside the required value attributes of <var>. A <var> element also has an optional idx 

and varName attribute. The idx attribute is optional only if the <var> elements are listed in 

the same order as those in the OSiL input instance. Again variables are indexed from 0 on; thus 

the idx attribute is a nonnegative number. If a solver provides other variable results, they 

should go in the <otherVariableResult> elements.  As these non-standard results vary 

between solvers, each <otherVariableResult> element has a required resultName 

attribute and an optional <description> child for further elaboration. The individual result 

for each variable should go inside the <var> children, each having a required value attribute. 

The <var> element also has an optional idx and varName attribute, just like the <var> 

elements in the standard variable result elements.  
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4. The <constraints> element is shown in Figure 6-26. 

 
Figure 6-26: <constraints> element in OSrL.  
 
The <constraints> element currently contains two predefined standard elements 

<constraintValue> and <constraintDualValue>. Each has a <description> 

element for further elaboration, following which are 0 or more <con> elements to specify 

constraint values or dual values. More standard constraint related elements may be added in the 

future. The individual constraint values should go inside the required value attributes of 

<con>. A <con> element also has an optional idx and conName attribute. idx is optional 

only if the <con> elements are listed in the same order as those in the OSiL input instance. 

Again constraints are indexed from 0 on; thus the idx attribute is a nonnegative number. If a 

solver provides other constraint results, they should go in the 

<otherConstraintResult> elements.  As these non-standard results vary between 

solvers, each <otherConstraintResult> element has a required resultName attribute 

and an optional <description> child for further elaboration. The individual result for each 

constraint should go inside the <con> children, each having a required value attribute. The 

<con> element also has an optional idx and conName attribute, just like the <con> elements 

in the standard constraint result elements.  

 

6.5 Optimization Services option Language (OSoL) 
The OSoL schema is located at http://www.optimizationservices.org/schemas/OSoL.xsd. 

OSoL is a general optimization option format specification mainly for solver algorithm 

directives. OSoL is probably the instance least able to be standardized as different solvers have 

different options and even if the optional names are the same, they are used differently. An 

OSoL instance is usually sent to a solver along with an OSiL instance. If the OSoL instance is 
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missing, default options are assumed by the solvers. OSoL can potentially be used to discover a 

solver in the OS registry if a user requires a solver to support a specified option.  

Figure 6-27 shows the root element <OSoL> of the OSoL schema.  

 
Figure 6-27: OSoL Schema at the root level <OSoL>.  
 

Options can be specified in an appropriate child of the 7 types of children of <OSoL>: 

<general>, <objective>, <multiObjectives>, <variables>, 

<constraints>, <coefMatrix>, and 0 or more <other> elements.  

1. The <general> element is shown in Figure 6-28. 

 
Figure 6-28: <standard> element in OSoL.  
 
  The <general> element currently has three predefined options, all optional. No sequence of 

the child options is required. The <general> element has an optional serviceName and an 

optional serviceAddress attribute. The service name and address should be the same as those 

published in the OS registry. The <jobID> element contains a job ID that has previously been 

assigned by the service. Solver client can, for example, use the job ID to retrieve intermediate 

(if supported by the solver) or final optimization results. The <license> element contains a 

license key that may be required by commercial services. The <maximumTime> element is 

the maximum amount of time in minutes for an optimization job.  

2. The <objective> element is shown in Figure 6-29. 

all (no sequence required) 
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Figure 6-29: <objective> element in OSoL.  
 
 The <objective> element currently contains three predefined standard options: 

<initialObjectiveValue>, <initialObjectiveUpperBound>, and 

<initialObjectiveLowerBound>. Option values should be specified in the required 

value attribute of each element. An option description can be put in the elements. More 

standard objective options may be added in the future. Nonstandard options can be specified in 

the subsequent of 0 ore more <otherObjectiveOption> element. Each 

<otherObjectiveOption> has a required optionName attribute besides the value 

attribute.  

3. The <multiObjectives> element is shown in Figure 6-30. 

 
Figure 6-30: <multiObjectives> element in OSoL.  
 
The <multiObjecitves> element currently contains one predefined standard option 

<initialMultiObjectiveValue>. The <initialMultiObjectiveValue> 

element has an optional value attribute if there is an initial value for the entire multi-objective 

function. <initialMultiObjectiveValue> can have 0 or more <obj> elements, each 

corresponding to one objective component of the multi-objectives. The individual initial 

function value for each objective component is specified in the required value attribute of 

<obj>. An <obj> element also has an optional idx and objName attribute. idx is optional 

only if the <obj> elements are listed in the same order as those in the OSiL input instance. If 

there are other multi-objective options, they should go in the 

<otherMultiobjectiveOption> elements.  As these non-standard results vary between 

solvers, each <otherMultiobjectiveOption> element has a required optionName 
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attribute and an optional <description> child for further elaboration. 

<otherMultiobjectiveOption> also has an optional value for the specified option on 

the entire multi-objective function. The individual option for each objective component should 

go inside the <obj> children, each having a required value attribute. <obj> also has an 

optional idx and objName attribute, just like the <obj> elements in 

<initialMultiObjectiveValue>.  

4. The <variables> element is shown in Figure 6-31. 

 
Figure 6-31: <variables> element in OSoL.  
 
The <variables> element currently contains one predefined standard option 

<initialVariableValues>. The <initialVariableValue> element can have 0 or 

more <var> elements, each having a required value attribute for an initial variable value. A 

<var> element also has an optional idx and varName attribute. idx is optional only if the 

<var> elements are listed in the same order as those in the OSiL input instance. If there are 

other variables options, they should go in the <otherVariableOption> elements.  As 

these non-standard results vary between solvers, each <otherVariableOption> element 

has a required optionName attribute and an optional <description> child for further 

elaboration. The individual option for each variable should go inside the <var> children, each 

having a required value attribute. <var> also has an optional idx and varName attribute, 

just like the <var> elements in <initialVariableValues>.  

5. The <constraints> element is shown in Figure 6-32. 

 
Figure 6-32: <constraints> element in OSoL.  
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The <constraints> element currently contains two predefined standard options 

<initialConstraintValue> and <initialConstraintDualValue>. Each has 0 

or more <con> elements to specify initial constraint values or dual values. More standard 

constraint related options may be added in the future. The individual constraint options should 

go inside the required value attributes of <con>. A <con> element also has an optional idx 

and conName attribute. The idx attribute is optional only if the <con> elements are listed in 

the same order as those in the OSiL input instance. If there are other constraint options, they 

should go in the <otherConstraintOption> elements.  As these non-standard options 

vary between solvers, each <otherConstraintOption> element has a required 

optionName attribute and an optional <description> child for further elaboration. The 

individual option for each constraint should go inside the <con> children, each having a 

required value attribute. The <con> element also has an optional idx and conName 

attribute, just like the <con> elements in the standard constraint option elements. 

6. The <coefMatrix> element is reserved for future use. Currently there are no 

coefficient matrix related options. 

7. The <other> elements are for options that do not belong to the above categories. The 

<other> element has a required optionName attribute and a required value attribute. A 

description can be put in the <other> element.  

 

6.6 Optimization Services analysis Language (OSaL) 
The OSaL schema is located at http://www.optimizationservices.org/schemas/OSaL.xsd. 

OSaL is a general optimization analysis format specification, mainly outputted by analyzers. 

The role of analyzer and its output standardization is discussed in detail in §2.6.  

As discussed in §6.4, when solving an optimization problem, a solver may gather 

additional analysis on the problem. Thus an <analysis> element can be embedded in the 

Optimization Services result Language (OSrL). The <analysis> element is exactly of the 

OSaL format. On the other hand, if an optimization model is easy enough, it can potentially be 

solved by an analyzer without sending to a solver. In this situation, the analyzer should return 

an OSrL instance with an embedded <analysis> element of OSaL.  

OSaL, an analysis output format, can be thought of as another counterpart (besides OSrL) 

to the input format OSiL. The structure and contents of OSaL is based on and driven by the 
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OSiL design. But compared with OSiL, OSaL is more straightforward. Figure 6-33 shows the 

root element <OSaL> of the OSaL schema.  

 
Figure 6-33: OSaL Schema at the root level <OSaL>.  
 

The <OSaL> element has two children, <programDescription> and 

<programDataAnalysis>. The <programDescription> element conveys the basic 

analyses of an optimization instance. All its children are shown in Figure 6-34 and are self-

explanatory. The last element <specific> is of mapType which is briefly explained in the 

OSgL section (§6.1). Basically it is an array of <el> elements each with a name and a value 

attribute. The <specific> element is for analyzers to output nonstandard analyses and is 

used at many places in the <programDataAnalysis> element too.  

 
 
Figure 6-34: <programDescription> element in OSaL.  
 
The <numberObjectives>, <numberConstraints>, and <numberVariables> 

child elements of <programDescription> are required. Each of the three elements has a 

nonnegative integer num attribute and each has a break down of children as shown in Figure 

6-35. For example we can have sub-counts of linear constraints, quadratic constraints and 

(general) nonlinear constraints under <numberConstraints>. For linear constraints, we 

can have a further break down of equality constraints, inequality constraints (one-sided), and 
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range constraints (two-sided). All these count numbers play important roles for the OS registry 

to find an appropriate solver.  

 
 

Figure 6-35: <numberObjectives>, <numberVariables>, and <numberConstraints> 
elements in OSaL.  

 
The actual program data analysis is in <programDataAnalysis> (Figure 6-36).  

 
Figure 6-36: <programDataAnalysis> element in OSaL. 
 

The <programDataAnalysis> element is very similar to the <programData> element 

in OSiL (Figure 6-8).  The only additional child element is the <constraintRegion> 

reserved 



 
 
 

200 

 
 
 

element for such analyses as constraint region convexity. The similarity is because all the 

analyses are done based on the OSiL input, so analysis results can be viewed as the metadata 

from the OSiL data in different sections. For example, in the first child <constraints> of 

<programDataAnalysis> (Figure 6-37), we can have analyses on each constraint 

(<con>). Each <con> element has attributes such as type, priority, linearity and 

convexity. If there are other analyses not specified by an attribute, they can be put in a 

sequence of <specific> elements as children of the <con> element.   

 
 
Figure 6-37: <constraints> element in OSaL.  
 
Here is an analysis example of the constraints:  
<constraints> 

    <con idx="0" type="geq" linearity="linear" convexity="linear" regionEffect="linear"/> 
    <con idx="1" type="leq" linearity="quadratic" convexity="concave" regionEffect="convex"/> 
    <con idx="2" type="leq" linearity="nonlinear" convexity="nonconvex" regionEffect="nonconvex"/> 
    . . . 
</constraints> 
 

Analyses on other parts more or less follow the same pattern. In Table 6-15 we list the 

common analyses that can be put in OSaL. There can be endless analyzes, but in Optimization 

Services, we emphasize on those that can facilitate matching between instances and appropriate 

solvers.  

Data Part Common Analyses and Descriptions 
constraints type: geq, leq, eq, geqLeq (constrained on both sides) etc.  

linearity: linear, quadratic, (general) nonlinear, closeToLinearity etc.  
convexity: linear, convex, concave, almostConvex, etc. 
regionEffect: whether the constraint makes the constrained region linear, convex, etc.   
effectiveness: fraction of the variable space that each constraint eliminates 
redundant: whether the constraint is redundant and should be eliminated  

variables type: C (continuous), I (integer), B (binary), S (string) 
priority: for pivoting in integer programming 
init: suggested initial variable values 
fixed: whether the variable should be fixed at the initial value (or lb = ub) 

objectives lb and ub : lower and upper bound  
shape: linear, convex, concave, etc.  
steepness: objective slope at the current point 
objectiveEffect: whether the objective is likely to be a global optimum or local optimum 

coefMatrix Density: or sparsity of the coefficient matrix  
type: listMatrix, coefMatrix, sparseSDPA or mixture 

constraintRegion convexity: linear, convex, almostConvex, etc. 
nl numberQuardratic: number of quadratic terms in each nonlinear function 

numberLogic: number of logic operators 
numberRelational: number of relational operators in each nonlinear function 
numberSimulations: number of simulations in each nonlinear function 
numberComplementarity: number of complementarity (0 or 1) in each nonlinear function 
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numberXPath: number of XPath nodes in each nonlinear function 
cones (reserved) 
stochastic (reserved) 
networkAndGraph (reserved) 
userFunctions rowIn: which rows (constraints or objectives) the user functions are in  
userVariables rowIn: which rows (constraints or objectives) the user variables are in  
simulations rowsIn: which rows the simulations are in 

time: an estimated time a simulation may take 
xmlData numberData: number of data in the xml data 

numberLevel: height of the xml tree  
Table 6-15: Typical data analyses on different optimization parts in OSaL. 
 

6.7 Optimization Services simulation Language (OSsL) 
The OSsL schema is located at http://www.optimizationservices.org/schemas/OSsL.xsd. 

Simulations are explained in 2.8 and OSsL facilitates enables objective or constraint functions 

to incorporate simulations, which may be located in places other than the solver. An OSsL 

instance is usually transmitted between a solver and a simulation engine. From the 

Optimization Services framework point of view, if a simulation is to be invoked by an OS-

compatible solver, its input and output have to be put in the standard OSsL format.  

As explained in the OSiL section (§6.2), the definition of a simulation is specified in the 

<simulations> element of OSiL. Each simulation consists of the simulation’s address 

using the <uri> child and its input and output using the <OSsL> child. Figure 6-18 is a good 

illustration, which we show below again. 

 
Figure 6-38: simpleSimulation with two inputs (a, b), two outputs (f1, f2) and an address at 
http://www.optimizationservices.org/os/ossimulation/SimpleSimulationService.jws. 

 
The definition of simpleSimulation looks like:  
<simulation name="simpleSimulation"> 

 <uri value="http://www.optimizationservices.org/os/ossimulation/SimpleSimulationService.jws"/> 
 <OSsL> 
  <input> 
   <el name="a">1</el> 
   <el name="b">MSFT</el> 
  </input> 
  <output> 
   <el name="f1"/> 
   <el name="f2"/> 
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  </output> 
 </OSsL> 
</simulation> 

As explained in the OSnL section (§6.3), to construct a nonlinear expression that contains 

simpleSimulation, we use the <simInput> and <simOutput> nodes: 
<nl idx="-1"> 

 <plus> 
  <sim name="simpleSimulation"> 
   <simInput inputName="a"> <var idx="0"/> </simInput> 
   <simInput inputName="b"> <var idx="1"/> </simInput> 
   <simOutput outputName="f1"/> 
  </sim> 
  <number value="2"/> 
 </plus> 
</nl> 

In Figure 6-39 below, we list the entire OSsL schema.  

 
<xs:complexType name="OSsL"> 
 <xs:all> 
  <xs:element name="input" minOccurs="0"> 
   <xs:complexType> 
    <xs:sequence> 
     <xs:element name="el" type="ioType" minOccurs="0" maxOccurs="unbounded"/> 
    </xs:sequence> 
   </xs:complexType> 
  </xs:element> 
  <xs:element name="output" minOccurs="0"> 
   <xs:complexType> 
    <xs:sequence> 
     <xs:element name="el" type="ioType" minOccurs="0" maxOccurs="unbounded"/> 
    </xs:sequence> 
   </xs:complexType> 
  </xs:element> 
 </xs:all> 
</xs:complexType> 
 
<xs:complexType name="ioType"> 
 <xs:simpleContent> 
  <xs:extension base="xs:string"> 
   <xs:attribute name="name" type="xs:ID" use="required"/> 
   <xs:attribute name="type" type="type" use="optional" default="string"/> 
  </xs:extension> 
 </xs:simpleContent> 
</xs:complexType> 
 
<xs:simpleType name="type"> 
 <xs:restriction base="xs:string"> 
  <xs:enumeration value="string"/> 
  <xs:enumeration value="link"/> 
 </xs:restriction> 
</xs:simpleType> 
 
Figure 6-39: <OSsL> root element. 
 

all (sequence is not  imposed) 
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As illustrated in the above figure, the OSsL schema is very simple, but still general enough to 

accommodate to any existing simulations. The <OSsL> element has two optional children 

<input> and <output> and it does not matter which comes first. The two child elements 

are very similar, which is why we don’t have a separate schema for each. Both elements have 0 

or more <el> elements. This corresponds to the notion that simulations in general can take any 

number of inputs and generate any number of outputs. An <el> element is of ioType; it 

takes a required name attribute for the input or output name and an optional type attribute. 

The input or output values go inside the elements. By default the type attribute is “string” 

which is the most general an input or output value can be. The other type is “link” which 

indicates that the value inside the <el> element is a pointer and the actual data is to be obtained 

from the specified link address. For instance, in the following example: 
<simulation name="simpleSimulation"> 

 <uri value="http://www.optimizationservices.org/os/ossimulation/SimpleSimulationService.jws"/> 
 <OSsL> 
  <input> 
   <el name="a" type="string">1</el> 
   <el name="b" type="link">http://www.optimizationservices.org/data/stock.html</el> 
  </input> 
  <output> 
   <el name="f1"> 
   <el name="f2"/> 
  </output> 
 </OSsL> 
</simulation> 

input “a” is a string (= “1”) and input “b” is a link. The value of b (e.g. “MSFT”) should be 

obtained from the address http://www.optimizationservices.org/data/stock.html.  

 

6.8 Optimization Services transformation Language (OStL) 
 
The OStL schema is located at http://www.optimizationservices.org/schemas/OStL.xsl. 

OStL is an XML-based Extensible Stylesheet Language (XSL). XSL is covered in §4.4. XSL 

offers a convenient way to specify translations of XML documents. For example if an 

optimization solution is formatted in Optimization Services result Language (OSrL), XSL can 

be applied to the solution instance to easily produce an HTML document that transforms the 

raw result data into a user-friendly form. Other OSxL representations that can use the OStL 

style sheet are OSaL (for displaying analysis results), OSeL (for publishing solver entity 

descriptions) and OSiL (for presenting optimization instances).  

Since different users have different tastes of what looks the nicest, OStL is mostly 

provided as an optional alternative for data transformation. A modeling language environment 
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(MLE), for example, is not recommended to use OStL to display the OSrL results, because the 

input instance may have been pre-processed and the OSrL result instance needs to be post-

processed before it is presented to the user. The MLE can display the data in what the user 

thinks is the best way, with much more flexibility than a style sheet; for example MLE can 

allow analyzing the result interactively or displaying values of any expression in the result. In 

situations where post-processing of OSrL is necessary, names and indexes of the original model 

may be different from those in the instance, so OStL may not be appropriate to use. 

On the other hand, if a service is registered in the OS registry and the service provider 

wants to publish the standard service information (OSeL) on his own Web site, it is required 

that he publishes the information using the OStL, that is at the beginning of his OSeL document 

specify the following OStL style sheet location:    

http://www.optimizationservices.org/schemas/OStL.xsd.  

Another purpose for such a requirement is that the Optimization Services registry can 

advertise the latest news and information by changing the OStL at the above link, so that the 

revised information is automatically shown on the individual Web sites of those who registered. 

Unlike most other style sheets such as CSS (cascading style sheet), the XSL based OStL can 

not only control font weight, style, size and color but can also rearrange the structure of a 

document, add new contents, tags and attributes.   

As an example, the following section of OStL.xsl is used to present the objective value, 

variable solutions and constraint values in OSrL:   
<?xml version="1.0" encoding="UTF-8"?> 

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
xmlns:os="os.optimizationservices.org" exclude-result-prefixes="os"> 
 <xsl:output method="html" version="1.0" encoding="UTF-8" indent="yes"/> 
 <xsl:template match="/"> 
  <html> 
   <body> 
    <h1>Result</h1> 
    <b>objective: </b><xsl:value-of 
select="/os:OSrL/os:result/os:objective/os:objectiveValue/@value"/> 
    <p/> 
    <table> 
     <td colspan="2" align="center"> 
      <b>Variables</b> 
      <table border="2" width="10"> 
       <tr><td><b>variable</b> </td><td><b>solution</b></td></tr> 
       <xsl:for-each select="/os:OSrL/os:result/os:variables/os:variableSolution/os:var"> 
        <tr> 
         <td><xsl:value-of select="@varName"/></td> 
         <td><xsl:value-of select="@value"/></td> 
        </tr> 
       </xsl:for-each> 
      </table> 
     </td> 
    </table> 
    <table> 
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     <td colspan="2" align="center"> 
      <b>Constraints</b> 
      <table border="2" width="10"> 
       <tr><td><b>constraint</b></td><td><b>value</b></td></tr> 
       <xsl:for-each select="/os:OSrL/os:result/os:constraints/os:constraintValue/os:con"> 
        <tr> 
         <td><xsl:value-of select="@conName"/></td> 
         <td><xsl:value-of select="@value"/></td> 
        </tr> 
       </xsl:for-each> 
      </table> 
     </td> 
    </table> 
   </body> 
  </html> 
 </xsl:template> 
</xsl:stylesheet> 

Suppose the OSrL looks like:   
<?xml version="1.0"?> 

<?xml-stylesheet type="text/xsl" href="http://www.optimizationservices.org/schemas/OStL.xsl"?> 
<OSrL xmlns="os.optimizationservices.org" xmlns:xs="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="os.optimizationservices.org 
http://www.optimizationservices.org/schemas/OSrL.xsd"> 
 <result> 
  <status type="optimal"/> 
  <objective> 
   <objectiveValue value="4.5"/> 
  </objective> 
  <variables> 
   <variableSolution> 
    <var varName="x1" value="2.1"/> 
    <var varName="x2" value="3.5"/> 
    <var varName="x3" value="3.5"/> 
   </variableSolution> 
  </variables> 
  <constraints> 
   <constraintValue> 
    <con conName="con1" value="-3.4"/> 
    <con conName="con2" value="0.0"/> 
   </constraintValue> 
  </constraints> 
 </result> 
</OSrL> 

Notice the second line includes a link to where the OStL.xsl file is. The OSrL example is 

presented as:  

Result 
objective: 4.5 

Variables 
variable solution 
x1 2.1 
x2 3.5 
x3 3.5 

 
Constraints 

constraint value
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con1 -3.4 
con2 0.0 

 
 
Note if in the above OStL example, we (designers of OS protocols) change the heading part 

(<body><h1>Result</body></h1>) in <xsl:template match="/"> to:  
<xsl:template match="/"> 

 <html> 
  <body> 
   <h1>Result found by Optimization Services</h1> 
   <b>objective: … 
  . . .  
  </body> 
 </html> 
</xsl:template> 

The display will automatically change to:  

Result found by Optimization Services 

objective: 4.5  
Variables 

variable solution 
x1 2.1 
x2 3.5 
x3 3.5 

 
Constraints 

constraint value 
con1 -3.4 
con2 0.0 

 
In this way by changing OStL.xsl at ://www.optimizationservices.org/schemas/OStL.xsl,  

we can have a control over various publications (at least those required to include the 

OStL.xsl link) over the entire decentralized OS network.  
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CHAPTER 7 OPTIMIZATION SERVICES COMMUNICATION 
 

In this chapter, we present the instance communication part of Optimization Services 

Protocol (OSP). OS communication is about the exchange of a set of low-level data instances 

between different Optimization Services components. (The difference between low-level 

instances and high level models is explained in Chapter 2).  

Communication sub-protocols deal with the general areas of optimization access, 

operations and flows. All but one communication sub-protocol deals with optimization access 

and operations which are specified using the WSDL documents (§4.7). The only exception is 

the Optimization Services flow Language (OSfL, §7.3), which defines flow orchestration in the 

XML-based BPEL (Business Process Execution Language [91]) format.  

All the OS communication WSDL documents have three main parts: interface, protocol 

(binding & encoding), and service address. The Interface part varies between different WSDL 

documents as different types of services have different functions and methods. The protocol 

part is exactly the same for all the WSDL documents as we currently require all the services on 

an OS network use exactly the same communication binding and message encoding 

mechanisms. So we will only illustrate the protocol part in the first OS communication protocol 

that we introduce, namely OShL in the next section. The service address part of all the generic 

OSxL WSDL documents is empty (not specified), as addresses of the individual services are 

different. So technically speaking, OS communication protocols standardize the interface 

(operations, messages, parts) and protocol (binding, encoding) parts of the WSDL documents 

of all the OS services. All the OS services have their own addresses listed in their individual 

WSDL documents and the rest of the WSDL documents should be exactly the same as 

specified by the OS communication protocols.   

No mechanisms such as encoding and security are addressed in OSP. OSP leverages the 

mechanisms provided by its underlying protocols such as SOAP and HTTP. All the registry 

related OSxL communications are covered in Chapter 8. We provide open-source libraries 

(Appendix B) for sending and receiving all the instances to simplify exchange of information. 

Some of the examples illustrated in this chapter demonstrate the use of communication agents 

in the OS libraries. All the communication documents (WSDL, BPEL) and libraries are 

available at www.optimizationservices.org [92] and www.optimizationservices.net [93].   
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Standards for optimization instance communication over distributed systems are new. But 

the standardization is technologically timely. Distributed technologies such as Web services 

(Chapter 4) are growing rapidly in importance in today’s computing environment and are 

already widely accepted as industrial standards. It is our vision that by combining Operations 

Research and modern distributed technologies, Optimization Services will make a wider 

audience able to easily access and benefit from the increasing number of OR software 

packages.  

Through standardization of communication, the OS framework provides an open 

infrastructure for all optimization system components to communicate with each other as 

shown in §5.3. The goal is that all the algorithmic codes will be implemented as services under 

this framework and customers will use these computational services like utility services. 

Special knowledge of optimization algorithms, problem types, and solver options required of 

users should be minimized. Everything that involves finding the right solver, invoking the 

software, providing the computing resources and presenting the solution is automatically taken 

care of by Optimization Services infrastructure.  

The Optimization Services framework does not standardize local interfacing. As 

mentioned in the previous chapters, related projects such as COIN [23] and derived research 

from Optimization Services such as the Optimization Services instance Interface (OSiI), 

Optimization Services option Interface (OSoI) and Optimization Services result Interface 

(OSrI) are intended to do this job. The COIN project includes the OSI (Open Solver Interface) 

library which is an API for linear programming solvers, and NLPAPI, a subroutine library with 

routines for building nonlinear programming problems. Another proposed nonlinear interface 

by Halldórsson, Thorsteinsson, and Kristjánsson is MOI (Modeler- 

Optimizer Interface [60]) that specifies the format for a callable library. This library is based on 

representing the nonlinear part of each constraint and the objective function in post-fix (reverse 

Polish) notation [2] and then assigning integers to operators, characters to operands, integer 

indices to variables and finally defining the corresponding set of arrays. The MOI data structure 

then corresponds to the implementation of a stack machine. A similar interface is described in 

the LINDO API manual [74].  

The Optimization Services framework is complementary to the standardization of local 

interfaces. The connection between Optimization Services and local interfacing is illustrated in 

Figure 7-1.  
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Figure 7-1: Relationship between OS Communication and local interface standardization. 

 
In the figure, the Modeling Language Environment generates an instance (OSiL) and 

delegates a communication agent (solver agent) to send the instance to the remote solver 

service. OS communication standardizes this distributed process. After the solver service 

receives the instance from the network, the local solver uses an instance parser to parse the 

instance into a set of standard objects/data structures that are held in the data structure interface 

(e.g. COIN-OSI). As the instance is a standard instance, only one parser needs to be written to 

read the instance and as the local interface is also a standard interface, both can be provided in 

one library. All that a solver developer needs to do is to include this library to resolve all 

interface or format issues.  

The success of Optimization Services will promote the work of local interface 

standardization and in turn the wide acceptance of the standard local interfaces will allow more 

solvers to be easily hooked into the Optimization Services system.   

 

7.1 Optimization Services hookup Language (OShL) 
The OShL document is at http://www.optimizationservices.org/schemas/OShL.wsdl. 

In the above Figure 7-1, a (solver) agent is delegated to contact the (solver) service. 

Communication is always between two components; therefore both the agent and the service 

have to follow certain rules. The rules are specified in the OShL.wsdl document. Figure 7-2 

shows the first half (interface part) of a simplified version of the WSDL document. This part 

varies between different types of services. All the solver services and analyzer services are 

required to follow the interface specification of OShL.  
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Figure 7-2: Illustration of a simplified OShL (interface part). 

 

The most important part of Figure 7-2 is the <wsdl:portType> element. The 

portType element can have one or more <operation> elements. In this simplified 

example, we only list one operation whose name is solve. Each operation corresponds to 

a method or function in a programming language. So there are usually two parts to an 

operation: the input element and the output element. The format of both elements is 

controlled by the message attribute. In the solve operation, we require its input to be of 

message type “solverRequest” and its output to be of message type 

“solverResponse.” The solverRequest message has two part elements, osil and 

osol, both of string types. A part corresponds to an argument of a function or method. So we 

can regard a message as a sequence of arguments to be passed to the function or method.  

Simply put, the WSDL document in Figure 7-2 specifies the following operation for each 

solver: 

String solve(String osil, String osol); 

that is, every solver service is required to have a method called “solve” that takes two input 

strings and returns one string. The first input string should be an OSiL optimization instance, 

the second input string should be an OSoL option instance, and the returned string should be an 
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OSrL result instance. OShL, as well as other OS communication protocols, does not specify 

how the strings should look inside. This is the responsibility of OS representation protocols 

discussed in Chapter 6. So without the OS representation protocols, a client can still transmit 

any junk strings to a solver service successfully. Of course, all the OS-compatible components 

are required to validate input and output instances, so no invalid instances will be ever 

transmitted onto the network. WSDL documents and XML schemas are two key technologies 

to ensure the high quality of an entire OS network. In Table 7-1, we list the operations currently 

specified in the OShL WSDL document.  
Operation Description 

String getJobID( ) No input.  
Output string is a unique job id.  

String solve (String, String)  
 

1st input is an OSiL instance for optimization problem. 
2nd input is an OSoL instance for solver option.  
Output is an OSrL instance for an optimization. 

String solve (String) 
 

1st input is an OSiL instance for optimization problem. 
Solver options are assumed to be default.  
Output is an OSrL instance for an optimization. 

String retrieveResult (String) 
 

1st input is a job id.  
Output is an OSrL instance for an optimization  

String analyze(String) 
 

1st input is an OSiL instance for optimization problem. 
Output is an OSaL instance for analysis.  

Table 7-1: Operations in OShL. 
  

The getJobID and retrieveResult operations will be explained in the OSfL section 

(§7.3, Figure 7-8). For the one-argument solve operation that does not take options, the 

solver should use its default options. Many solvers may not do analysis. In this case solver 

services can just implement a dummy analyze operation, which returns an empty analysis 

result (e.g.) <OSaL/>. Conversely, analyzers may do dummy implementations for the solver-

related operations.  

Figure 7-3 shows the other half (protocol & address part) of the OShL WSDL document. 

The hard-coded service address part should be empty and is only shown for the purpose of a 

complete illustration. The generic OShL WSDL document does not specify where the service 

is. In reality, the service location is dynamically discovered in the OS registry (Chapter 8). 

Each individual solver or analyzer service has exactly the same OShL WSDL document 

following the OShL protocol except that it has an extra location specified in the 

<wsdlsoap:address> element under <wsdl:service>. In Figure 7-3, this is illustrated 

with an example address as:  

http://www.optimizationservices.org/os/SampleSolverService.jws.  
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Figure 7-3: Illustration of a simplified OShL (protocol and address part). 

The most important part of Figure 7-3 is the protocol part represented by the 

<wsd:binding> element. The protocol part of any other OSxL WSDL document is exactly 

the same as the OShL WSDL document here. Currently we require all the services on an OS 

network use exactly the same communication binding and message encoding mechanisms. So 

in this thesis this is the only section that we illustrate the protocol part of all OSxL WSDL 

documents.  

The binding element contains one or more operation elements for each operation 

specified in Figure 7-2. Each operation can potentially be called using a different protocol 

binding. All the operations in Optimization Services, however, use the same protocol binding. 

In this simplified example, we only have the String solve(String, 

String)operation. As for any other operation, the solve operation is required to be of rpc 

style (remote procedure call, Chapter 4), which is the most typical request and response calling 

style, or a blocking call. So the request client that invokes the solve operation from a solver 
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service has to wait for the response. Of course, the client application can launch a separate 

process or thread to issue this solve operation and let the thread wait there for the response, 

so that the user of the application can go on with other tasks. Depending on the application 

settings, the solve operation and its argument instances can either be directly sent to the 

solver service or first submitted to a queue server. On the solver service side, when the solve 

operation is received, it can either solve it directly, or launch a separate process or thread to 

solve the instances, or it can put the instances in its own queue. Thus the request and response 

rpc style specified in all the OSxL WSDL documents is general enough for all the current 

needs, while developers can have their own innovative implementations that fit their users the 

best.  

As for any other operation, the solve operation and its arguments are required to be 

packaged in a SOAP envelope which is transported over the HTTP protocol. This is specified 

by the transport=http://schemas.xmlsoap.org/soap/http attribute of the 

<wsdl:binding> element.  Like the “RPC” style, the “SOAP over HTTP” transport binding 

is general enough for all the current needs. As Optimization Services evolves, more transport 

binding (SOAP over other protocols) may be added.  

Each <operation> element has a <wsdl:input> element and a <wsdl:output> 

element in which we specify the encoding styles. In Optimization Services, we use leverage on 

the standard soap encoding: “http://schemas.xmlsoap.org/soap/encoding.” This makes the input 

and output arguments platform and programming language independent.  

 The protocol part of an OSxL WSDL document is technically complex to implement. 

These are all taken care of by the libraries provided. On the modeler (client) side, the agent 

hides all the networking details, such as encoding the operation arguments, packing the 

operations in a SOAP envelope, transmitting the SOAP envelope over the HTTP protocol and 

handling the HTTP response. On the service (server) side, the OS Server that hosts the service 

takes care of reading the HTTP request, extracting the SOAP envelope, decoding the operation 

arguments invoking the service interface, and sending back the result. So as long as the service 

interface follows the OS communication standards (e.g. Figure 7-2), the entire call should be 

completed successfully.  

 We illustrate the process using the OS library below.  

Imagine we formulate the problem (7-1) in AMPL (7_1.mod) as it would be under the 

Optimization Services framework and AMPL uses the Knitro solver service hosted at 
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http://www.ziena.com/os/KnitroSolverService.jws to solve the problem. Assume that we 

already found this address in the OS Registry (Chapter 8).  

0100tosubject

)(100)1(minimize
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(7-1) 

 

 

At the modeler side, to solve the problem, the user would type the following commands 

at the AMPL prompt: 
ampl: model 7_1.mod; 
ampl: option OptimizationServices on; 
ampl: solve; 

Underneath, AMPL first translates the model (7_1.mod) to an OSiL instance:  
<OSiL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  

     xsi:schemaLocation="os.optimizationservices.org   
http://www.optimizationservices.org/schemas/OSiL.xsd"> 

 <programDescription> 
  <maxOrMin>min</maxOrMin><numberObjectives>1</numberObjectives> 
  <numberConstraints>1</numberConstraints><numberVariables>2</numberVariables> 
 </programDescription> 
 <programData> 
  <constraints><con ub="0.0"/></constraints> 
  <variables> <var lb="0" name="x1" type="C"/><var lb="0" name="x2" type="C"/></variables> 
  <nl idx="-1"><plus> <power><minus><number type="real" value="1.0"/><var coef="1.0" 

idx="1"/></minus><number type="real" value="2.0"/></power><times><number type="real" 
value="100"/><power><minus> <var coef="1.0" idx="0"/><power><var coef="1.0" idx="1"/><number 
type="real" value="2.0"/></power></minus><number type="real" 
value="2.0"/></power></times></plus></nl> 

  <nl idx="0"><minus><plus> <var coef="1.0" idx="0"/><var coef="1.0" idx="1"/></plus><number 
type="real" value="100"/></minus></nl> 

 </programData> 
</OSiL> 

It is AMPL’s job to make sure this string validates against the OSiL schema.  Suppose this 

instance is stored in the String variable:  

sOSiL. 

Next AMPL instantiates a communication agent provided in the OS library (Appendix B):  
OSSolverAgent osSolverAgent = new OSSolverAgent(); 

Suppose we already found the solver address and the address is stored in a String variable:   

sSolverAddress (=http://www.ziena.com/os/KnitroSolverService.jws) 

AMPL then tells the address to osSolverAgent and delegates osSolverAgent to send 

and solve the problem. For simplicity, we will not pass the solver options and from Table 7-1 

we choose to use the simpler operation: String solve(String), which takes as input an 

OSiL instance and return as output an OSrL instance:   
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osSolverAgent.solverAddress = sSolverAddress; 
String sOSrL = osSolverAgent.solve(sOSiL); 

In the solve operation, the agent contacts the solver service at the given solverAddress 

and gets back an OSrL result instance stored in the String variable:  
sOSrL 

which looks like: 
<OSrL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="os.optimizationservices.org http://www.optimizationservices/schemas/OSrL.xsd"> 

 <result> 
  <status type="optimal"/> 
  <objective> <objectiveValue value="0.000"/></objective> 
  <variables> <variableSolution><description/> 
    <var idx="0" varName="x1" value="1.0"/><var idx="1" varName="x2" value="1.0"/> 
    </variableSolution> 
  </variables> 
 </result> 
</OSrL>  
On receiving the OSrL result, AMPL parses the result and presents it to its user. Notice that on 

the client side, we do not worry what language the solver service is implemented in and what 

platform the solver service is installed on.  

 The major step in the entire process is the code below:   
String sOSrL = osSolverAgent.solve(sOSiL); 

AMPL itself does not need to know how the solve operation is implemented; the 

OSSolverAgent class from the OS library hides all the networking complexities from the 

modeling language environment. In OSSolverAgent’s solve operation, four steps are 

taken: 

Solver agent step 1: Encoding 

OSSolverAgent encodes the sOSiL input string into the following encoded string, 

according to the soap encoding style specified in the OShL WSDL document; most distinctly 

all the “<” and “>” signs are repectively encoded as “&lt;” and “&gt;”.  
&lt;OSiL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  

     xsi:schemaLocation="os.optimizationservices.org   
http://www.optimizationservices.org/schemas/OSiL.xsd"&gt; 

 &lt;programDescription&gt; 
  &lt;maxOrMin&gt;min&lt;/maxOrMin&gt;&lt;numberObjectives&gt;1&lt;/numberObjectives&gt; 
 
 &lt;numberConstraints&gt;1&lt;/numberConstraints&gt;&lt;numberVariables&gt;2&lt;/numberVariables&gt; 
 &lt;/programDescription&gt; 
 &lt;programData&gt;  
  &lt;constraints&gt;&lt;con ub="0.0"/&gt;&lt;/constraints&gt; 
     &lt;variables&gt; &lt;var lb="0" name="x1" type="C"/&gt;&lt;var lb="0" name="x2" 

type="C"/&gt;&lt;/variables&gt; 
  &lt;nl idx="-1"&gt;&lt;plus&gt; &lt;power&gt;&lt;minus&gt;&lt;number type="real" value="1.0"/&gt;

 &lt;var coef="1.0" idx="1"/&gt;&lt;/minus&gt;&lt;number type="real" 
value="2.0"/&gt;&lt;/power&gt;&lt;times&gt;&lt;number type="real" 
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value="100"/&gt;&lt;power&gt;&lt;minus&gt; &lt;var coef="1.0" idx="0"/&gt;&lt;power&gt;&lt;var coef="1.0" 
idx="1"/&gt;&lt;number type="real" value="2.0"/&gt;&lt;/power&gt;&lt;/minus&gt;&lt;number type="real" 
value="2.0"/&gt;&lt;/power&gt;&lt;/times&gt;&lt;/plus&gt;&lt;/nl&gt; 

  &lt;nl idx="0"&gt;&lt;minus&gt;&lt;plus&gt; &lt;var coef="1.0" idx="0"/&gt;&lt;var coef="1.0" idx="1"/&gt;
 &lt;/plus&gt;&lt;number type="real" value="100"/&gt;&lt;/minus&gt;&lt;/nl&gt; 

 &lt;/programData&gt; 
&lt;/OSiL&gt; 
Solver agent step 2: Constructing SOAP envelope 

According to the OShL WSDL document, we should use the “SOAP over “HTTP” 

transport, so OSSolverAgent packs the operation  String solve(String) and the 

above encoded sOSiL input string argument into a SOAP envelope, which looks like this: 

 
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema"  

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

<soapenv:Body> 

<ns1:solve soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 

xmlns:ns1="http://www.optimizationservices.org/os/ossolver/KnitroSolverService.jws"> 
    lt;OSiL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"     ... 
     ... 
     ... 
              &lt;/OSiL&gt; 

</ns1:solve> 

</soapenv:Body> 

</soapenv:Envelope> 
Solver agent step 3: Sending and receiving  

 Again according to the OShL WSDL document, we should send the above constructed 

SOAP envelope over the HTTP networking protocol using RPC style, so OSSolverAgent 

constructs the following HTTP POST header. Since this is an HTTP POST, we attach the 

POST data – the SOAP envelope – at the end of the HTTP header with a line separation (i.e. 

two new line characters):  
POST /os/ossolver/KnitroSolverService.jws HTTP/1.0 

Content-Type: text/xml; charset=utf-8 
Accept: application/soap+xml, application/dime, multipart/related, text/* 
User-Agent: Axis/1.2beta3 
Host: http://www.ziena.com 
Cache-Control: no-cache 
Pragma: no-cache 
Content-Length: 2488 

 
<soapenv:Envelope …> 
… 

… 

… 

</soapenv:Envelope> 
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The HTTP POST method is itself of RPC style and waits until it receives the result from the 

remote server. When the Knitro solver service sends back the result, it should be a string and 

the string should be of the OSrL format. The returned result is a SOAP envelope encoded under 

an HTTP response header:  
HTTP/1.1 200 OK   
Set-Cookie: JSESSIONID=A8AF406536A271018100F64CFA462FA0; Path=/os  
Content-Type: text/xml;charset=utf-8  
Date: Sun, 20 Mar 2005 21:28:40 GMT  
Server: Apache-Coyote/1.1  
Connection: close   
 
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"  
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
 <soapenv:Body> 
  <ns1:solveResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"  
  xmlns:ns1="http://www.optimizationservices.org/os/ossolver/LindoSolverService.jws"> 
   <solveReturn xsi:type="xsd:string"> 
    &lt;OSrL xmlns="os.optimizationservices.org"  

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="os.optimizationservices.org       
       http://www.optimizationservices/schemas/OSrL.xsd"&gt; 

     &lt;result&gt;       
      &lt;status type="optimal"/&gt; 
      &lt;objective&gt;&lt;objectiveValue value="0.000"/&gt;&lt;/objective&gt; 
      &lt;variables&gt;&lt;variableSolution&gt; 
        &lt;description/&gt; 
        &lt;var idx="0" varName="x1" value="1.0"/&gt; 
        &lt;var idx="1" varName="x2" value="1.0"/&gt; 
      &lt;/variableSolution&gt;&lt;/variables&gt; 
     &lt;/result&gt; 
    &lt;/OSrL&gt; 
   </solveReturn> 
  </ns1:solveResponse> 
 </soapenv:Body> 
</soapenv:Envelope> 
Solver agent step 4: Decoding 

On getting the encoded result, OSSolverAgent then extracts out the SOAP envelope 

attached at the end of the HTTP response header and decodes the result into:  
<OSrL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="os.optimizationservices.org http://www.optimizationservices/schemas/OSrL.xsd"> 

 <result> 
  <status type="optimal"/> 
  <objective> <objectiveValue value="0.000"/></objective> 
  <variables> <variableSolution><description/> 
    <var idx="0" varName="x1" value="1.0"/><var idx="1" varName="x2" value="1.0"/> 
    </variableSolution> 
  </variables> 
 </result> 
</OSrL>  
The AMPL modeling language only sees the above decoded result in the String variable 

sOSrL. AMPL then post -processes the sOSrL string and waits for further user instructions 

(e.g. display).  
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At the solver side, to solve the problem, the solver service also has to follow the OShL 

WSDL document as communication always involves two parties. The simplified Knitro solver 

service code looks like: 
public class KnitroSolverService { 

 public String solve(String osil){ 
  //read OSiL  
  OSiLReader osilReader = new OSiLReader(); 
  OSiI inputInterface = osilReader.getStandardInputInterface(osil); 
   
  //solve  
  KnitroSolver knitro = new KnitroSolver();   
  OSrI outputInterface = knitro.solve(inputInterface); 
   
  //write and return OSrL 

OSrLWriter osrlWriter = new OSiLWriter(); 
String osrl = osrlWriter.getOutputInterface (outputInterface); 
return osrl;  

 }//solve 
  
 public String solve(String osil, String osrl){ 
  … 
  return osrl; 

} 
 
 public String getJobID( ){ 
  … 
  return jobID; 
 } 
 
 public String retrieve(String jobID){ 
  … 
  return osrl; 
 } 
 
 public String analyze(String osil){ 
  … 
  return osal; 

}  
}//class KnitroSolverService 

As we can see, the Knitro solver service implements all the operations required in the OShL 

WSDL document (listed in Table 7-1). We only briefly show the implementation of the 

String solve(String). There are mainly 3 steps in this operation:  

1. Reading 
OSiLReader osilReader = new OSiLReader(); 
OSiI inputInterface = osilReader.getStandardInputInterface(osil); 
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The Knitro solver service gets the OSiL string and use the OSiLReader class provided 

in the OS library to parse the OSiL instance into a set of in-memory data structures that are held 

in a standard input interface (OSiI).  

2. Solving 
KnitroSolver knitro = new KnitroSolver();   

OSrI outputInterface = knitro.solve(inputInterface); 

The Knitro solver engine (KnitroSolver) is instantiated. The solver takes the 

optimization problem input interface (OSiI), solves the problem and outputs the result into a 

standard optimization output interface (OSrI).  

3. Writing and returning 
OSrLWriter osrlWriter = new OSiLWriter(); 

String osrl = osrlWriter.getOutputInterface (outputInterface); 
return osrl; 

The Knitro solver service uses the OSrLWriter class provided in the OS library to write 

the OSrL instance from the in-memory result data structures held in the OSrI output interface. 

The Knitro solver service then simply returns the OSrL result instance. Of course the Knitro 

solver service has to make sure the OSrL instance is valid. By using the OS library to construct 

the OSrL instance, the result should be automatically validated.  

 In the above 3 steps, we see that the Knitro solver service does not need to worry about 

how the input OSiL instance received from the internet (using SOAP over HTTP) should be 

decoded. Neither does it need to worry about how to encode and send back the OSrL output 

instance (again using SOAP over HTTP) to the client. This is because the Knitro solver service 

is hosted by instance our OS Server software. The OS Server hides all the networking 

complexities from the solver service. Our OS Server can be downloaded from the Optimization 

Services Web site at http://www.optimizationservices.org or 

http://www.optimizationservices.net.  The Knitro solver developers simply put the above 

Knitro solver service code in a file called KnitroSolverService.jws and put the file in 

the os sub-directory relative to the OS Server’s public root directory. Since in our example, we 

host the Knitro solver service at http://www.ziena.com, thus the service address is at   

http://www.ziena.com/os/KnitroSolverService.jws (i.e. http://domain name + directory + 

service, just like a regular Web page address). What the OS Server does is more or less the 

opposite of what the client’s communication agent does, again in 4 steps:  

Solver server step 1: Decoding 
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On getting the “SOAP over HTTP” request (sending part of Solver agent step 3) from the 

client, the OS Server extracts out the SOAP envelope attached at the end of the HTTP request 

header, gets the operation name and decodes the operation input into a regular OSiL instance. 

This is similar to any Web server in handling a regular HTTP request with POST message (e.g. 

HTML form data).  

Solver server step 2: Invoking 

The OS Server loads the KnitroSolverService.jws file and compiles the class 

only if it is the first time the service is called and loaded. The OS Server then invokes the 

operation with the decoded input according to what is specified in the SOAP envelope; in our 

example it is String solve(String). Upon invocation, the Kniro solver service starts 

the optimization process. This is similar to any Web server in locating and loading an html page 

from its file system.  

Solver server step 3: Encoding 

The OS Server then waits for the Knitro solver service to return the optimization result, 

which is in plain OSrL format. Upon getting the OSrL instance, the OS Server encodes the 

OSrL instance and packs the encoded result instance into a SOAP envelope. This step has no 

equivalent in a usual Web server, as a Web server does not need to encode an html file.  

Solver server step 4: Returning 

The OS Server prepares an HTTP response header, attaches the constructed SOAP 

envelope at the end with a line separation (i.e. two new line characters), and sends the HTTP 

response header with SOAP attachment back to the client. This is what the client agent sees in 

Solver agent step 3 when the agent receives the response from the OS Server. This step is 

similar to any Web server preparing an HTTP response and return a plain HTML page back to 

the calling browser.  

This completes the entire solver “hook up” process according the Optimization Services 

hookup Language. All the networking complexities are hidden and taken care by the OS 

library. The OS library also provides parsers to read and write standard instances. All that a 

modeling language environment does is to use the OS parser library to write standard OSiL 

instances and read standard OSrL instances after delegating an OS communication agent to 

contact the solver service. All that a solver service does is to expose the standard interface, 

implement all the required operations in the interface listed in OShL, let the OS Server take 

care of the underneath networking, and use the OS parser library to read OSiL instances and 

write OSrL instances.  
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7.2 Optimization Services call Language (OScL) 
The OScL document is at http://www.optimizationservices.org/wsdl/OScL.wsdl. OScL is 

mainly used to call simulation services. Theoretically, any client or user on the network can call 

the simulation service just like a regular Web Service. But under the Optimization Services 

framework, the main purpose to standardize simulation services is to provide extension to 

simulation optimization. Therefore in the OS practice, the client that calls the simulation is 

usually a solver service.  

Simulations are fully explained in 2.8. From the Optimization Services framework point of 

view, if a simulation is to be invoked by an OS-compatible solver, its input and output first 

have to follow the standard OSsL schema (§6.7).  

To make the communication, both the solver agent and the simulation service have to 

follow the rules specified in the OScL.wsdl document, just as the communication between a 

modeler and a solver follows the OShL WSDL document. Figure 7-2 shows the interface part 

of the OScL WSDL document. The other part (protocol & address part) of the WSDL 

document, like all other OSxL WSDL documents, uses the same specifications as in OShL 

shown in Figure 7-3; the reason is explained in the beginning of this chapter and also in the 

OShL section (§7.1). Briefly the networking protocol has to be “SOAP over HTTP” with an 

RPC style call; the input and output encoding has to be the standard SOAP encoding; the 

address is empty and to be dynamically found in the OS Registry if unknown.  

 
Figure 7-4: Illustration of OScL (interface part); other parts are the same as OShL in Figure 7-3.  
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The <wsdl:portType> element in Figure 7-4 has only one operation whose name is 

call. The call operation’s input is required to be of message type “callRequest” and its 

output is required to be of message type “callResponse.” The callRequest message 

has one part element (i.e. one argument), ossl, which is of string types. Simply put, the 

WSDL document in Figure 7-4 specifies the following single operation for each simulation: 

String call(String ossl); 

that is, every simulation service is required to have a method called “call” that takes one 

input string and returns one string. Both the input and the output strings have to follow the 

OSsL schema (§6.7). No invalid OSsL instances should be transmitted by the solver onto the 

network. In Table 7-2, we list the operations specified in the OShL WSDL document (currently 

only one).  

Operation Description 

String call (String) 1st input is an OSsL instance for simulation input. 
Output is an OSsL instance for simulation output. 

Table 7-2: Operations in OScL (currently only one). 
  

We continue the example in the above OShL section, to illustrate the process of calling a 

simulation using the OS library below.  

Imagine the entire objective function in problem (7-1) function is now calculated by a 

simulation called sampleSimulation shown in Figure 7-5. Note that it is also possible to 

have part of an objective or constraint function calculated by a simulation; thus the simulation 

becomes one internal tree node in an entire expression tree rather than the tree root. As 

explained in §2.8, three things have to be specified for the simulation: input, output, and the 

simulation’s address. The simulation definition is specified in OSiL. This was discussed in 

detail in the OSiL section (§6.2) and the OSnL section (§6.3).  

 
Figure 7-5: sampleSimulation with two inputs (a, b), one output (y) and an address 
(http://www.ziena.com/os/SampleSimulationService.jws). 
 
Notice the sampleSimulation engine can provide more “services” than just calculating the 

output y  from the two inputs a  and b .  
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sampleSimulation can be represented using the OSiL <simulation> element:  
<simulation name="sampleSimulation"> 

 <uri value="http://www.ziena.com/os/SampleSimulationService.jws"/> 
 <OSsL> 
  <input> 
   <el name="a"/> 
   <el name="b"/> 
  </input> 
  <output> 
   <el name="y"/> 
  </output> 
 </OSsL> 
</simulation> 

With the sampleSimulation definition, we can write down the objective (idx = -1) 

and the constraint (idx = 0) of (7-1) as described in the OSiL instance (§6.2, §6.3). In the 

example below we pass 0x to the simulation input a and 1x  to the simulation input b .  

<OSiL…> 

… 
 <nl idx="-1"> 

 <sim name="sampleSimulation"> 
  <simInput inputName="a"><var idx="0"/></simInput> 
  <simInput inputName="b"><var idx="1"/></simInput> 
  <simOutput outputName="y"/> 
 </sim> 
</nl idx="0"> 
<minus> 
 <plus><var idx="0"/><var idx="1"/></plus> 
 <number value="100"/> 
</minus> 

<simulation name="sampleSimulation"> 

 <!--definition--> … 
</simulation> 
… 

</OSiL> 
When the Knitro solver service gets the OSiL instance, it uses the OS library to parse the input 

and output instances with no difference and solve the optimization problem as usual:   
public class KnitroSolverService { 
 public String solve(String osil){ 
  //read OSiL  
  OSiLReader osilReader = new OSiLReader(); 
  OSiI inputInterface = osilReader.getStandardInputInterface(osil); 
   
  //solve  
  KnitroSolver knitro = new KnitroSolver();   
  OSrI outputInterface = knitro.solve(inputInterface); 
   
  //write and return OSrL 

OSrLWriter osrlWriter = new OSiLWriter(); 
String osrl = osrlWriter.getOutputInterface (outputInterface); 

 }//solve 
   … 
}//class KnitroSolverService 
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 As the Knitro solver is a nonlinear solver, at each iteration, it uses the OS library to 

calculate the function value for the objective (idx = -1) and constraint (idx = 0) functions. 

Knitro does not care how the function values are obtained; at each iteration, it passes the 

variable values ],[ 10 xx to the OS library to get the function values of indexes -1 and 0. So 

nothing changes for the solver either. What has changed are the function calculations inside the 

OS library. Below are some snippet examples of how the OS library does the function 

calculations. The OS library adopts the Objective-oriented philosophy using information 

hiding, inheritance, and most importantly polymorphism as described in detail in §4.1.2.  

First Knitro calls the following method in the OSiLReader class:  
public double calculateFunction(int rowIdx, double x[]){ 

 double dResult = calculateLinearFunction(rowIdx, x) + calculateNonlinearFunction(rowIdx, x); 
 return dResult; 
}//calculateFunction in OSiLReader 

 

Knitro passes in the variable array []x  and the rowIdx, -1 for the objective and 0 for the 

constraint. In the calculateFunction method, there are two parts:  

calculateLinearFunction and calculateNonlinearFunction.  

In the above OSiL example, we list both functions using only nonlinear expressions (<nl>), so 

calculateLinearFunction returns 0. calculateNonlinearFunction then uses 

the a expression tree structure to further calculate the nonlinear function:  
public double calculateNonlinearFunction(int rowIdx, double x[]){ 

         getNonlinearExpressions(); 
         OSExpressionTree exTree = (OSExpressionTree)(m_expressionTrees.get(rowIdx+""));          
         return exTree.calculateFunction(x); 
}//calculateNonlinearFunction in OSiLReader  

The OSExpressionTree is a tree of operation nodes all of abstract type OSnLNode, including 

the root node: m_treeRoot. All concrete nodes that extend the abstract OSnLNode, 

implement the method calculationFunction(double x[]). The line 

exTree.calculateFunction(x) invokes the calculateFunction method on the 

m_treeRoot, which is from the class OSExpressionTree: 

public double calculateFunction(double x[]){ 

return m_treeRoot.calculateFunction(x); 
}//calculateFunction in OSExpressionTree 

In the constraint function the root is minus. The concrete OSnLNode that corresponds to 

minus is OSnLNodeMinus. The m_treeRoot.calculateFunction(x) function 

calls the calculationFunction in OSnLNodeMinus: 
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protected double calculateFunction(double[] x){ 

m_dFunctionValue = m_mChildren[0].calculateFunction(x) - 
m_mChildren[1].calculateFunction(x); 

return m_dFunctionValue; 
}//calculateFunction in OSnLNodeMinus 
OSnLNodeMinus subtracts the value of its second child (of type OSnLNode) from the value 

of its first child (again of type OSnLNode). What happens next is basically a recursive tree 

invocation using the polymorphism idea from Object-oriented Programming (OOP). A similar 

example on polymorphism is also explained in detail in the OOP section (§4.1.2).  

In the objective function the root is sim. The concrete OSnLNode that corresponds to 

sim is OSnLNodeSim. The m_treeRoot.calculateFunction(x) function calls the 

calculationFunction in OSnLNodeSim, which is more complex than 

OSnLNodeMinus:  
protected double calculateFunction(double[] x){ 

//1. get simulation inputs from each <simInput> child of <sim> 
for(int i = 0; i < m_mChildren.length - 1; i++){ 
 OSnLNodeSimInput simInput = (OSnLNodeSimInput)(m_mChildren[i]); 
 String sInputName = simInput.getInputName(); 
 . . .   
} 
//2. construct the OSsL simulation service input   
String sOSsLInput = XMLUtil.writeXMLElementToString(m_osslReader.getRootElement()); 
. . . 
//3. instantiate an OS simulation agent to contact the remote simulation at the URI address 
//and get the result from the simulation service output (in OSsL) 
OSSimulationAgent osSimulationAgent = new OSSimulationAgent(); 
osSimulationAgent.simulationAddress = m_sURI; 
String sOSsLOutput = osSimulationAgent.call(sOSsLInput); 

 // 4. construct the result according to <simOutput> (last child) of <sim> from the returned 
OSsL. 

//We know the result has to be in OSsL format as we called an OS simulation service.  
OSnLNodeSimOutput simOutput = (OSnLNodeSimOutput)(m_mChildren[m_mChildren.length - 

1]); 
OSsLReader osslReader = new OSsLReader(); 
osslReader.readString(sOSsLOutput); 
. . .     
m_dFunctionValue = simOutput.calculateFunction(x); 
. . .  
//5. return function value from the constructed simulation result.  
return m_dFunctionValue; 

}//calculateFunction in OSnLNodeSim 
Five steps are involved in OSnLNodeSim to get the value from the simulation services:  

1. OSnLNodeSim gets simulation inputs from each <simInput> child of <sim>. The value of 

the simInput a is 0x  and the value of the simInput b  is 1x :  

<simInput inputName="a"> 
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 <var idx="0"/> 
</simInput> 
<simInput inputName="b"> 
 <var idx="1"/> 
</simInput> 
 
2. OSnLNodeSim constructs an OSsL input for the sample simulation service using 

the OSsLWriter provided in the OS library. Suppose Knitro Solver passes in 

2.10 =x  and 4.31 =x , the OSsL would look like:  

<OSsL> 
 <input> 
  <el name="a">1.2</el> 
  <el name="b">3.4</el> 
 </input> 
</OSsL> 

3. OSnLNodeSim instantiates an OS simulation agent to contact the remote sample simulation 

service at the URI address. The simulation service output is in OSsL.  

This step is the only step that involves communication. The communication should be 

carried out according to the OScL WSDL documents. OSnLNodeSim delegates an OS 

simulation agent to make the contact to the remote simulation service. The agent hides all the 

networking complexities. When OSnLNodeSim calls the method:   

String sOSsLOutput = osSimulationAgent.call(sOSsLInput); 

four communication steps are involved, which is similar to the 4 solver agent steps described in 

the above OShL section (§7.1). Briefly simulation agent step 1 is encoding of the above 

constructed OSsL input (in 2.); simulation agent step 2 is packing the encoded input and the 

call operation specified in OShL into a SOAP envelope; simulation agent step 3 is sending 

the SOAP envelope over HTTP to the remote simulation service and wait for a response; and 

simulation agent step 4 is decoding the result from the simulation service into a plain OSsL 

format.  

4. OSnLNodeSim retrieves the result according to <simOutput> (last child) of <sim> from the 

decoded OSsL using the OSsLReader provided in the OS library:  
<simOutput outputName="y"/> 

5. OSnLNodeSim returns function value from the constructed simulation result.  

At the simulation side, the simulation service also has to follow the OScL WSDL 

document. The sample simulation service code looks like: 
public class SampleSimulationService { 

 public String call(String ossl){ 
  //read OSsL  
  OSsLReader osslReader = new OSsLReader(); 
  double a = Double.parseDouble(osslReader.getInputByName("a"))   
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  double b = Double.parseDouble(osslReader.getInputByName("b"))   
   
  //run simulation  
  double y = Math.pow((1-b), 2) + 100 * Math.pow(a – b * b);  
 
  //write and return OSsL 

OSsLWriter osslWriter = new OSsLWriter(); 
  String[ ] outputNames = {“y”}; 
  String[ ] outputValues = {y+""}; 

String ossl = osslWriter.setOutput({outputNames, outputValues); 
return ossl; 

}//call 
}//class SampleSimulationService 
As we can see, the sample simulation service implements all the operations required in the 

OShL WSDL document (listed in Table 7-2). There are mainly 3 steps in this operation:  

1. Reading 
OSsLReader osslReader = new OSsLReader(); 

double a = Double.parseDouble(osslReader.getInputByName("a"))   
double b = Double.parseDouble(osslReader.getInputByName("b"))   
The sample simulation service gets the OSsL string and use the OSsLReader class provided 

in the OS library to parse the OSsL instance into a set of input values (double a, b).  

2. running simulation 
double y = Math.pow((1-b), 2) + 100 * Math.pow(a – b * b);  

The sample simulation basically calculates the function 222 )(100)1( bab −+− .  

3. Writing and returning 
OSsLWriter osslWriter = new OSsLWriter(); 
String[ ] outputNames = {“y”}; 
String[ ] outputValues = {y+""}; 
String ossl = osslWriter.setOutput({outputNames, outputValues); 
return ossl; 

The sample simulation service uses the OSsLWriter class provided in the OS library to write 

the OSsL result instance from an array of output names and output values. In our example the 

array sizes are 1, as there is only one output name “y” and one output value y+””. The sample 

simulation service then returns the OSsL result instance. Of course the sample simulation 

service has to make sure the OSsL result instance is valid. By using the OS library to construct 

the OSsL instance, the result should be atomically validated.  

 In the above 3 steps, we see that the sample simulation service does not need to worry 

about how the input OSsL instance received from the internet should be decoded. Neither does 

it need to worry about how to encode and send back the OSsL output to the client. This is 

because the sample simulation service is hosted by an OS Server in the same way that all other 
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OS services are hosted. The OS Server hides all the networking complexities from the solver 

service. We simply put the above sample simulation service code in a file called 

SampleSimulationService.jws and put the file in the os sub-directory relative to the 

OS Server’s public root directory. Since in our example, we host the sample simulation service 

at http://www.ziena.com, thus the service address is 

http://www.ziena.com/os/SampleSimulationService.jws). What the OS Server does is similar 

to the four solver server steps described in the above OShL section (§7.1). Briefly Simulation 

server step 1 is decoding the “SOAP over HTTP request” from the solver client that contains 

the call operation and the OSsL input; Simulation server step 2 is invoking the sample 

simulation service on the call operation with the decoded OSsL input; Simulation server 

step 3 is encoding the OSsL output returned by the sample simulation service into a SOAP 

envelope; and Simulation server step 4 is returning the SOAP envelope over the HTTP 

transport to the client solver.  

This completes the entire simulation “call” process according the Optimization Services 

call Language. All the networking complexities are hidden and taken care by the OS library. 

The OS library also provides parsers to read and write standard instances. All that a solver does 

is to use the OS parser library for reading and writing OSsL instances, delegate the simulation 

agent to call the simulation and get the function value. All that a simulation service does is to 

expose the standard interface, implement all the required operations in the interface listed in 

OScL, let the OS Server take care of the underneath networking, and use the OS parser library 

to read and write OSsL instances.  

 

7.3 Optimization Services flow Language (OSfL) 
 

The OSfL document is at http://www.optimizationservices.org/wsdl/OSfL.bpel. In §5.3, 

we described various Optimization Services processes. OSfL is used to predefine certain 

standard process flows. Unlike most other communication related OSxL’s, OSfL is an XML 

document written in BPEL (Business Process Execution Language [91]). OSfL is an optional 

non-binding specification that is provided as a reference and guidance to facilitate 

implementation of OS components by the developers. Developers do not have to use the 

predefined flows in the OSfL BPEL document. Either they can define their own flow logic or it 

is not even necessary for them to use any flow languages, as the logic of invoking various 

Optimization Services can just be hard coded. It is, however, highly recommended that 

developers look into the BPEL standard when building a state-of-the-art Optimization Services 
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component (e.g. modeling language environment, solver services). Implementing an industry 

standard for orchestrating Optimization Services will not only speed up the development and 

deployment of new optimization processes but will also make the current processes easily 

maintainable. This section gives an overall description with some simple examples. As BPEL 

itself is still a new standard, OSfL will be evolving along with the development of BPEL.  

The business motivation behind a standard Web service flow orchestration is the same 

motivation behind the use of any proprietary EAI (Enterprise Application Integration) [19][76] 

solution: to increase productivity, to reduce costs, and to improve service levels through 

automation. Traditionally the process integration is achieved by hard coding extra embedded 

logic inside of heterogeneous applications such as CRM (Customer Relationship Management), 

ERP (Enterprise Resource Planning) or SCM (Supply Chain Management) and modifying the 

interfaces to make the applications work with each other (Figure 7-6). The development, 

testing, and deployment efforts required for the changes make the entire integration process 

very complex and expensive. 

 

 
Figure 7-6: Traditional process integration.  
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The BPEL specification [90] recently released by OASIS is positioned to be the Web 

services standard for process flow composition. It is the result of a cross-company initiative that 

includes IBM [61], Microsoft [80] and Oracle [94]. In terms of language features, BPEL is a 

convergence of IBM’s Web Service Flow Language (WSFL [63]) and Microsoft’s XLANGE 

[83], which is the orchestration language for Microsoft’s BizTalk server [81]. Both WSFL and 

XLANG are now superseded by BPEL.  Many major companies are starting to provide BPEL 

process engine software that handles flow logics specified in any standard BPEL document. 

Figure 7-7 shows an example of Oracle’s BPEL process engine [94].  

 
Figure 7-7: Oracle’s BPEL process engine. 

 

Optimization Services process orchestration is not as complex as the enterprise business 

process orchestration. Therefore it is much easier for Optimization Service developers to hard 

code and maintain various process logics in their software.  But still some, especially the 

commercial developers, can benefit significantly from the standardized integration interface 

and standardized language for integration and process automation. Optimization processes 

exported to BPEL will be able to execute in a variety of standards-compliant process engines, 

offering customers more choices and the ability to mix and match tools.   

A typical Optimization Services process flow chart that corresponds to the BPEL Input in 

Figure 7-7 is shown in Figure 7-8. The flow chart in the figure corresponds to a flow of solving 

an optimization problem that starts and ends at the modeler’s application side.  
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Figure 7-8: A typical Optimization Services process flow chart.  

 
There can be other kinds of flows. For example, a flow can be as simple as one process. If 

all that a solver service provides involves one single optimization process that receives an OSiL 

input and returns an OSrL output, there is still an advantage in writing the process in a BPEL 

document and letting the BPEL process engine execute the optimization job. The biggest 

advantage is probably that the solver service can use the queuing service provided by the BPEL 

engine. Almost all the BPEL engines provide queuing management service that is independent 

of the queue server implementation the process engines use. The queuing logics as well 

everything else specified in BPEL is language and platform neutral.  

The flow chart of Figure 7-8 would be written in the Optimization Services flow Language 

BPEL document. BPEL provides an open programming abstraction for Optimization Services 

developers to create complex optimization processes, such as service discovery, instance 

analysis, solver hookup, and simulation invocation into an end-to-end process flow. The 

programming abstraction is platform and language independent and fully supports features such 

as Web services invocation, data manipulation, exception handling, activity nesting and 

sequencing, process parallelization and job termination.  
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Another noticeable mechanism in BPEL is its built-in support for asynchronous 

interactions. Early in this section we specified that all the OS communications should use the 

RPC style invocation style. Although RPC is a blocking call based on the request and response 

model, we described how the actual implementation can launch a separate process or thread to 

issue the RPC call so that the user of the application can go on with other tasks. But as a much 

better alternative, the application can build on a BPEL process engine to do the entire job more 

effectively and efficiently. All that the application does is to pass the BPEL process engine the 

standard OSfL BPEL document. As the BPEL language is a universally accepted standard, any 

BPEL process engine, whether from Microsoft or IBM or anywhere else, can take and handle 

exactly the same OSfL input. Different companies may use their own proprietary message 

queuing software to manage the underlying asynchronous interactions, for example MSMQ 

[82] from Microsoft and MQSeries [65] from IBM, but this is all hidden away from the 

standard BPEL input that is passed in.   

Technologically, BPEL leverages on other Web Services standards such as SOAP and 

WSDL for communication interface description. BPEL describes the process interfaces in 

WSDL so that they can be easily integrated into other processes or applications. From a user’s 

point of view, BPEL is just a meta-process that is no different from other single processes and 

it can be invoked like any Web service as shown in Figure 7-9.  

 
Figure 7-9: Calling BPEL process engine as a Web service, which in turn calls various 
Optimization services according to the OSfL BPEL document in Figure 7-8.  
  



 
 
 

233 

 
 
 

Figure 7-10  is a simple anatomy of OSfL shown in BPEL. In reality BPEL documents are 

constructed graphically by BPEL designers such as Microsoft’s Office charting tool Visio.  

 
Figure 7-10: Anatomy of the OSfL BPEL document.  
 
 The BPEL language defines a process by composing a set of existing services that are 

described as a collection of WSDL definitions. The composition (<process> root element) 

indicates how each service interface fits into the overall flow. The <partner> elements are 

basically the component services with which the process interacts. They can either be invoking 

(or client) partners and/or invoked (or server) partners. After defining the <partner> 

elements, we need to logically tie a BPEL process to an existing Web service via the 

<partnerLink> element. Every Web service used in a BPEL process requires a 

<partnerLink> describing which set of Web service operations (<portType> elements) 

PartnerLink 
References to the Optimization 
services participating in the process 
flow and their role/port types 

Partners 
Component Optimization Services that 
interact with this process 

Variables 
List of messages exchanged between the 
optimization process and each of the 
participating Optimization Services 

Optimization
Services 
Flow Logic 

Include WSDL definitions  
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is used in the BPEL process. After all the logic links are specified, <partner> elements are 

then used in the activities (e.g. <invoke>, <receive>). the <variable> elements are 

used to specify the list of messages that are exchanged between the BPEL processes and any 

participating.  

Each step in the process is called an activity. Activities can include invoking a service 

(<invoke>, Figure 7-10), receiving a message from a client (<receive>, Figure 7-10), 

generating a reply to the client (<reply>), waiting for some time (<wait>), copying data 

(<assign>), throwing an exception (<throw>), catching and handling exceptions 

(<scope>, <faultHandlers>, <catch>), handling events (<eventHandlers>), 

compensating actions for certain irreversible actions (<compensation>), terminating a 

process (<terminate>) or doing nothing (<empty>). These are called primitive activities as 

they can be combined into more complex activities through some structure elements such as 

<sequence> for ordering, <switch> for branching, <while> for looping, <pick> for 

selection, <flow> parallelization, and <link> for parallelization order constraints.   
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CHAPTER 8 OPTIMIZATION SERVICES REGISTRY 
The address of the OS registry service is:   

http://www.optimizationservices.org/os/OSRegistryService.jws. 

To locate services in a decentralized serviced-oriented distributed system, software agents 

coordinate with each other and with registries. Some registries are general ones that keep 

information of all kinds of Web services, such as Universal Description, Discovery and 

Integration (UDDI, §4.8). Others are specialized ones like the Optimization Services registry 

that only serves registration and discovery of Optimization Services.  

The OS registry knows all the registered services (solvers, analyzers, simulations) on the 

OS network by keeping their metadata information. “Metadata” means that the registry contains 

information about the software, but not the software itself. The OS registry can be viewed as a 

“light” weight server in that no registered services are actually executed by this registry; instead 

clients directly contact the services in a peer-to-peer mode (Figure 8-1).  

 
Figure 8-1: The optimization registry architecture. 

The fundamental differences between an optimization server and the OS registry have 

been explained in §2.5. The advantages of a decentralized Service-oriented architecture (§4.6) 

have been elaborated throughout the thesis. It is our vision that a decentralized architecture can 

better promote research and development in optimization. 

The Optimization Services registry serves the function of a search engine. But unlike the 

Internet search engines, there has to be a unique registry on the entire OS network to ensure 

Quality of Service (see §1.2.4). The OS registry operators make sure (e.g. through 

advertisement) that all communication agents know or can easily find out where the OS registry 

is. When a certain query is sent to the OS registry from a client, the OS registry returns the 

locations of the matched OS services and the client contacts each service directly at the 

provided location. On the opposite side of the “discovery” process is the “join” process. It is the 
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OR software developer’s responsibility to submit the required information to, and get approved 

by, the OS registry, possibly through a mixture of automatic and manual procedures. The 

fundamental differences between Internet search engines and the OS registry have been 

explained in §1.2 and §2.5.  

In terms of standardization, OS-registry related protocols do not face as much imminent 

pressure of universal acceptance as the non-registry related protocols. There is only one public 

registry on the entire Internet and there are much fewer registry developers compared with the 

other OS developers. In the following sections, we more descriptively illustrate the registry-

related protocols using an example of the “Impact” solver service in order to give a general idea 

of how we designed our OS registry. There are mainly two categories of registry-related OSP 

protocols; one deals with representation (OSeL, OSpL, OSbL, OSyL, OSqL, OSuL) and the 

other deals with communication (OSjL, OSkL, OSdL, OSvL); all the 10 sub-protocols are 

explained in the following sections of this chapter.   

To ensure that the OS registry only sends addresses of the services (especially solvers) that 

are of reasonably high quality, regulations are imposed when an OS-compatible service is to be 

registered in the OS registry. The following three OSP protocols are designed to make sure a 

solver is and continues to be well-described, live, reliable, and robust. Information about 

registered services in the OS registry includes three main categories:  

1. Entity information that is reported by service developers at registration, e.g. service and 

owner information, solver or simulation types and service locations. We call this category 

of information “entity” information to emphasize the information is relatively static. This is 

addressed by the Optimization Services entity Language (§8.1).  

2. Real-time process information that is either reported by the registered service (“push”) or 

detected by the OS registry (“pull”), e.g. how many optimization jobs are at the service 

server. We call the information “process” information to emphasize the information is 

dynamic. This is addressed by the Optimization Services process Language (§8.2).  

3. Benchmark information that is gathered separately by auxiliary benchmarker tools 

designated by the OS registry, e.g. general solver ratings and performance profiles. This is 

addressed by the Optimization Services benchmark Language (§8.3).  

All the three types of information are kept in an XML database of the OS registry. As the OS 

registry is an open registry, to facilitate communication (especially discovery) with the registry, 

the structure and contents of the OS database are made public just like a yellow pages directory. 

The structure and contents in the OS database are addressed by Optimization Services yellow-

page Language (§8.4). The other sections deal with various interactions with the OS registry.  
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8.1 Optimization Services entity Language (OSeL, representation) 
The OSeL schema is located at http://www.optimizationservices.org/schemas/OSeL.xsd. 

OSeL is an XML specification of entity information used to describe the static information of 

an optimization service. However, to register a service, the registrant usually goes to the 

Optimization Services registry Web site to fill out the form shown in Figure 8-2. Of course the 

registrant can also submit the OSeL description directly.   

 
Figure 8-2: Optimization Services registration form.  
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Notice the 6 main categories are circled in the figure: service information, owner information, 

optimization (or simulation) type, service access, service options (e.g. algorithm directives) and 

links to other places. When the registrant clicks the submit button, the entered data is organized 

into an OSeL file and sent to the OS registry using the communication specified by the OSjL 

(Optimization Services join Language, §8.5) WSDL document.  

 An OSeL XML example of a hypothetical “Impact” GMIP solver service looks like the 

following, with the 6 major categories highlighted:  
<?xml version="1.0" encoding="UTF-8"?> 

<OSeL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSeL.xsd"> 
 <service> 
  <uri>http://www.impactservice.net/impactGMIP.jws</uri> 
  <name>Impact Generalized Mixed Integer Solver</name> 
  <category>solver</category> 
  <type>education</type> 
  <publicationDate>2005-04-06</publicationDate> 
  <abstract>Generalized mixed integer nonlinear convex solver</abstract> 
  <description> 
   <general>ImpactGMIP is a  generalized mixed integer nonlinear convex solver</general> 
   <software>Impact </software> 
   <hardware>Pentium Intel 4, Dell, Linux Enterprise </hardware> 
   <algorithm>natural heuristic way of geenerating braching hyperplanes</algorithm> 
   <other>developer: Wayne Sheng</other></description> 
  <webPage>http://www.impactservice.net/impactGMIP.html</webPage> 
  <wsdlLocation>http://www.impactservice.net/impactGMIP.jws?wsdl</wsdlLocation> 
  <logoImageLink uri="http://www.impactservice.net/images/impactGMIP.jpeg">impact 
GMIP</logoImageLink> 
  <keyWords><key>mixed integer nonlinear programming</key><key>Interior Point 
Methods</key></keyWords> 
 </service> 
 <owner> 
  <name>Impact</name> 
  <primaryType>education</primaryType> 
  <mainWebPage uri="http://www.impactservice.net">Impact</mainWebPage> 
  <description>Impact is for Inegrated Math Programming Advanced Computational Tool</description> 
  <logoImageLink uri="http://www.impactservice.net/images/impact.jpeg">Impact</logoImageLink> 
  <contact> 
   <name>Sanjay Mehrotra</name><title>Professor</title> 
   <address>IEMS, Northwestern University, 2145 North Sheridan Road, Evanston, IL 60208-3119 
</address> 
   <phone>8474913155</phone><fax>8474918005</fax><email>mehrotra@iems.northwestern.edu 
</email> 
   <webPage uri="http://users.iems.nwu.edu/~mehrotra/">Mehrotra's Web page</webPage> 
  </contact> 
 </owner> 
 <optimizationType> 
  <objectiveType>singleObjective</objectiveType> 
  <variableType>mixedInteger</variableType> 
  <constraintType>generalRange</constraintType> 
  <linearity><objective>convexNonlinear</objective> 
<constraints>convexNonlinear</constraints></linearity> 
  <differentiability> 
   <objective>twiceDifferentiable</objective> 
   <constraints>twiceDifferentiable </constraints></differentiability> 
  <parameterType><real/></parameterType> 
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  <functionType><general/></functionType> 
  <specialStructure/> 
  <specialAlgorithm/> 
 </optimizationType> 
 <serviceAccess commercial="false" freeAccess="true" freeResult="true"> 
  <licenseType licenseIDRequired="false"/> 
  <limit><maxVariables>1000000</maxVariables> 
       <maxBinaryVariables>1000</maxBinaryVariables> 
       <maxIntegerVariables>500</maxIntegerVariables> 
       <maxConstraints>1000000</maxConstraints><maxObjectives>1</maxObjectives> 
  </limit> 
 </serviceAccess> 
 <serviceOptionsAndDefaultValues> 

 <general serviceName="Impact Generalized Mixed Integer Solver"  
      serviceAddress="http://www.impactservice.net/impactGMIP.jws"> 

   <maximumTime value="6000"/>   
  </general> 
  <other optionName="preprocess" value="true">preprocessing before solving it</other> 
  <other optionName="arbitraryPreciseness" value="false">Algorithm based on arbitrary precise 
numbers</other> 
 </serviceOptionsAndDefaultValues> 
 <links> 
  <people> 
   <link uri="http://users.iems.nwu.edu/~maj/">Jun Ma</link> 
   <link uri="mailto://h-sheng@northwestern.edu">Wayne Sheng</link> 
  </people> 
  <references><link uri="http://www.optimizationservices.org">Optimization Services</link></references> 
  <otherServices><link uri="http://www.impactservice.net/impactLP.jws">Impact 
LP</link></otherServices> 
 </links> 
</OSeL> 
The OSeL schema of the example and its 6 children are shown in Figure 8-3.  
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Figure 8-3: <OSeL> root element in OSeL and it 6 main category elements.  

 
The 6 major “category” elements are listed around the <OSeL> element schema in the figure. 

The <service> element gives the information about the registered Optimization Service. 

Each OSeL document is identified by a unique uri, the first child element of <service>; 

this is where the service should be invoked. <owner> provides information about the people 

or companies who register the service. The  <optimizationType> (or 

<simulationType>)  element provides optimization (or simulation) related descriptions. 

Notice OSeL does not categorize an optimization solver by a specific type; rather it breaks 

down the type into several subtypes that include objectiveType, variableType, 

constraintType, linearity, parameterType, functionType, 

specialStructure, and specialAlgorithm. OSeL does not intend to combine the 

various sub-types into a specific type (e.g. mixed integer, linear, deterministic solver). As each 

subtype contains many values, the number of combinations can be extremely large and leads to 

poor scalability in practice. The <simulationType> element is relatively simple, and 

contains information about a simulation’s input and output size and format (in OSsL, §6.7) and 
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whether it is deterministic or stochastic. The <serviceAccess> element contains 

information about whether the service is commercial, whether it is free to access, and whether 

the result is free to retrieve. It also contains the limits (if any) of using the service in terms of 

the problem size (e.g. maximum variable number). The 

<serviceOptionsAndDefaultValues> element lets the service registrant list the 

software options and default values in Optimization Services option Language (OSoL, §6.5). 

The <links> element allows linking to relevant people, references and other services.  

 

8.2 Optimization Services process Language (OSpL, representation) 
The OSpL schema is located at http://www.optimizationservices.org/schemas/OSpL.xsd. 

Besides static OSeL entity information, the Optimization Services registry also keeps dynamic 

process information (such as number of jobs being solved) using Optimization Services process 

Language. Unlike the OSeL information that is submitted at registration, OSpL information is 

collected at run time. During runtime, the Optimization Services registry periodically “knocks” 

on the registered services (Optimization Services knock Language, §8.6) to make sure they are 

live and running and to collect the OSpL information. It is also possible that the services 

themselves push the OSpL information to the OS registry.  

The decentralized Optimization Services system leaves open the question of how 

optimization “jobs” are scheduled to run on available solver services. Centralized schemes, 

such as that used by the NEOS server, may maintain one queue for each solver/format 

combination, along with a list of the workstations on which each solver can run. In 

Optimization Services, we want to maintain this scheduling control, while at the same time 

making the scheduling decisions more distributed. Optimization Services process Language can 

play an important role in dynamic optimization scheduling in a decentralized environment.  

An OSpL example of the “Impact” GMIP solver service looks like the following: 
<?xml version="1.0" encoding="UTF-8"?> 

<OSpL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSpL.xsd"> 
 <serviceURI>http://www.impactservice.net/impactGMIP.jws</serviceURI> 
 <serviceName>Impact Generalized Mixed Integer Solver</serviceName> 
 <time>2004-04-17T15:50:04Z</time> 
 <status busy="true" accepting="true">The server is currently busy but can still accept new jobs</status> 
 <statistics> 
  <totalJobs>3</totalJobs>        
  <timeLastJobSolved>2004-04-17T15:32:12Z</timeLastJobSolved> 
  <timeLastJobTaken>13.5</timeLastJobTaken> 
 </statistics> 
</OSpL> 
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The OSpL schema of the example and its 6 children are shown in Figure 8-4.  

 
Figure 8-4: <OSpL> root element in OSpL.  

In an <OSpL> element, <serviceURI> and <serviceName> should be the same as 

those listed in the registry. As OSpL is about dynamic information, the <time> element shows 

how recent the process information is. The time should be of the XML schema xs:date 

format. We require using the standard UTC time (Coordinated Universal Time, or sometimes 

called “Greenwich Mean Time”) as services can be distributed all over the world. In the above 

“Impact” example (2004-04-17T15:50:04Z), we append the letter “Z” at the end according to 

the xs:date format to show that the time is UTC time. The <status> element has two 

boolean attributes, busy and accepting. In the above example, although the Impact solver 

service is busy, the service still accepts new optimization jobs. Currently the <statistics> 

element contains three children, <totalJobs>, <timeLastJobSolved> and 

<timeLastJobTaken>. The <totalJobs> element is the total number of jobs currently 

at the service that are being solved or waiting to be solved. timeLastJobSolved is the time 

the last job is solved, again using UTC time in the xs:date format. timeLastJobTaken is 

the time in minutes the last job took. The OS registry collects the status and statistics 

information for various purposes such as service benchmarking, better scheduling and future 

research.   

8.3 Optimization Services benchmark Language (OSbL, 

representation) 
The OSbL schema is located at http://www.optimizationservices.org/schemas/OSbL.xsd. 

OSbL is a specification of benchmark information on each optimization service. OSbL is the 

third and last piece of information (along with OSeL and OSpL in the previous two sections) 
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that the OS registry keeps. The OS registry publishes all the three pieces of information on its 

corresponding Web site.  

The availability of more than one service (especially solvers) for many classes of problems 

makes the OS registry an obvious choice as a benchmarking facility. It can potentially be useful 

both in choosing a solver for a particular application and in comparing solvers generally. One 

certain thing is that the benchmarking should be independent of any claims or statistics made 

by individual service providers. 

There are significant barriers to achieving these potentials, however, which motivate some 

derived research. Someone who has developed a new model, but who is not sure which of the 

several applicable solver services to apply, is often advised that the only way to be sure is to 

carry out some test runs on typical problem instances. The straightforward way to do this is to 

send several test instances to each candidate solver service. But benchmarking on only a few 

related instances can be misleading. Furthermore, if different services are not on comparable 

machines under comparable conditions, the results may say little about the relative efficiency of 

the solver algorithms. The results may say more about the reliability of the solver services, but 

even so they may be distorted by differences in the memory available on the workstations 

devoted to different solver services, or by differences in limits imposed by the providers of 

services. There is not necessarily any obvious way to compensate for the differences between 

runs, moreover, because in general each solver service may be selected by the OS registry 

according to the load at the time a job is submitted. Deciding on an appropriate benchmarking 

methodology is related to other concurrent researches at NEOS; see [30] [31] and the NEOS 

benchmark solver at:   

http://www-neos.mcs.anl.gov/neos/solvers/MULTI:BENCHMARK-AMPL/  

The Performance World Forum from GAMS World at 

http://www.gamsworld.org/performance/  is also good site for discussion and dissemination of 

information and tools about all aspects of performance testing of solvers for mathematical 

programming problems. Possible collaboration on Optimization Services benchmarking can be 

established with these concurrent project.  

For all the aforementioned issues, OSbL uses a relatively safe rating system based on a set 

of performance scores on the base of 100 as shown in the OSbL schema in Figure 8-5.  
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Figure 8-5: <OSbL> root element in OSbL.  

 In an <OSbL> element, <serviceURI> and <serviceName> should be the same as 

those listed in the registry. There is a general <comment> given by the OS registry for extra 

explanation. Besides the first <overall> child score element, the <scores> element also 

contains scores on a set of sub-criteria, such as software, hardware, and support. Besides the 

scores, the <statistics> element is for extra references; the data on averageJobs and 

averageWaitTime are based on the totalJobs, timeLastJobSolved and 

timeLastJobTaken data in the OSpL information (Figure 8-4). An example of the 

“Impact” solver service is shown below: 
<?xml version="1.0" encoding="UTF-8"?> 

<OSbL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSbL.xsd"> 
 <serviceURI>http://www.impactservice.net/impactGMIP.jws</serviceURI> 
 <serviceName>Impact Generalized Mixed Integer Solver</serviceName> 
 <comment>An outstanding solver service!</comment> 
 <scores> 
  <overall>90</overall> 
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  <expertAssessment>100</expertAssessment> 
  <userAssessment>95</userAssessment> 
  <service>85</service> 
  <owner>100</owner> 
  <computation>100</computation> 
  <hardware>50</hardware> 
  <software>100</software> 
  <reputation>95</reputation> 
  <popularity>75</popularity> 
  <support>83</support> 
 </scores> 
 <statistics> 
  <averageJobs>1.34</averageJobs> 
  <averageWaitTime>1.5</averageWaitTime> 
 </statistics> 
</OSbL> 

 

8.4 Optimization Services yellow-page Language (OSyL, 

representation) 
The OSyL schema is located at http://www.optimizationservices.org/schemas/OSyL.xsd. 

At the core of our Optimization Services registry is a database, and we use a more expressive 

XML-based native database as versus a relational database. The organization of the native 

XML database is specified by Optimization Services yellow-page Language (OSyL).  

One  immediate benefit of using a native XML database is that we do not have to worry 

about mapping XML to some other data structure. We just insert the data (e.g. OSeL) as XML 

and retrieve it as XML. We also gain a lot of flexibility through the semi-structured nature of 

XML and the schema independent model used by all of the XML-enabled database engines. 

Most of the native XML databases are also open source and of production quality. The OS 

registry, by its nature as storage for registered Optimization Services, is much smaller 

compared with large enterprise databases used in daily production and operations, therefore a 

native XML database should fit the OS registry both in terms effectiveness and efficiency.  

Another main advantage is that the database information of the OS registry, i.e. the OSyL 

file, can easily be made open and published on the OS registry’s Web site for public reference. 

Since the OSyL file is in XML, the client can use the standard XQuery language discussed in 

§4.4 to retrieve any information, specifically the location of a desired service. Using XQuery to 

query the database is a built-in function in the Optimization Services query Language (OSqL, 

§8.7). For more overview of XML databases, see [6][36]. 

With the information of OSeL, OSpL, and OSbL discussed in the previous three sections, 

the schema of OSyL looks extremely simple as shown in Figure 8-6. After the first 

<description> element for a general database description and the second <news> element for 
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latest OS registry database news, OSyL is then a sequence of [OSeL, OSpL, OSbL] triplets, 

with each triplet corresponding to a service. OSeL (entity, required) is submitted at 

registration time; OSpL (process, optional) is collected at run time, and (OSbL, optional) is 

inserted after benchmarking by the OS registry or its designated benchmarker.  

 
Figure 8-6: <OSyL> root element in OSyL.  

 

A rough sketch of the OSyL is shown below: 

 

 

 

 
<?xml version="1.0" encoding="UTF-8"?> 

<!--Sample XML file generated by XMLSPY v2004 rel. 3 U (http://www.xmlspy.com)--> 
<OSyL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSyL.xsd"> 
 <description> 
  OS registry is a native XML data base.  
   It contains a sequence of service, each consisting of a triplet (OSeL, OSpL, OSbL).  
  </description> 
 <news> 
  <el date="2005-04-06">Impact Generalized Mixed Integer Solver joins the OS registry</el> 
  <el date="2005-03-29">Ziena Knitro Service joins the OS registry</el> 
  <el date="2005-02-27">Lindo MINLP Service joins the OS registry</el> 
 </news> 
 <service> 
  <OSeL> 
   <service> 
    <uri>http://www.impactservice.net/impactGMIP.jws</uri> 
    <name>Impact Generalized Mixed Integer Solver</name> 
   </service> 
   ... 
  </OSeL> 

beginning

services
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  <OSpL> . . .  </OSpL> 
  <OSbL>  . . . </OSbL> 
 </service> 
 <service> 
  <OSeL>  . . . </OSeL>  
  <OSpL> . . .  </OSpL> 
  <OSbL> . . .  </OSbL> 
 </service> 
 <service> 
  <OSeL>  . . . </OSeL>  
  <OSpL> . . .  </OSpL> 
  <OSbL> . . .  </OSbL> 
 </service> 
 . . . 
 . . .  
</OSyL> 

8.5 Optimization Services join Language (OSjL, communication) 
 

The OSjL document is located at http://www.optimizationservices.org/wsdl/OSjL.wsdl. 

OSjL is a WSDL description of how an optimization service can join the OS registry. As 

described from §8.1 to §8.3, there are three pieces of information the OS registry keeps. But 

service providers only need the OSeL (entity) information to join the OS registry. The OSpL 

(process) information and the OSbL (benchmark) information are collected later.  

But as discussed in §8.1, to register a service, the registrant usually goes to the 

Optimization Services registry Web site to fill out the form as shown in Figure 8-2. When the 

registrant clicks the submit button, the entered information is automatically organized into an 

OSeL file and sent to the OS registry using the communication specified by the OSjL WSDL 

document. The registrant can also directly submit the OSeL using the OSjL communication.  

To make the join communication, both the client registrant and the OS registry have to 

follow the rules (operations, protocols, etc.) specified in the OSjL.wsdl document. The 

communication is just like the communication between a modeler and a solver using the OShL 

WSDL document discussed in §7.1. The OS registry is just another Optimization Service based 

on Web services and the SOAP protocol. It is hosted by an OS Server in the same way that all 

other OS services are hosted by their individual OS servers. So the underlying networking 

process includes the similar four client steps (encoding, SOAP envelope construction, 

sending/receiving, and decoding) and the similar 4 server side steps (decoding, invoking, 

encoding, and returning), as detailed in the OShL and OSsL sections in Chapter 7.    

Figure 8-7 shows the interface part of the OSjL WSDL document. The other part (protocol) of 

the WSDL document, like all other OSxL WSDL documents, uses the same specifications as 

OShL shown in Figure 7-3; the reason is explained in the beginning of Chapter 7 and also in 
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the OShL section (§7.1). Briefly the networking protocol has to be “SOAP over HTTP” with an 

RPC style call; the input and output encoding has to be the standard SOAP encoding. The 

service address of the OS registry is shown at the beginning of this chapter.  

 

 
Figure 8-7: Illustration of OSjL (interface part); other parts are the same as OShL in Figure 7-3.  

 

The <wsdl:portType> element in Figure 8-7 has only one operation whose name is 

join. The join operation’s input is required to be of message type “joinRequest” and its 

output is required to be of message type “joinResponse.” The joinRequest message 

has one part element (i.e. one argument), osel, which is of string types. Simply put, the 

WSDL document in Figure 8-7 specifies the following single operation: 

 String join(String osel);  

that is, the OS registry service has a method called “join” that takes one input string and 

returns one string. The input string has to follow the OSeL schema (§8.1). The output string has 

to follow the OStL schema (§6.8), which is a transformation style sheet returned by the OS 

registry. If a service is registered in the OS registry and the service provider also wants to 

publish the standard service entity information (OSeL) on his own Web site, it is required that 

he publishes the information using the OStL style sheet for uniform look and feel on the OS 
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network. In Table 8-1, we list the operations specified in the OSjL WSDL document (currently 

only one).  

 
Operation Description 

String join (String) 1st input is an OSeL instance for service entity information. 
Output is an OStL style sheet for individual publication. 

Table 8-1: Operations in OSjL (currently only one). 
  

The OSjL process is exactly what happens when the registrant clicks the submit button of 

Figure 8-2. The OSeL information, however, may not be immediately published by the OS 

registry, as the joining process may involve manual processes, such as human review and 

approval for quality assurance.  

 

8.6 Optimization Services knock Language (OSkL, communication) 
The OSkL document is located at http://www.optimizationservices.org/wsdl/OSkL.wsdl. 

OSkL is a WSDL description of how the OSpL (process) information (§8.2) is collected at run 

time by the OS registry. When the OS registry “knocks” on an Optimization Service, the 

Optimization Service is required to respond with the current run time process information.   

To make the knock communication, both the client (the OS registry) and the service 

(usually a solver service) have to follow the rules specified in the OSkL.wsdl document. The 

communication is just like the communication between a modeler and a solver using the OShL 

WSDL document discussed in §7.1 and any other OSxL client-service style communication on 

an OS network, with the same underlying networking process described in the previous 

sections and chapters.   

Figure 8-8 shows the interface part of the OSkL WSDL document. The other part 

(protocol) of the WSDL document, like all other OSxL WSDL documents, uses the same 

specifications as OShL shown in Figure 7-3; the service address of the OS registry should be 

empty.   
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Figure 8-8: Illustration of OSkL (interface part); other parts are the same as OShL in Figure 7-3.  

The <wsdl:portType> element in Figure 8-8 has only one operation whose name is 

knock. The knock operation’s input is required to be of message type “knockRequest” 

and its output is required to be of message type “knockResponse.” The knockRequest 

message does not have any part (no arguments). Simply put, the WSDL document in Figure 8-8 

specifies the following single operation: 

String knock(); 

that is, all the services are required to implement a method called “knock” that takes no 

arguments and returns one string. The output string has to follow the OSpL schema (§8.2). 

When a client agent “knocks” on a service, the service is required to return the current process 

information. In Table 8-2, we list the operations specified in the OSkL WSDL document 

(currently only one).  
Operation Description 

String knock () No input. 
Output is an OSpL string  for process information. 

Table 8-2: Operations in OSkL (currently only one). 
  

So a solver or analyzer service should not only implement all the methods required by 

OShL (§7.1), such as String solve(String osil) and 

retrieveResult(String jobID), but also add the extra method String knock() 

required by OSkL.   

 



 
 
 

251 

 
 
 
 

8.7 Optimization Services query Language (OSqL, representation) 
The OSqL schema is located at http://www.optimizationservices.org/schemas/OSqL.xsd. 

OSqL is a specification of the query language format used to discover the optimization services 

in the OS registry. The OS registry returns the locations of the solvers that match the OSqL 

query in OSuL (Optimization Services uri Language, §8.8). 

 In the OS registry implementation, an OSqL query is converted to an XQuery (§4.4) that is 

executed against the XML database (OSyL, §8.4) in the registry. The OSyL based XML 

database is open and published on the OS registry’s Web site for public references. Since the 

OSyL file is in XML, the client can directly use the XQuery language to retrieve any 

information. Using XQuery language to query the database is a built-in feature of OSqL. The 

second feature OSqL provides is support for Optimization Services analysis Language (OSaL, 

§6.6). If the query client has already had an OS analyzer analyze the problem instance and 

obtained the analysis result in OSaL, the client can embed the OSaL in the OSqL instance and 

the OS registry will try its best in trying to find the most appropriate solver services. The third 

feature OSqL provides is some predefined standard information structured according to the 

entity information (OSeL, §8.1), process information §8.2) and benchmark information (§8.3). 

The OSqL schema is shown in Figure 8-9.  
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Figure 8-9: <OSqL> root element in OSqL and descriptions of its immediate children.  

 

The three children (<standard>, <analysis>, and <XQuery>) of <OSqL> 

correspond to the three ways of query discussed above and they can be mixed with each other. 

The following is an example using XQuery to discover the URIs of solver services that solve 

optimization problems with convex nonlinear objective functions:  
 <?xml version="1.0" encoding="UTF-8"?> 

<OSqL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSpL.xsd"> 
 <XQuery> 
  for  $a in OSeL where $a/optimizationType/linearity/objective = 'convexNonlinear' return $a/service/uri 
 </XQuery> 
</OSqL> 
 
The next example mixes the above XQuery with an OSaL analysis element:  

no sequence 
imposed 
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<OSqL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSpL.xsd"> 
 <XQuery> 
  for  $a in OSeL where $a/optimizationType/linearity/objective = 'convexNonlinear' return $a/service/uri 
 </XQuery> 
 <OSaL> 
  <programDescription> 
   <numberObjectives num="1"> 
    <linear num="0"/> 
    <quadratic num="0"/> 
    <nonlinear num="1"/> 
    <networkAndGraphProblem num="0"/> 
   </numberObjectives> 
   <numberConstraints num="12"> 
    <linear num="4"> 
     <equality num="1"/> 
     <inequality num="1"/> 
     <range num="2"/> 
    </linear> 
    <quadratic num="8"> 
     <equality num="0"/> 
     <inequality num="0"/> 
     <range num="0"/> 
    </quadratic> 
    <nonlinear num="8"> 
     <equality num="3"/> 
     <inequality num="4"/> 
     <range num="1"/> 
    </nonlinear> 
   </numberConstraints> 
   <numberVariables num="12"> 
    <continuous num="3"/> 
    <integer num="9"/> 
    <binary num="0"/> 
    <string num="0"/> 
   </numberVariables> 
  </programDescription> 
  <programDataAnalysis> . . . </programDataAnalysis> 
 </OSaL> 
</OSqL> 

Since there are some nonlinear constraints and some integer variables in <analysis>, the OS 

registry will likely find a mixed integer nonlinear solver’s location for the client.  

The third feature OSqL provides is some predefined query structures under the 

<standard> child. As can be seen in Figure 8-9, the <standard> element contains three 

elements, <entity>, <process>, and <benchmark>. Each element schema is listed in 

the same figure as the <OSqL> element. Compare them with the OSeL (Figure 8-3), OSpL 

(Figure 8-4) and OSbL (Figure 8-4) schemas. They are very similar; basically the predefined 

elements under <entity>, <process>, and <benchmark> are a subset of those in OSeL, 

OSpL, and OSbL with some modifications.  

For example the following example mixes the above XQuery with the <standard> 

element to find a service that contains the keyword “interior point methods” and “convex 

programming” and whose variable type is “mixedInteger.”  
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<OSqL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSpL.xsd"> 

 <standard> 
  <entity> 
   <service> 
    <keyWords><key>interior point method</key><key>convex programming</key></keyWords> 
   </service> 
   <optimizationType> 
    <variableType>mixedInteger</variableType> 
   </optimizationType> 
  </entity> 
 </standard> 
 <XQuery> 
  for  $a in OSeL where $a/optimizationType/linearity/objective = 'convexNonlinear' return $a/service/uri 
 </XQuery> 
</OSqL> 

However the elements under <entity>, <process>, and <benchmark> are not 

without modifications from those in OSeL, OSpL, and OSbL. For example, the “relation” 

attribute is added on several elements to define matching types. For numeric data, the relation 

can be “geq”, “leq”, or “eq.” For string data (especially long ones like descriptions), the relation 

can be “contains” or “same.” For example the following example finds all the services whose 

publication date are before (relation=”leq”) 2005-03-14 and whose abstract contains 

(relation=”contains”) each of the three words “interior point method.”  
<OSqL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSpL.xsd"> 

 <standard> 
  <service> 
   <publicationDate relation="leq">2005-03-14</publicationDate> 
   <abstract relation="contains"> interior point method</publicationDate> 
  </service>   
 </standard> 
</OSqL> 
 

8.8 Optimization Services uri Language (OSuL, representation) 
The OSuL schema is located at http://www.optimizationservices.org/schemas/OSuL.xsd. 

OSuL is a specification of the discovery result (in URI) sent back from the OS registry. OSuL 

is the opposite of the OSqL query (§8.7) in the discovery process. Based on the OSqL instance, 

the OS registry returns the locations of the services that match the query.   

The OSuL schema is shown in Figure 8-10 .  
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<?xml version="1.0" encoding="utf-8"?> 
<xs:schema targetNamespace="os.optimizationservices.org" xmlns:xs="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="os.optimizationservices.org" 
elementFormDefault="qualified"> 
 <xs:element name="OSuL" type="OSuL"/> 
 <xs:complexType name="OSuL"> 
  <xs:sequence> 
   <xs:element name="uri" minOccurs="0" maxOccurs="unbounded"> 
    <xs:complexType> 
     <xs:attribute name="match" use="optional" default="exact"> 
      <xs:simpleType> 
       <xs:restriction base="xs:string"> 
        <xs:enumeration value="exact"/> 
        <xs:enumeration value="moregeneral"/> 
        <xs:enumeration value="approximate"/> 
        <xs:enumeration value="guess"/> 
       </xs:restriction> 
      </xs:simpleType> 
     </xs:attribute> 
    </xs:complexType> 
   </xs:element> 
  </xs:sequence> 
 </xs:complexType> 
</xs:schema> 

Figure 8-10: <OSuL> root element in OSpL. 

  

<OSuL> is simply a sequence of 0 (if no matches) or more <uri> children. Each <uri> 

has an optional match attribute and by default it is an “exact” match of the services. The OS 

registry may return service locations of other match types such as “moreGeneral,” 

“approximate,” and “guess.” An example of the “moreGeneral” case is a nonlinear 

solver service for a linear program. An example of the “approximate” case is a convex 

nonlinear solver service for an almost convex nonlinear program. An example of the “guess” 

case is when there is not enough information in OSqL.  In general the OS registry returns the 

URI locations ordered by fitness, with the best and exact matches in the beginning. An example 

of the OSuL discovery result may look like the following:   
<?xml version="1.0" encoding="UTF-8"?> 

<OSuL xmlns="os.optimizationservices.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="os.optimizationservices.org http://www.optimizationservices.org/schemas/OSuL.xsd"> 
 <uri>http://www.abc.com/lpsolver.jws</uri> 
 <uri match="exact">http://www.edf.net/lpsolverservice.vb</uri> 
 <uri match="moreGeneral">http://www.ghij.org/mpservice.cs</uri> 
 <uri match="approximate">http://www.klmn.gov/os/nlpsolver.jws</uri> 
 <uri match="guess">http://www.klmn.gov/os/minlpsolver.py</uri> 
</OSuL> 
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8.9 Optimization Services discover Language (OSdL, 

communication) 
The OSdL document is located at http://www.optimizationservices.org/wsdl/OSdL.wsdl.  

OSdL is a WSDL description of how a client sends the OSqL (query) information (§8.7) to the 

OS registry and discovers matched registered Optimization Services.  

To make the discover communication, both the client and the OS registry have to follow 

the rules specified in the OSdL.wsdl document. The communication is just like any other 

OSxL client-service style communication on an OS network, with the same underlying 

networking process described in the previous sections and chapters.   

Figure 8-11 shows the interface part of the OSdL WSDL document. The other part (protocol) 

of the WSDL document, like all other OSxL WSDL documents, uses the same specifications as 

OShL shown in Figure 7-3. The service address of the OS registry is shown at the beginning of 

this chapter. 

 
Figure 8-11: Illustration of OSdL (interface part); other parts are the same as OShL in Figure 7-3.  

 

The <wsdl:portType> element in Figure 8-11 has only one operation whose name is 

discover. The discover operation’s input is required to be of message type 

“discoverRequest” and its output is required to be of message type 
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“discoverResponse.” The discoverRequest message has one part element (i.e. one 

argument), osql, which is of string type. Simply put, the WSDL document in Figure 8-11 

specifies the following single operation: 

String discover(String osql); 

that is, the OS registry service implements a method called “discover” that takes one input 

string and returns one string. The input string has to follow the OSqL schema (§8.7). The 

output string has to follow the OSuL schema (§8.8). In Table 8-3, we list the operations 

specified in the OSdL WSDL document (currently only one).  

 
Operation Description 

String discover (String) 1st input is an OSqL query instance. 
Output is an OSuL for service URI locations.  

Table 8-3: Operations in OSdL (currently only one). 
  

8.10 Optimization Services validate Language (OSvL, communication) 
The OSvL document is located at http://www.optimizationservices.org/wsdl/OSvL.wsdl. 

Besides the “join” (OSjL, §8.5) service for service providers and the “discover” (OSdL, §8.9) 

service for service clients, the OS registry also provides a validation service through OSvL for 

any client on the OS network. OSvL is a WSDL description of how the OS registry is used to 

validate any OSxL instance. The OS registry returns an error message if there is any warning or 

error in the OSxL instance submitted. Otherwise it returns a null or empty string.  

To make the validate communication, both the client and the OS registry have to follow 

the rules specified in the OSvL.wsdl document. The communication is just like any other 

OSxL client-service style communication on an OS network, with the same underlying 

networking process described in the previous sections and chapters.   

Figure 8-8 shows the interface part of the OSdL WSDL document. The other part (protocol) of 

the WSDL document, like all other OSxL WSDL documents, uses the same specifications as 

OShL shown in Figure 7-3. The service address of the OS registry is shown at the beginning of 

this chapter. 
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Figure 8-12: Illustration of OSvL (interface part); other parts are the same as OShL in Figure 7-3.  

The <wsdl:portType> element in has only one operation whose name is validate. 

The validate operation’s input is required to be of message type “validateRequest” 

and its output is required to be of message type “validateResponse.” The 

validateRequest message has one part element (i.e. one argument), osInstance, 

which is of string type. Simply put, the WSDL document in Figure 8-12 specifies the 

following single operation: 

String validate(String osInstance); 

that is, the OS registry service implements a method called “validate” that takes one input 

string and returns one string. The input string can be any OSxL instance. The registry can 

distinguish the type of the instance from its root element. The output string is an error message 

if there is any warning or error in the OSxL instance submitted. Otherwise, the output is a null 

or empty string. In Table 8-4, we list the operations specified in the OSvL WSDL document 

(currently only one).  
Operation Description 

String validate (String) 1st input is any OSxL instance. 
Output is a string that contains an error or warning information; the string is 
null or empty if there is no error or warning.   

Table 8-4: Operations in OSvL (currently only one). 
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Along with the join operation from OSjL and the discover operation OSdL, the validate 

operation from OSvL is the third operation offered by the OS registry service.  
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CHAPTER 9  OPTIMIZATION SERVICES MODELING 

LANGUAGE (OSML) 
OSmL is a computer modeling language for mathematical optimization. This language 

allows mathematical model developers to formulate complex and large-scale optimization 

problems in a concise and efficient way. OSmL is based upon the W3C XQuery standard and is 

designed to convert raw data in XML format into problem instances that conform to the 

Optimization Services instance Language (OSiL) standard. An optimization instance 

represented in OSiL can be solved with any standard solver that is Optimization Services 

compatible. Thus, OSmL is particularly well suited for optimization over distributed systems. 

OSmL is an Optimization Services project designed to facilitate the adoption of Optimization 

Services.  

In this chapter we briefly describe the motivations behind designing the OSmL modeling 

language. We list four paradigms of combining XML with optimization modeling.  The OSmL 

approach is the fourth paradigm. It takes raw data files in XML format and transforms them 

using XQuery and XPath (a subset of XQuery since XQuery 2.0) into a single XML OSiL 

instance. Notice that OSmL itself is not an XML dialect, but rather a customized 

implementation of XQuery. XQuery provides a concise query language and unlike style sheets, 

XQuery is not designed to transform the entire structure of an XML document. It is designed to 

quickly and efficiently extract chunks of data – much like SQL for relational databases. Unlike 

other OSxL languages, OSmL is not a low-level instance language. OSmL is a high-level user 

friendly modeling language.  

An advantage of the OSmL approach is that people can easily share and reuse OSmL 

models regardless of computing platform. All of the required software is open source and 

available on all major platforms. Also, this is the natural way to work with XML data, which is 

becoming an increasingly popular standard for storing and transmitting data. After a brief 

introduction, we describe four different paradigms of combining XML with mathematical 

programming. At the end of this chapter, we show various features and some examples of the 

OSmL modeling language.   

9.1 Introduction and Motivation 
As discussed in Chapter 4, XML is popular and powerful. Whether in the technical press 

or mainstream business press, each day is filled with new articles about XML-related 
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technologies. XML is rapidly becoming an accepted format for transferring and storing data. 

Currently almost all databases and spreadsheets are xml-enabled. This means that even if the 

stored data are not in native XML form, they can at least be exported in XML formats. The 

XML output can then be retrieved with the standard XPath and XQuery language (§4.4).  

One might argue that mathematical modeling is also about data. Indeed, a mathematical 

programming modeling language, and associated solver tools, will not be used unless they are 

closely integrated with corporate data. One reason for the success of Excel based solvers is 

their close integration with all the existing spreadsheet data. 

This creation of the OSmL modeling language is based on two premises. First is the 

ubiquity of XML and the existence of tools to easily transform the non-XML data into an XML 

format if the data of interest are not in an XML format. Second is the availability of many 

powerful open source platform independent tools for taking XML data stored in one format and 

transforming it into another XML format (such as XPath, XQuery, XSLT; see Chapter 4). Since 

we have already designed a set of XML standards for math program instance representation, we 

can use the transformation tools to transform the raw XML data into the XML instance format. 

In this respect, the OSmL approach is similar to the work of Atamtürk et al. [7], where these 

authors demonstrate that SQL is sufficient for generating linear programming problem 

instances. Earlier, Choobineh [22] developed SQLMP, an SQL based modeling system for 

linear programming. Figure 9-1 shows the OSmL GUI with the modified Rosenbrock problem 

used throughout this thesis. We illustrate advanced features such as set, indices, loops and other 

features in the following sections.  

 
Figure 9-1: OSmL GUI with an OSmL model of the modified Rosenbrock problem.   

9.2 Four Paradigms of Combining XML with Optimization 
 It is common practice to store data in a relational database system. Two aspects of 

commercial relational database systems are 1) the data are stored in multiple tables or relations, 
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and 2) the files containing the data are typically binary files. XML data is 1) stored using a tree 

structure, and 2) stored as a text file containing both tags and the data. 

There are four paradigms to incorporating XML into mathematical modeling of 

optimization problems:  

1. Use XML to represent the instance of a mathematical program  
2. Develop an XML modeling language dialect 
3. Enhance modeling languages with XML features such as XPath 
4. Use XML technologies to transform XML data into a problem instance 
 

9.2.1 Use XML to represent the instance of a mathematical program 

The Optimization Services instance Language (OSiL, Chapter 6) is an example of the first 

paradigm. Besides Optimization Services, several other projects also take this approach 

([15][19] [53] [69]).  

This approach differs from the rest of the three approaches in that it is incorporating the 

XML technologies at the low level instances, whereas the rest are positioned at the modeling 

language level (Figure 9-2). This approach requires no changes to current mathematical 

programming modeling languages. It does require drivers to interface with various solvers and 

modeling languages. The native format for representing a problem instance in each modeling 

language must be converted to the XML instance. Then the XML instance must be converted to 

the native format required by a solver; see §2.3 for more details.   

 

 
Figure 9-2: Using XML to represent the instance of a mathematical program (1st approach).  

 

9.2.2 Develop an XML modeling language dialect 

 

position of  
approach 1 

position of 
approaches 2-4
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This approach represents the entire high level mathematical model in XML, by designing 

tags for model constructs such as sets, indices, summation, and looping. The only current 

research project that takes this approach comprises the Algebraic Markup Language (AML, 

[34]) and Optimization Reporting Markup Language (ORML, [35]) by Ezechukwu and Maros.  

With this approach, an XML input file contains both raw data and information about the 

algebraic structure of the model. For example, sets and indices are defined within the XML 

input file. This approach requires the development of a new XML based modeling language 

syntax. Although feasible, this approach may require consensus on the syntax of such an XML 

dialect. Currently there is a proliferation of various modeling languages and thus it is hard to 

get everybody to agree with the XML tags. Moreover, as XML is wordy, this approach leads to 

a verbose language. Indeed, one reason the Optimization Services project is only involved in 

low-level instance representation, rather than an XML based modeling language, is that the 

instance is the lowest common denominator and requires the least amount of agreement.  

As AML/ORML is currently the only research project in this area, it is appropriate for us 

to quote below the project’s own description and motivation from its Web site [35]:  
… So how do you solve the problem [of model representation]. Well the first step is to ensure 

that the solution doesn't require any form of support or compliance by vendors. Secondly ensure 
that it is an open source initiative or at least is as widely and freely available as possible. Thirdly 
and most importantly use established and widely supported software standards such as XML and 
XSL.  

This is exactly how the framework works. What we have done is taken a typical software 
engineering approach to solving this problem. In the first place we invented the Algebraic Modeling 
Language (AML) which is an abstract XML based representation of mathematical models. 
Secondly we created the Optimization Reporting Markup Language (ORML) which is used to 
represent optimization analysis and solution results. Finally we utilize a translation process such as 
XSLT (or program constructs) to transform AML and ORML data to target formats. …  

This is basically what we view as a common-sense solution to the problem, because XML 
solves the problem of varying formats, and XSL provides a means of converting the XML 
representations to the appropriate target format. We have no intention of pushing for a new 
standard, as that would only result in a lot more debate, and truth be told vendors of algebraic 
modeling systems would probably view the idea with a great deal of hostility (not that we would 
blame them for that), because it would obviously affect their marketing strategies. Not to mention 
the fact that it may become more difficult to retain customers. 

One view of the framework is not so much as a solution to the problem of model 
representation but rather as a way to side-step the problem. However we would prefer to view it as 
the former. Whichever view you adopt though, the bottom line is that it provides you with a 
portable means of representing optimization models. … There is no need for endless discussions on 
standardization, neither is there any need for support from vendors. It is quite simply very easy to 
use or plug in.     

… Is it a modeling language? Absolutely and categorically not! … Asking this question would 
almost be the same as asking of XML itself is a programming language which very clearly it is not. 
… The framework does not come with any modeling system or similar executable and at present, it 
isn't actually possible to execute a model in the AML format directly i.e. it has to be ported to a 
target/native format by translation in order to be executed. It is purely a representation format. …  

Figure 9-3 shows the sketch of a production planning model written in AML [34].  
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Figure 9-3: The sketch of a math programming model written in AML [34].   

 
9.2.3 Enhance modeling languages with XML features such as XPath 

Current algebraic modeling languages such AMPL, LINGO, and MPL provide capabilities 

for interfacing with relational databases. This is usually done through ODBC [85] drivers that 

are database specific. This third approach to using XML technologies is incorporating into 

these modeling languages the ability to access data stored in XML format in a manner 

analogous to the access of data stored in a relational database. With this approach we are not 

suggesting changing the basic syntax of the algebraic modeling language used to represent sets, 

loop, perform sums, etc.  

We illustrate this approach with a multiproduct dynamic lot sizing model; seeWagner and 

Whitin [118]. We assume that the input data for the model is in a single XML file. This 

assumption is not necessary; it is made only for ease of exposition. Assume there are two 

products with a four period planning horizon and that inventory holding cost, marginal 

production cost, and fixed production cost depend on product but not time period. The model is 

illustrated in Figure 9-4 and the corresponding XML data are represented in Figure 9-5 and 

graphically illustrated in Figure 9-6 . The costs (fixedCost, holdCost, prodCost) are 
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depends on only productID. The demand data are functionally dependent on productID 

and periodID. The capacity data are functionally dependent on only periodID.  

 
Figure 9-4: Multiproduct dynamic lot sizing problem.  

 
Figure 9-5: Dynamic lot sizing data (lotsizedata.xml)  
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Figure 9-6: Graphic illustration of the lot sizing data in Figure 9-5; two highlighted circles indicate 

the product set.  
As discussed in Chapter 4, XPath is used to locate data in an XML database. The function 

of XPath is similar to the SELECT command in SQL. However, the syntax of XPath is similar 

to the syntax used to locate files in a directory with a tree structure. The typical use of an XPath 

command is a location path to locate a set of nodes in a tree. This is called the node-set. The 

node-sets is manipulated (e.g. set difference, intersection, union) and used to generate indices. 

For example, the location path, /lotSizeData/product[(1, 2)],  on the XML 

data shown in Figure 9-5, locates the node-set {<1st product>, <2nd product>}. XPath is also 

used to perform set operations such as union, intersection, and set difference; these provide the 

necessary language features to meet the requirements of modeling language design (see §2.2). .  

For example, in the LINGO modeling language [74], one might declare a set of time 

periods and a capacity for every time period. Denote the set of capacities by CAP. In LINGO, 

this set of capacities is populated from an ODBC database in the DATA section. This is 

illustrated below:  
DATA: 

CAP = @ODBC( ’capacitydata’, ’capacity’); 
ENDDATA 
 

product node set
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However, if these data were in the XML file illustrated in Figure 9-5 we might instead 

incorporate an XPath command in LINGO like:  
DATA: 

CAP = @XML(/lotSizeData/periodCapacity/capacity); 
ENDDATA 
 
A command is also needed to locate the XML file with the data. Developers of algebraic 

modeling languages could also add features allowing the software to read and write an XML 

instance based on an accepted W3C XML Schema. The following hybrid approaches and 

suggestions may also be possible:    

1. Making XQuery/XPath work in the same way as ODBC/SQL 

2. Supporting the concept of a node set as an alternative to a relational database table 

3. Adding XQuery syntax to an algebraic modeling language 

A further level of standardization might be to have all algebraic modeling languages use a 

common underlying syntax, based upon XQuery/XPath, for database access. 
 
9.2.4 Use XML technologies to transform XML data into a problem instance.  

The focus of this chapter and the Optimization Services modeling Language (OSmL) is 

this 4th approach. We show how to use XML technologies to generate math programming 

models.  

The OSmL approach is to take as input the XML files that contain the problem instance 

data and then transform the input data files into an output file that is an instance of a math 

program. The most natural way to do this is to use something expressly designed to transform 

one XML file into another. OSmL uses XQuery (and XPath, a subset of the XQuery language 

2.0) to generate instances from math programs. XQuery provides very powerful algebraic 

modeling features, e.g. sets, for loops, if-then, union, intersection, and library modules. These 

are already accepted W3C standards and are what makes the OSmL modeling language 

symbolic, general, concise and understandable [45].  

The output of any OSmL model is an OSiL instance. As long as all modeling languages 

use OSiL, a total of only N software drivers are necessary, where N is the number of solvers. 

For each of the N solvers, a driver is required to translate the XML data instance into a format 

acceptable to the solver API. We illustrate in the next section various features and some 

examples of this OSmL approach.  
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9.3 OSmL Features and Examples 

9.3.1 Sets, indices and data  

The first step in building an algebraic model using a modeling language is to identify the 

primitive sets; see [57] for a discussion of sets and indices in mathematical programming 

modeling. The primitive sets often correspond to the indices on the decision variables. In the 

relational database world these are often attributes that correspond to keys in a relation. 

Algebraic modeling languages have commands to create sets. Sets may be either primitive or 

derived sets through such operations as Cartesian product or set union. In the dynamic lot 

sizing example introduced in §9.2, primitive sets correspond to products and time periods. A 

derived set is the Cartesian product of the product and time period sets.  Here is an example of 

set declarations in LINGO:  
SETS: 
product /1, 2/; 
period /1..4/; 
demand(product, period); 
ENDSETS 

The analogous concept in the XML world is the XPath node-set. Node sets corresponding 

to product, period, and demand are:  
/lotSizeData/product 
/lotSizeData/periodCapacity/capacity[@periodID] 
/lotSizeData/product/period/demand 

In an algebraic modeling language, once the sets are identified, parameters and variables 

are associated with the sets and referenced by indices. For example, considering only 

parameters, in the lot sizing example we have in LINGO:  
SETS: 
product /1, 2/: holdCost, prodCost, fixedCost; 
period /1..4/: capacity; 
prodperiod(product, period): demand; 
ENDSETS 

For example, holdCost(1) is the holding cost of the first product. The holding cost node-set 

is referenced in XPath by:  
/lotSizeData/product/@holdCost 

The position() function in XPath is then used as an index. For example, the holding cost of the 

first product is:  
/lotSizeData/product[position()=1]/@holdCost 

or, if we define $product = /lotSizeData/product, we can write:  
$product[position()=1]/@holdCost 

Similarly, the demand for product 2 in periods 3 and 4 is given by:  
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/lotSizeData/product[position()=2]/period[position()>2]/demand 

or, in terms of $product, we can write:  
$product[position()=2]/period[position()>2]/demand 

One advantage of nesting time period nodes within product nodes (Figure 9-5) over a more 

traditional tabular approach is that we can use the position function to easily index both the 

product and time periods. An important aspect of this approach is that we are using the input 

XML for data only; the input files do not contain any information about constraints or variables. 

The input XML files need only contain all of the model sets and parameters (or sufficient 

information to generate them).  

 
9.3.2 OSmL examples and comparison with other modeling languages 

Figure 9-7 shows the dynamic lot sizing model introduced in § 9.2.3 in AMPL. AMPL 

currently does not have built in support to retrieve the dynamic lot sizing XML data shown in 

Figure 9-5, so the model is non-working. It is shown here for illustration and comparison with 

the OSmL language.  
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Figure 9-7: Dynamic lot sizing model in AMPL (nonworking with the dynamic lot size XML data).   

 

Figure 9-8 shows the dynamic lot sizing model in OSmL and how it retrieves the data 

shown in Figure 9-5. It is a working model.  

#SET, PARAMETER, AND VARIABLE CONSTRUCTIONS 
param T; 
set PROD; 
set LINKS = {PROD, 1..T}; 
param HC {PROD} ; 
param FXC {PROD} ; 
param CAP {1..T} ; 
param DEM {LINKS}; 
param PCOST {PROD, 1..T} ;  
 
#VARIABLE DECLARATION 
var x  {PROD, 1..T} >= 0; 
var I  {PROD, 0..T} >=0; 
var y  {PROD, 1..T}binary; 
 
#OBJECTIVE CONSTRUCTION 
minimize Total_Cost: 
 sum {i in PROD} I[i, 0]  +  sum {i in PROD, t in 1..T} (PCOST[i, t]*x[i, t] + HC[i]*I[i, t] + FXC[i]*y[i, t]); 
 
# INITIAL INVENTORY CONSTRAINTS 
subject to Init_Inv {i in PROD}:  

I[i, 0] = 0.0; 
 

# DEMAND CONSTRAINTS 
subject to Balance {i in PROD, t in 1..T}: 
    x[i, t] + I[i, t - 1] - I[i, t] = DEM[i, t]; 
 
# FIXED CHARGE CONSTRAINTS 
subject to Fixed_Charge {i in PROD, t in 1..T}: 
    x[i, t] <= CAP[ t]*y[i, t]; 
 
# CAPACITY CONSTRAINTS   
subject to Capacity {t in 1..T}: 
   sum {i in PROD} x[i, t] <= CAP[ t]; 
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Figure 9-8: Dynamic lot sizing model in OSmL (working with the dynamic lot size XML data).  

 
Table 9-1 gives a side-by side comparison between AMPL and OSmL on different constructs.  

 AMPL (no data retrieval) OSmL (and XML data retrieval) 
Sets and 
parameters,  

param T; 
set PROD; 
set LINKS = {PROD, 1..T}; 
param HC {PROD} ; 
param FXC {PROD} ; 
param CAP {1..T} ; 
param DEM {LINKS}; 
param PCOST {PROD, 1..T} ; 
 

let $capacity := 
doc("lotsizedata.xml")/lotSizeData/periodCapacity/capacity 
let $T := count($capacity) 
let $products := doc("lotsizedata.xml")/lotSizeData/product [ (1, 2)] 
let $N := count($products) 
let $PROD := (1 to $N) 
let $HC := $products/@holdCost 
let $FXC := $products/@fixedCost 
let $CAP := $capacity/text() 
let $DEM := $products/period/demand 
let $PCOST := data($products/@prodCost) 

(: SET AND PARAMETER CONSTRUCTIONS:) 
let $capacity := doc("./lotsizeData.xml")/lotSizeData/periodCapacity/capacity 
let $products := doc("./xml/ds800m.xml")/lotSizeData/product 
let $N := count($products) 
let $T := count($capacity[periodID]) 
let $FXC := data($products/@fixedCost) 
let $HC := data($products/@holdCost) 
let $PCOST := data($products/@prodCost) 
let $CAP := data($capacity/text()) 
let $DEM := $products/period/demand 
let $PROD := (1 to $N) 
return  <mathProgram>  
(: VARIABLE DECLARATION :) 
<variables>{ for $i in (1 to $N),  $t in (1 to $T) return 
  (<var name="X[{$i},{$t}]"/>, 
  <var name="I[{$i},{$t}]"/>, 
  <var name="Y[{$i},{$t}]" type="B"  />) } 
</variables> 
 
(: OBJECTIVE FUNCTION   :) 
<obj maxOrMin="min" name="Total_Cost"> 
SUM(for $i in (1 to $N), $t in (1 to $T) return 
{$PCOST[$i]}*X[{$i},{$t}] + {$FXC[$i]}*Y[{$i},{$t}] + {$HC[$i]}*I[{$i},{$t}]) 
</obj> 
 
<constraints> 
(: INITIAL INVENTORY CONSTRAINTS :) 
{for $i in $PROD return  
<con name="inventory[{$i}]"> I[{$i},0]  = 0 </con>  } 
 
(: DEMAND CONSTRAINTS :) 
{for $i in $PROD,  $t in (1 to $T) 
let $demand := ($products[$i]/period[@periodID=$t]/demand/text())    return 
<con name="demand[{$i},{$t }]">  X[{$i},{$t}] + I[{$i},{$t - 1}] - I[{$i},{$t}] = {$demand} </con>  } 
 
(: FIXED CHARGE CONSTRAINTS :) 
{for $t in (1 to $T),  $i in (1 to $N)    return 
<con name="fixed_charge[{$i},{$t }]" > X[{$i},{$t}]-{$CAP[$t]}*Y[{$i},{$t}] <= 0</con> } 
 
(:  CAPACITY CONSTRAINTS  :) 
{for $t in (1 to $T) return  
<con name="capacity[{$t}]">  SUM(for $i in (1 to $N)  return  X[{$i},{$t}])<= {$CAP[$t]} </con>} 
</constraints> </mathProgram> 
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Variables var x  {PROD, 1..T} >= 0; 
var I  {PROD, 0..T} >=0; 
var y  {PROD, 1..T}binary; 
 

<variables>{for $i in (1 to $N),  $t in (1 to $T) return 
  (<var name="X[{$i},{$t}]"/>, 
  <var name="I[{$i},{$t}]"/>, 
  <var name="Y[{$i},{$t}]" type="B"  />) } 
</variables> 

Objective minimize Total_Cost: 
sum {i in PROD} I[i, 0]  +   
sum {i in PROD, t in 1..T} 
(PCOST[i, t]*x[i, t] +  
HC[i]*I[i, t] +  
FXC[i]*y[i, t]); 

<obj maxOrMin="min" name="Total_Cost"> 
SUM(for $i in (1 to $N), $t in (1 to $T) return 
{$PCOST[$i]}*X[{$i},{$t}] +  
{$FXC[$i]}*Y[{$i},{$t}] +  
{$HC[$i]}*I[{$i},{$t}]) 
</obj> 

Initial 
inventory 
constraints 

subject to Init_Inv {i in PROD}: 
    I[i, 0] = 0.0; 
 

{ for $i in $PROD return 
<con name="inventory[{$i}]"> I[{$i},0]  = 0  </con>} 

demand 
constraints 
(or balance 
constraints) 

subject to Demand {i in PROD, t 
in 1..T}: 

x[i, t] + I[i, t - 1] - I[i, t] =  
DEM[i, t]; 

 

{for $i in $PROD,  $t in (1 to $T) 
let $demand := ($products[$i]/period[@periodID=$t]/demand/text())  
return  <con name="demand[{$i},{$t }]"> 
X[{$i},{$t}] + I[{$i},{$t - 1}] - I[{$i},{$t}] = {$demand} </con>} 

Fixed 
charge 
constraints 

subject to Fixed_Charge  
{i in PROD, t in 1..T}: 
    x[i, t] <= CAP[ t]*y[i, t]; 

{for $t in (1 to $T),  $i in (1 to $N)    return 
<con name="Fixed_charge[{$i},{$t }]">  
X[{$i},{$t}] <= {$CAP[$t]}*Y[{$i},{$t}] </con>} 

Capacity 
constraints 

subject to Capacity {t in 1..T}: 
   sum {i in PROD}  
         x[i, t] <= CAP[ t]; 
 

{for $t in (1 to $T) return 
<con name="capacity[{$t}]">  SUM(for $i in (1 to $N) return 
X[{$i},{$t}]) <= {$CAP[$t]} </con>} 

Table 9-1: Comparison between AMPL and OSmL.  

 

The basic “set” in the XQuery-based OSmL language is an ordered sequence. All “XQuery 

variables” begin with a “$” sign. An XQuery engine evaluates what is in { }. Decision variables 

are declared in <variables> ... </variables>. OSmL, however, does not require 

declaring variables; any variable not declared assumes certain default features (e.g. 

type=”C”, lb=”0”). An objective function is constructed in <obj> ... </obj> and 

each constraint is added in <con> ... </con>. To make mathematical modeling easier, we 

added several macros to the standard XQuery language. For example, the SUM function as we 

use it is not provided by XQuery. A preprocessor inside the OSmL compiler converts the 

macros into standard XQuery language.   

Since OSmL is XQuery-based, we can automatically inherit many powerful features from 

the XQuery language. For example, we can use built-in Java functions: 
declare namespace math="java:java.lang.Math"; 

The objective function in OSmL with a “square root function” on fixed cost may look:  
<obj maxOrMin="min" name="Total_Cost"> 
SUM(for $i in (1 to $N), $t in (1 to $T) return 
{$PCOST[$i]}*X[{$i},{$t}] +  
{math:sqrt($FXC[$i])}*Y[{$i},{$t}] +  
{$HC[$i]}*I[{$i},{$t}]) 
</obj>   
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We can also use many other built-in features of XQuery such as the “where” clause to 

put conditions on sets or “if–then” logic for more complex data manipulation.  
 

9.3.3 Model compilation, instance generation and auxiliary software 

 
The OSmL model compilation and OSiL instance generation process are illustrated in 

Figure 9-9. We could use the XQuery to transform the OSmL model into an instance that 

validates against the OSiL Schema. However, the OSiL Schema is designed for minimizing file 

size and for easy integration with solver APIs. So rather than use XQuery to directly generate 

an instance file in the OSiL format, we generate an intermediate instance file that has a syntax 

that makes the XQuery-based OSmL language very easy to construct. Then the intermediate 

XML instance is transformed into a final OSiL instance file.  

We have been emphasizing the fact that OSmL is XQuery based, but OSmL is not exactly 

an XQuery language. OSmL has extra pre-built constructs tailored for optimization problems. 

For example, the relational operators “<”, “<=”, “>” and “>=” are represented in XQuery as 

“&gt;”, “&gt;=”, “&lt;” and “&lt;=” to avoid conflicts with the XML tags (< >). As the 

relational operators appear very often in optimization, OSmL allows users to use “<”, “<=”, 

“>” and “>=” directly and it has a “preprocessor” to detect these operators and convert them to 

the XQuery language specification. Also OSmL adds some macros such as the “SUM” function, 

as again these macros provide extra convenience for mathematical modeling. The OSmL 

preprocessor expands these macros to XQuery equivalents.  

Of course if a modeler is sophisticated in the XQuery language, he can directly use the 

standard XQuery representations to construct an optimization model and avoid using OSmL 

macros. In this situation, OSmL is a pure XQuery language.  

A pure XQuery (original or after preprocessing) is sent to an XQuery processor and is 

compiled into an intermediate XML instance. The immediate instance is parsed and converted 

into the standard OSiL instance and sent out to an Optimization Service using an OS 

communication agent.  
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Figure 9-9: The OSmL process.  

Numerous auxiliary software packages are available that implement XQuery and XPath. 

There are two major camps: Microsoft .NET and Java. The most recent release of the Microsoft 

development tool, Visual Studio .NET [84], contains numerous classes for manipulating and 

transforming XML data. These classes are available to all of the .NET languages. Indeed, a 

major advantage of using .NET software is that Microsoft has done such an excellent job of 

integrating XML into Visual Studio .NET. The downside of .NET is that .NET software runs 

on the Windows platform (although Ximian has announced the launch of the Mono project 

[120] to create an open source implementation of the .Net development framework). However, 

the actual XQuery files are platform independent. There is no problem with sharing model files 

among users of different platforms. 

A number of Java open source XQuery and XPath tools are also available. There is Saxon 

(for XQuery and XPath) written by Michael Kay [18] and Xalan (for XSLT, a C++ version is 

also available) by the Apache organization [3]. Both Saxon and Xalan can be used from the 

command line or called from a Java Servlet or a standalone Java program. Both Xalan and 

Saxon implement the Java API for XML Processing (JAXP). This makes it very convenient to 

write portable software that can call either Saxon or Xalan to transform XML. There is also 

XML Spy from Altova [1] and Stylus Studio from Progress Software [96], which are a 

proprietary XML development environments. Both are equipped with some very nice graphical 

tools for constructing XML-related files.  
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9.3.4 Getting data 

XQuery and XPath are designed to work with input data in an XML format. In this section 

we show that there are numerous tools for transforming non-XML data into XML data. Most of 

the data used in a math program will reside in a 

• spreadsheet 
• desktop database (e.g. Microsoft Access) 
• ASCII flat file 
• enterprise database (e.g. DB2, Oracle, SQL Server) 
• XML file 
 

We discuss converting each source into XML. There are several options with a 

spreadsheet or desktop database. If the spreadsheet or database is part of Microsoft Office 2002 

(or later) it is possible to directly export each table in the database, or range in the spreadsheet, 

as an XML file. If the desktop spreadsheet or database are ODBC or OLE-DB compliant, then 

one can write a program in a procedural language such as C++ or Java to access the data using 

ODBC or OLE-DB, read it into memory, and then use DOM (document object module) to 

create an XML representation of the data. There is some overhead in creating the DOM and 

storing it in main memory. An alternative approach is to write a custom SAX parser and feed 

the information directly into a JAXP compliant XSLT processor. DOM and SAX are 

alternative APIs for processing XML.  

If the flat file is an ASCII flat file, several options exist. First, one could import the flat file 

into a desktop database such as Microsoft Access and then save it as an XML file. A second 

option is to write a C++ or Java program to parse the file and then use DOM or SAX create an 

XML representation of the data.  

Much of the data for large models is stored in enterprise corporate databases. Fortunately, 

the major database vendors are adding features to their products that allow the user to submit an 

SQL query to the database and get the result back in XML format. There are JDBC drivers for 

the most widely used databases. Thus, one could write a Java program and use JDBC and SQL 

to query the database, get the result as XML, and then transform the XML using a JAXP 

transformation engine such XALAN or Saxon. This process is also easily carried out using 

Visual Studio .NET. There are many classes available to any of the .NET languages for reading 

data in XML format from a relational database and then transforming it to XML.  

Ideally, the input data is initially in XML format. However, some XML structures are 

more amenable to transformation into a mathematical model than others. Of course most XML 
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transformation tools are designed to transform one XML file into another without much 

difficulty.  

There are products expressly for the purpose of accessing data stored in different formats 

and viewing the data as XML. Two such products include BEA’s Liquid Data [8]and IBM’s 

XPeranto [62]. The trend is obvious: make it easy to gather data from various sources and 

convert it into XML. This makes the OSmL methodology we are proposing even more viable 

over time. 
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CHAPTER 10  FUTURE WORK AND DERIVED RESEARCH 

FROM OPTIMIZATION SERVICES 
 

10.1 The Optimization Services Project  
Optimization Services is a young research area that has potential for many benefits to 

operations research and the optimization community. Motivated by a vision of the next 

generation of optimization software and standards, Optimization Services deals with a wide 

variety of issues that have accumulated over the past few decades in computing and 

optimization. This work addresses design as well as implementation issues by providing a 

general and unified framework for such tasks as standardizing problem representation, 

automating problem analysis and solver choice, working with new Web service standards, 

scheduling computational resources, benchmarking solvers, and verification of results – all in 

the context of the special requirements of large-scale computational optimization. The criteria 

required of Optimization Services must therefore be very high. Improving the quality of 

Optimization Services related standards, tools and systems should be a constant effort for our 

future work. Adapting to the new needs of researchers and developers and best serving the 

ultimate users should always be the goal of Optimization Services, which should therefore be 

highly scalable for future extensions and very simple to use. In the next sections, we briefly 

describe the most imminent future work of the OS project and some of the derived research 

projects and business models.  

 

10.2 Standardization  
Optimization Services involves a large set of standard protocols that need to be adopted 

quickly and universally. The standardization process can start from working group notes, and 

go through stages such as working drafts, candidate recommendations, and finally become 

recommended as standards. Such a process not only requires further research efforts such as 

new optimization problem extensions but also entails more organizational efforts that require 

formal establishment of collaborations under the Optimization Services framework.  
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10.3 Problem Repository Building 
 With the standardization of various problem representations naturally comes the task of 

building repositories of optimization problem instances using the standard schemas. Problem 

repositories no longer need to be categorized by the format the problems are using. Rather they 

are only classified by the different optimization types supported in the OS standards.  

10.4 Library Building 
The OS library and the OS server described in Appendix B are provided to facilitate the 

adoption and use of the OS standards. Besides the original OS designers, other researchers and 

developers are free to develop their own OS-compatible libraries, such as parsers (readers and 

writers) of standard instances, and communication agents to transmit these instances.  

 

10.5 Derived Research in Distributed Systems  
A distributed system leaves open many questions in coordination, job scheduling and 

congestion control. One distinct issue for example is how optimization “jobs” should best be 

assigned to run on available registered services after the optimization types are determined. The 

usual centralized scheme of an optimization server maintains one queue for each solver/format 

combination, along with a list of the workstations on which each solver can run. In a 

decentralized environment, we may still want to maintain this scheduling control, while at the 

same time making the scheduling decisions more distributed, i.e. transferring some controls to 

the solver service sides.  

Further study is needed to better understand how categorization of optimization problem 

instances together with statistics from previous runs can be used to improve scheduling 

decisions. As just one example, an intelligent scheduler should not assign two large jobs to a 

single-processor machine, since they will only become bogged down contending for resources; 

but a machine assigned one large job could also take care of a series of very small jobs without 

noticeable degradation to performance on either kind of job. Both the kind and size of 

optimization instances must be assessed in order to determine which should be considered 

“large” and which “very small” for purposes of this scheduling approach. 
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10.6 Derived Research in Decentralization 
The central issue in a decentralized architecture is the design of a registration and 

discovery mechanism for acting on service requests. For example the optimization registry 

could assign requests based on some overall model of solver performance and resource 

availability. Requests can be scheduled after they are matched to some services, or scheduling 

could be made an integral part of the assignment process. Pricing could involve agent “rents” as 

well as charges determined by various measures of resource use. 

Besides keeping and maintaining information on optimization solvers and other services, 

one critical and more complex role of an optimization registry in a decentralized environment is 

a “more confident” determination of appropriate solvers. A relatively easy and straightforward 

scheme can rely on a database that matches solvers with problem types they can handle. 

Characteristics of a problem instance, determined from the analyzers, can be used to 

automatically generate a query on the database that will return a list of appropriate solver 

services. But how should solver recommendations deal with problem types (e.g. bound-

constrained optimization) that are subsets of other problem types (e.g. nonlinear optimization)? 

Or how can recommendations be extended to solver options?   

For these purposes, a straightforward database approach for a server or registry may not be 

adequate. Developers will consider more sophisticated ways of determining recommendations, 

such as through business rules systems. A more complicated and advanced scheme may 

consider extensions to generate lists ranked by degree of appropriateness. 

 

10.7 Derived Research in Local Systems 
In §2.4, we listed the interface and communication agent as a distinct component in an 

optimization system. The Optimization Services framework standardizes all the 

communications between any two Optimization Services components on an OS distributed 

system. The framework does not standardize local interfacing.  

As mentioned in the previous chapters, related projects such as COIN [23] and derived 

research from Optimization Services such as the Optimization Services instance Interface 

(OSiI), Optimization Services option Interface (OSoI), and Optimization Services result 

Interface (OSrI) are intended to do this job. The COIN project includes the OSI (Open Solver 

Interface) library which is an API for linear programming solvers, and NLPAPI, a subroutine 

library with routines for building nonlinear programming problems. Another proposed 

nonlinear interface by Halldórsson, Thorsteinsson, and Kristjánsson is MOI (Modeler- 
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Optimizer Interface [60]), which specifies the format for a callable library. This library is based 

on representing the nonlinear part of each constraint and the objective function in post-fix 

(reverse Polish) notation [2] and then assigning integers to operators, characters to operands, 

integer indices to variables and finally defining the corresponding set of arrays. The MOI data 

structure then corresponds to the implementation of a stack machine. A similar interface is 

described in the LINDO API manual [74]. The Optimization Services framework is 

complementary to all of the standardization of local interfaces. The connection between 

Optimization Services and local interfacing is illustrated in Figure 7-1, shown again below.  

 
Figure 10-1: Relationship between OS Communication and local interface standardization. 

 

10.8 Derived Research in Optimization Servers 
Optimization Services is motivated by the current issues faced by many optimization 

servers. More specifically Optimization Services is intended to provide the next-generation 

NEOS [29]. As mentioned in §3.1.4, the effects of Optimization Services on NEOS are 

multifaceted:  

• The NEOS server and its connected solvers will communicate using the Optimization 

Services framework, e.g. using standard representation for data communication.  

• External optimization submissions can still be kept as flexible as possible and may become 

even more flexible. At least one more networking mechanism will be provided, i.e. the 

communication based on the Optimization Services Protocol (OSP). That means NEOS 

will add an interface so that it can be invoked exactly as what’s specified by the 

Optimization Services hook-up Language (OShL, Chapter 7). It will also accept OSiL as a 

standard input, and may gradually deprecate the other formats.  
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• The entire Optimization Services system over the Internet can be viewed as a new 

decentralized NEOS. In effect the old NEOS will become another OS-compatible solver in 

the new system. The “NEOS server” can then solve more types of optimization by 

delegating the job further to different solvers behind it. We therefore regard the old NEOS 

as a “meta-solver” registered on the new Optimization Services system.  

 

10.9 Derived Research in Computational Software  
With the advent of Optimization Services and its standard OSP protocol, related software 

developers may need to think about how to best adapt to the OS framework and be “OS-

compatible.” The issues are detailed in Chapter 2.  

There have already been two immediate projects that are related to the Optimization Services 

framework. One is the Optimization Services modeling Language described in Chapter 9 and the 

other is the IMPACT solver development project that is under development by Professor Sanjay 

Mehrotra’s group at the Industrial Engineering and Management Sciences department at 

Northwestern University. The two projects are the two sides of Optimization Services: client and 

service.  Both are natively built for the Optimization Services framework and strictly follow the 

Optimization Services Protocol.  

There are existing modeling languages and solvers that are or will be adapted (by writing 

wrapper classes) to the Optimization Services framework such as the AMPL modeling language 

[49], the Lindo solver [74] and Knitro solver [121]. Solvers from the NEOS system [29] are the next 

target of the Optimization Services project. 

 

10.10 Derived Research in Computational Algorithms 
The design of effective and efficient computational algorithms that fit the Optimization 

Services design is important. Optimization Services immediately opens up the questions of how 

to best utilize the available services on the OS network. Following are some of the potential 

research areas in computational algorithms related to Optimization Services:  

• Parallel computing where many registered services can simultaneously solve the same type 

of optimization problems.  

• Optimization via simulation where simulation services are located remotely from the 

optimization solver service.  

• Optimization job scheduling at the registry side and queuing at the service side.  

• Analyzing optimization instances according to the needs of the OS registry. 
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• Modeling and compilation that generates OSiL instances quickly and accurately.  

• Efficient OSxL instance parsing and preprocessing algorithms.   

• Effective Optimization Services process orchestration.  

• Also as the OS standards allow representations of various optimization types, optimization 

algorithm development (e.g. in stochastic programming) that has been lagging due to lack 

of good representations can hopefully get a boost.  

 

10.11 Commercialization and Derived Business Models  
Optimization Services, though itself an open framework, does not prevent registered 

services and related business to be commercialized.  Following are some of the related business 

models:  

• Modeling language developers leverage on using Optimization Services to provide more 

and better solver access to their customers and become more competitive.  

• Solver developers concentrate on developing better algorithms to increase their 

competitiveness without worrying about representation, communication and interfacing 

that are taken care by the OS standards.  

• Developers can commercialize the libraries that they build for the Optimization Services, 

e.g. readers and writers of standard instances.  

• Registry/server developers can provide auxiliary services such as storage services, BPEL-

related flow orchestration services (§7.3), advertisement services and consulting services.   

• Auxiliary services and software such as analyzer services and benchmarkers may possibly 

charge fees to involved parties.  

• Solver service owners may adopt a “computing on demand” model by charging the user for 

using their solver services.  

• A solver service owner may also adopt a “result on demand” model by reporting the 

objective results that his solver service has found but hiding the solutions that are only to be 

revealed when the user agrees to pay. For example in the OSrL result instance (§6.4) that 

the solver service returns, it may write out only the <objectiveValue> value and in 

the <solverMessage> element it may provide the instructions for obtaining the 

<variableSolution> values. 
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APPENDIX A  OPTIMIZATION SERVICES REPRESENTATION 
EXTENSIONS 

 
 The optimization services representation extensions in this appendix are mostly at a 

very early development stage and are changing constantly. They are described for 

initial reviews and complete references. But the primary design philosophies and main 

features of these extension should remain approximately the same over the time.   

A.1 <cones> for cone programming 
 

The cone programming extension in OSiL (Chapter 6) mainly addresses second-order 

cone programming (SOCP). SOCP is usually solved with some kind of primal-dual interior 

point method. The objective function is usually linear, while the constraints are an intersection 

of an affine set and the direct product of quadratic cones; see [75] for more details. In general, 

an SOCP can be expressed as  

K∈
=

x
bAxsubject to

minimize
x

cx

 
(A-1) 

 

whereK is a closed and convex cone. The second order coneK is more formally defined as a 

direct product kKKKK ×××= ...21 , where iK can be any type of quadratic cones. There 

are different types of cones used in the literatures. Currently we define three widely used cones:  

1). iK  (nonnegativeCone) =  
)0{ ≥∈=+ |xxi RR . If every iK  is a nonnegativeCone, then (A-1) is basically a regular 

linear program that can be simply expressed as (A-2). Including nonnegativeCone is for the 

purpose of completeness.  
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As OS representations are a set of evolving standards, more cone types may be added in 

the future. With the standard cone definitions, the <cones> element can simply be expressed 

as shown in Figure A-1. 

 
Figure A-1: <cones> element in OSiL.  
 
<Cones> can have a sequence of different child cones defined above. Each type of cone is 
similarly defined. For example <quadraticCone> can appear 0 or more times as shown 
below:  
 
<xs:element name="quadraticCone" minOccurs="0" maxOccurs="unbounded"> 
 <xs:complexType> 
  <xs:sequence minOccurs="0"> 
   <xs:element name="el" minOccurs="2" maxOccurs="unbounded"> 
    <xs:complexType> 
     <xs:simpleContent> 
      <xs:extension base="xs:nonNegativeInteger"> 
       <xs:attribute name="mult" type="xs:positiveInteger" use="optional" default="1"/> 
       <xs:attribute name="incr" type="xs:int" use="optional"/> 
      </xs:extension> 
     </xs:simpleContent> 
    </xs:complexType> 
   </xs:element> 
  </xs:sequence> 
  <xs:attribute name="startIndex" type="xs:nonNegativeInteger" use="optional"/> 
  <xs:attribute name="endIndex" type="xs:nonNegativeInteger" use="optional"/> 
 </xs:complexType> 
</xs:element> 
 
Each <quadraticCone> can have 2 or more <el> child elements representing the variables 

that belong to the quadratic cone.  Each <el> element is a nonnegative integer to indicate a 

variable index. The multi and incr attributes of el are similar to those defined in the 

intVector element described in the OSgL section (§6.1). If all the variable indexes are 

continuous, the sequence of <el> elements becomes optional; instead we can use the 

startIndex and endIndex attributes of <quadraticCone>.  

 Suppose there are 11 variables in the optimization problem and their domains are 00 ≥x  

(i.e. ∈0x nonnegativeCone), ∈3,1x quadraticCone, ∈6,5,4,2x rotatedQuadraticCone, 

∈9,8,7x quadraticCone, 010 ≥x . The cone programming representation in OSiL can look like:  

<cones> 
 <nonnegativeCone> 
  <el>0</el> 
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  <el>10</el> 
 </nonnegativeCone> 
 <quadraticCone> 
  <el>1</el> 
  <el>3</el> 
 </quadraticCone> 
 < quadraticCone> 
  <el>2</el> 
  <el mult="3" incr="1">4</el> 
 </quadraticCone> 
 < rotatedQuadraticCone startIndex="7" endIndex="9"/> 
</cones> 
 

A.2  <stages> for math programs using stage information 
Information of stages is used in several optimization types, such as dynamic programming, 

and stochastic programming. The <stages> element is shown in Figure A-2.  

 
Figure A-2: <stages> element in OSiL.  
 
<stages> has an optional name attribute and a required number attribute. As with many 

other array-type elements in OSiL, stages are referred by the indexes, not by the names. The 

start stage is always 0 and the end stage is always number-1.  Stages can be implicitly listed 

using <implictOrder> if the rows and columns in the base program data part are listed in 

time order, or otherwise explicitly stated using <explicitOrder>. <implicitOrder> 

contains a sequence of <el> elements, each one a nonnegative integer. Each <el> has two 

required attributes: startRowIdx and startColIdx. Each <el> also has two optional 

attributes: endRowIdx and endColIdx. For example if we want to indicate that all the 

elements from row 0 to 4 and from column 0 to column 3 belong to stage 0, we can write the 

information down as <el startRowIdx=”0” startColIdx=”0” endRowIdx 

=”4” endColIdx=”3”>0<el>. If endRowIdx and endColIdx are missing, stage 0 

ends just before startRowIdx and startColIdx of the next <el> element (stage 1).  
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Alternatively the stage can be explicitly specified on each variable (<var>) and constraint 

(<con>) in <explicitOrder>. Both <var> and <con> are nonnegative integers 

indicating stages. <var> has a required idx attribute for variable index references and <con> 

also has a required idx attribute for constraint index references.   

 
A.3 <stochastic> for stochastic programming 

For a complete review of stochastic programming, refer to [11]. The OSiL stochastic 

programming extension is designed to make it convenient and powerful to transform existing 

deterministic linear or nonlinear programs into stochastic programs by adding dynamic and 

stochastic structure information. It was first designed totally independent of the SMPS 

format[10] and later, through working with Horand Gassmann, one of the coauthors of the 

original SMPS format, added many new ideas. The OSiL stochastic extension is highly 

comprehensive and is evolving at a faster pace than most other OSxL schemas. Describing the 

entire stochastic extension is out of the scope of this thesis. We hereby illustrate the main 

features in the current <stochastic> element (Figure A-3).  

 
Figure A-3: <stochastic> element in OSiL.  
 

The <stochastic> element is the next child after <stages> in <programData>. 

The most commonly used child in practice is the scenario child which can be either an 

<explicitScenario> (Figure A-4) or <implicitScenario> (Figure A-6). With scenarios, 

we can model a variety of dependencies, both within and across stages. Explicit scenarios are 

mostly for modeling stochastic processes with discrete distributions or discrete approximation. 

Implicit scenarios can be used to model continuous distributions.  

Scenario based stochastic programs can be mixed with penalty-related (<penalties>, 

Figure A-7) and/or risk-measure-related (<riskMeasures>, Figure A-8) stochastic problems. 

The best-known penalty-related stochastic problem is simple recourse. Risk-measure-related 

problems are mostly about chance constraints and probabilistic objectives.  
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Figure A-4 shows the two alternatives to represent an explicit scenario: 

<scenarioPaths> and <scenarioTree>.  

 
Figure A-4: <explicitScenario> element in OSiL.  
 

The scenario path (<scenarioPaths>) approach views every scenario as a path from 

the root of the scenario tree to one of its leaves. There has to be exactly one root scenario 

(<rootScenario>, the first child of <scenarioPaths>). Every other scenario (the 

subsequent <scenario> children of <scenarioPaths>) is a path that branches either 

directly from the root scenario or indirectly from a branch of the root scenario. So each scenario 

has a parent scenario. The root scenario’s parent is usually the OSiL core program. Each 

scenario inherits all of the values from its parent scenario and makes changes on the stochastic 

numbers that are different from the parent scenario in the stochasticNumbers child 

section. Basically any number in the entire OSiL core program can be stochastic. Figure A-5 

shows the different types of stochastic numbers.  
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Figure A-5: stochasticNumbers type in OSiL.  
 

<el> has a rowIdx and a colIdx attribute for references to linear coefficients. If 

rowIdx is negative, it is an objective function. If colIdx is -2, it is a lower bound (or left-

hand side) of a constraint. If colIdx is -1, it is an upper bound (or right-hand side) of a 

constraint. <var> is used to vary different aspects of a variable in the math program, such as 

lower bound, upper bound, and type. <num> is used to reference a nonlinear number that is 

identified with an id. <node> and <arc> are used to refer to nodes and arcs in a network or 

graph. These are mainly used for future extensions if network and graph extension is added.  

The scenario tree (<scenarioTree>) approach allows a node by node construction of 

the event tree. It has one and only only child (<sNode> of type scenarioNode) as the root 

of the event tree. An <sNode> element contains its own data information. There are two 

alternatives to specify the information: 1) by changing the information from one node to 

another through the <changes> element; 2) by specifying an entire sub-optimization problem 

through the <OSiL> element. Each <sNode> can in turn have 0 (if a leaf node) or more (if an 

internal node) <sNode> children. The idea is similar to the construction of nonlinear expression 

trees in the <nl> elements (§6.3). The recursive definition allows an entire scenario tree to be 

constructed cleanly and flexibly.  

Figure A-6 shows the <implicitScenario> element.  
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Figure A-6: <implicitScenario> element in OSiL.  
 

In the <distributions> child, we can specify various univariate and multivariate 

distributions. Many standard distribution functions are built in the OSgL schema (§6.1). User-

defined distribution functions are allowed through the OSnLNode in the OSnL schema (§6.3), 

just like defining any nonlinear expression in an OSiL instance.  

<stochasticElements> can have a sequence of <elementGroup> children. In 

each <elementGroup>, we can specify history-dependent parameters in a stochastic process 

of the form  

t
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jtj
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=
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 (A-3) 

where piM i ,...,1, = and qjN j ,...,1, = are given matrices, qttt vvv −− ,..., 1 are serially 

uncorrelated and identically distributed random vectors and tc is a constant vector. This process 

is known as the ARMA( qp, ) process. For more information on the ARMA process, refer to 

[117]. The incorporation of ARMA( qp, ) into the OSiL stochastic extension is suggested by 

H.I Gassmann. One special case of (A-3) is 0=p , so (A-3) turns into tt NvY = , a simple 

linear transformation. So <stochasticElements> is a more generalized transformation of 

stochastic numbers. Another special case of (A-3) is ttt vYY += −1 , where tv  is +1 or -1 with 

probability 0.5.  So the model turns into a random walk.  

In the <elementGroup> element, a sequence of <el> elements are used to identify 

elements of the tY vector. The subscript t  of Y is specified by the stage attribute of 
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<elementGroup>. itiYM −  is specified in <historyList> (which contains a matrix and a 

vector) for each i . jtjvN −  is specified in <randomVariableList> (which contains a 

matrix and a vector) for each j . tc  is specified in <constants>.  

Figure A-7 shows the <penalties> element.   

 
Figure A-7: <penalties> element in OSiL.  
 
The <penalties> element can contain one or more <row> elements, each one having a 

rowIdx ( ,0≥ constraints only) attribute. Penalties are imposed on violation of a constraint 

(either shortage or surplus). The best-known penalty-related stochastic problem is simple 

recourse. The <simpleRecourse> element has a (linear) shortagePenalty and a 

(linear) surplusPenalty attribute. There are other kinds of standard penalties. For example 

the <robustOptimization> element has quadratic penalties and the 

<piecewiseLinearQuadratic> element has both linear and quadratic penalties. The 

<userDefinedPenalty> element can be used to define customized penalty functions for 

both surplus and shortage, through the OSnLNode in the OSnL schema, just like defining any 

nonlinear expression in an OSiL instance. 

Figure A-8 shows the <riskMeasures> element.  

 
Figure A-8: <riskMeasures> element in OSiL.  
 
Risk-measure-related problems are mostly about chance constraints and probabilistic 

objectives. There are three children of <riskMeasures>: <simpleChance>, 
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<jointChance>,  and <integratedChance>; each one represents a different type of  

risk-measure-related problem and each one is associated with one (simple chance) or more 

(joint chance) rowIdx attributes. If rowIdx 0≥ , it is a chance constraint, specifying the 

probability that a constraint or some joint constraints are satisfied. If rowIdx 0< , it is a 

probabilistic objectives, changing the minimization or maximization of the objective to 

minimization of maximization of the probability of the objective function value with respect to 

( ),, ≥≤= ) the objective constant. Integrated chance constraints (ICC) is introduced by Klein 

Haneveld. See [67].  

 

A.4 <networkAndGraph> for network and graph problems 
 

In the first version of OSiL, we excluded the <networkAndGraph> extension for 

network and graph definition. For review, a test version schema OSiL_NaG.xsd includes the 

network and graph extension and can be found at 

http://www.optimizationservices.org/schemas/OSiL_NaG.xsd. We here briefly describe the 

features of network and graph extension.  

Like defining many data structures and elements, The OSgL schema (§6.1) also defines a 

<networkAndGraph> element (Figure A-9), and then gets included in the OSiL schema. 

The <networkAndGraph> element is used to comprehensively describe a network and 

graph topology through a set of nodes and arcs elements and definitions of 

nodeProperties and arcProperties. 

 
Figure A-9: <networkAndGraph> data type in OSgL.  
 
Also like pre-defining standard functions, The OSgL schema (§6.1) also defines many standard 

problems; OSgL is then included in the OSiL schema. Most of these standard problems are 

heuristics based on a network or graph. Here is a predefined standard shortest path problem: 
<xs:element name="shortestPath"> 
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 <xs:complexType> 
  <xs:attribute name="costPropName" type="xs:IDREF" use="required"/> 
  <xs:attribute name="start" type="xs:nonNegativeInteger" use="required"/> 
  <xs:attribute name="end" type="xs:nonNegativeInteger" use="required"/> 
 </xs:complexType> 
</ xs:element> 
 
The shortest path problem defines a start and an end attribute which refer to nodes 

(identified by a nonnegative integer) in a network and graph topology (Figure A-9). Since a 

network can have many properties defined on arcs or nodes, the costPropName attribute in 

the above shortestParth element specifies which arc property the shortest path algorithm 

should be carried out on. This mechanism fully defines everything about a standard shortest 

path problem. Other problems such as maximum flow problem, minimum spanning tree, 

minimum cost flow, traveling sales person, vehicle routing problem, are similarly defined. All 

these standard heuristics are grouped in <networkAndGraphHeuristicsGroup> 

(Figure A-10). Along with the network and graph topology definition in Figure A-9, the group 

can potentially be used in a future extension of OSiL to network and graph problems.  

 
Figure A-10: <networkAndGraphHeuristicsGroup> group in OSgL. 
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A.5 Special nonlinear nodes in OSnL 
 
A.5.1 <complements> for complementarity problems 
 
The <complements> schema from OSnL is shown below:  
<xs:complexType name="OSnLNodeComplements"> 
 <xs:complexContent> 
  <xs:extension base="OSnLNode"> 
   <xs:sequence minOccurs="2" maxOccurs="2"> 
    <xs:element ref="OSnLNode"/> 
   </xs:sequence> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
<xs:element name="complements" type="OSnLNodeComplements" substitutionGroup="OSnLNode"/> 
 
The <complements> element allows complementarity problems to be constructed for 

solvers to search for a feasible solution. Linear or smooth nonlinear optimization problems can 

be viewed as special cases of complementarity problems. Complementarity more or less means 

that at least one of a pair of logic expressions (e.g. two constraints) must hold with equality. For 

more details refer to [49].  

The <complements> element is one of the few special elements that don’t have 

attributes. It also has a definite number of 2 children, which are often constraints. The sequence 

of the 2 children does not matter. Both children can consist from 1 to 3 expressions separated 

by logic operators = , ≥ , and ≤ . Of the two children of <complements>, there must be 

either exactly two inequality operators or one equality operator. The <complements> 

element evaluates to true if both children are true and at least one inequality is tight. For 

example if 1constraint is of the form 0≥1xpressione and 2constraint is of the form 

5≤2xpressione , we can express the complementarity as  

<complements> 
 <geq> 
  <constraint idx="1"/> 
  <number value="0"/> 
 </geq> 
 <leq> 
  <constraint idx="2"/> 
  <number value="5"/> 
 </leq> 
</complements> 
or more concisely as  
<complements> 
 <constraint idx="1" valueType="status"/> 
 <constraint idx="2" valueType="status"/> 
</complements> 
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 because the bound information is already specified in the <constraints> element of OSiL. 

Of course it has to be made sure that in using the concise form, the constraint is only 

constrained on one side; otherwise there can be ambiguities. Notice if the valueType 

attribute of constraint is not specified, it defaults to the constraint value.  

When one constraint iconstraint , }2,1{∈i , involves two inequalities and is of the form  

ubexpressionlb i ≤≤  or lbexpressionub i ≥≥ ( lb and ub are numbers), then the other 

jconstraint , ijj ≠∈ },2,1{ , must be just of the free form 

jxpressione . In this case, the <complements> element evaluates to true if iconstraint  is 

true and 

0=jxpressione if ubexpressionlb i <<  

0≤jxpressione if ubxpressione i =  

0≥jxpressione  if lbxpressione i =  

For example if 1constraint is of the form 7≤≤ 1xpressione2 and 2constraint is of the form 

2xpressione , we can express the complementarity as  

<complements> 
 <and> 
  <leq> <number value="2"/><constraint idx="1" valueType="value"/> </leq> 
  <leq> <constraint idx="1" valueType="value"/><number value="7"/> </leq> 
 </and> 
 <constraint idx="1" valueType="value"/> 
</complements> 

or more concisely as  
<complements> 
 <constraint idx="1" valueType="status"/> 
 <constraint idx="2" valueType="value"/> 
</complements> 
 
Of course it has to be made sure that in using the concise representation, 1constraint  is 

bounded on both sides, that is, both lb ( −∞≠ ) are ub ( ∞≠ ) attributes have to be specified 

on 1constraint  in the <constraints> element of OSiL.  

 Child elements of <complements> do not always have to be constraints. For example 

the following is also valid:  
<complements> 
 <and>  
  <leq> <number value="0"/><var idx="0"/> </leq> 
  <leq> <var idx="0"/><number value="9"/> </leq> 
 </and> 
 <plus> <var idx="1"/><var idx="2"/> </plus> 
</complements> 
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for 290 xxscomplementx 10 +≤≤ .  

 
A.5.2 <nodeRef> and <arcRef> for network and graph problems 

As the first release of OSiL does not include network and graph extension, the 

<nodeRef> and <arcRef> elements from OSnL, which are used to reference node and arc 

property values in a network, are reserved for future use. Briefly, the use of <nodeRef> and 

<arcRef> are similar to that of <simInput> and <simOutput> discussed in §6.3. Like 

<simInput> and <simOutput> which are used to reference values in a simulation 

definition in OSiL (<simulation>), <nodeRef> and <arcRef> can be used to reference 

values in a network and graph definition that can potentially be in OSiL 

(<networkAndGraph>). <simInput> and <simOutput> use their attributes 

(simName, inputName, outputName) and an optional child to take or supply values to and 

from a simulation; similarly <nodeRef> and <arcRef> also use attributes (arcID, 

nodeID, propName) and an optional child node to take or supply values to and from a 

network and graph. 
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APPENDIX B  OPTIMIZATION SERVICES LIBRARY  
 

The OS library (including the OS server software for hosting individual services) and 

related documents are located at http://www.optimizationservices.org. The OS library is an 

open-source Java library intended to simplify the implementation of various OS compatible 

services, enforce the requirements of standards, assist in the exchange of instances between 

components, and facilitate the adoption of Optimization Services. 

The OS library has two types of distributions. The first type is one entire library file 

os.jar,   which contains all the library classes. A “jar” file is a java equivalent to a 

Windows .dll, or UNIX .so or .a library file. A jar file should be appropriately set in the 

CLASSPATH environment before it can be properly included and used; check any major java 

tutorial for details.  

The second type of library distribution breaks the entire os.jar into seven smaller jar 

files: osagent.jar, ossolver.jar, osmodeler.jar, osanalyzer.jar, 

ossimulation.jar, and osregistry.jar, so that developers only need to download 

and include related and more light-weighted jar files.  oscommon.jar and osagent.jar 

are almost always required.  

• oscommon.jar contains parsers for reading and writing all the instances specified by the 

standard OS representation schemas (Chapter 6), interfaces specified by the OS 

communication WSDL documents (Chapter 7), and related computational and utility 

classes.  

• osagent.jar contains communication agents that can be delegated to send and receive 

OS instances according to the protocols specified by the OS communication WSDL 

documents (Chapter 7).  

• ossolver.jar contains sample solver services, public solver service APIs, local 

interfaces, sample problems, and customized parsers that use the standard parsers 

(oscommon.jar) to convert instances to and from the solver-specific formats or data 

structures.  

• osmodeler.jar contains sample modeling language environments (MLE), especially 

the OSmL MLE, which includes the GUI, OSmL engine and associated tokenizers, parsers 

and compilers.  

• osanalyzer.jar contains sample analyzer services, local interfaces, and customized 

interfaces.  
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• ossimulation.jar contains sample simulation services, local interfaces, and 

customized interfaces.  

• osregistry.jar mainly contains the implementation of the OS registry.  

Besides the library jar files, the OS server software for hosting individual services can also be 

downloaded from the OS Web site, along with tutorials and other documents. In Chapter 7, we 

showed some examples of using the library and explained the process of how the OS server 

software works.  

Java classes (and interfaces) are grouped into packages, equivalent to the C++ namespaces, 

to avoid class name conflicts. A jar file can contain several packages and each package usually 

contains many java classes. Each OS java class file is documented, or commented in the 

“Javadoc” format in detail. Javadoc tools are then used to generate the java APIs and 

documentation comments to a set of HTML pages describing the classes, inner classes, 

interfaces, constructors, methods, and fields. These HTML documentation pages are also 

published at the OS Web site (Figure B-1). We describe the OS library and all its packages and 

classes at a relatively high level in the following sections. For details on using each class, refer 

to the OS Javadoc document on the OS Web site.    
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Figure B-1: OS Java library document (Javadoc) at http://www.optimizationservices.org.  

B.1 Library Design 
 
When designing the OS library, we break up the library into seven projects: OSCommon, 

OSAgent, OSSolver, OSModeler, OSAnalyzer, OSSimulation, and OSRegistry. At design time, 

each corresponds to a folder with similar subfolder structures as shown in Figure B-2.  

OS packages 

Classes in one 
OS package 

The current class 
(fields, methods …)



 
 
 

306 

 
 
 

 
Figure B-2: The subfolder structure of the OSCommon project folder; other folders have similar 

subfolder structures.  

We use the Eclipse IDE [32] as our Java development environment (Figure B-3). So each 

folder also corresponds to an Eclipse project. At distribution time each project is zipped into a 

respective jar file with the same name as the project’s folder name. The os.jar file described 

in the introduction is a compilation of all the seven respective jar files. Java sources are 

included in the jar file distribution. 

Each project (design time) or jar file (distribution time) contains several packages and the 

classes are grouped into a corresponding package. All the Optimization Services package 

names begin with the prefix: org.optimizationservices.[projectname] where 

[projectname] is the name of one of the seven projects. For example the package name for 

all the classes in the OSCommon project or jar begins with 

org.optimizationservices.oscommon, and then under this package sub-packages 

can be further created, for example, org.optimizationservices.oscommon.util or 

org.optimizationservices.representationparser.  

source files

binary files 

build file
jar file 
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Figure B-3: The Eclipse Java IDE (Integrated Development Environment).  

 

B.2 OSCommon Library 
The OSCommon library (project or jar) currently contains the 5 packages described in 

Table B-1.  
Package name Brief description 

org.optimizationservices.oscommon.communicationinterface  Interface classes that list the operations required 
by the OSP communication WSDL documents, 
and are to be implemented by corresponding 
Optimization Services.  

org.optimizationservices.oscommon.representationparser  Parser classes that read and write standard OSP 
representation instances.   

org.optimizationservices.oscommon.nonlinear  An expression tree class and all the OSnL node  
classes that correspond to the nonlinear nodes 
(operators, functions, etc.) specified in the OSnL 
schema.  

org.optimizationservices.oscommon.algebra  Algebra (mainly linear algebra) utility classes 
used in optimization solvers.  

project browser

fields and methods 
in each class 

the current class 

auxiliary window (e.g. 
console, Javadoc) 

source folder (contains 
all the packages and 
class files for the a 
project) 
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org.optimizationservices.oscommon.util  General utility classes that handle I/O, XML, 
XPath, XQuery, XSLT, Web services, and other 
common routines.  

Table B-1: OSCommon packages.  
 

Table B-2 through Table B-6 list some of the important classes in each of the above 5 

OSCommon sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the 

Javadoc and other documents on the OS Web site.  
Sample classes in the communicationinterface sub-package Brief description 

OScL Interface class that lists all the operations 
specified in the OScL WSDL document: such as 
String call (String ossl), and to be 
implemented by OS simulations.  

OSdL Interface class that lists all the operations 
specified in the OSdL WSDL document: such as 
String discover (String osql), and 
to be implemented by the OS registry.  

OShL Interface class that lists all the operations 
specified in the OShL WSDL document: such as 
String call (String osil), and to be 
implemented by OS solvers and OS analyzers.  

OSjL Interface class that lists all the operations 
specified in the OSjL WSDL document: such as 
String join (String osel), and to be 
implemented by the OS registry. 

OSkL Interface class that lists all the operations 
specified in the OSkL WSDL document: such as 
String knock ( ), and to be implemented 
by OS solvers, OS analyzer and OS simulations. 

OSvL Interface class that lists all the operations 
specified in the OSvL WSDL document: such as 
String validate (String osxl), and 
to be implemented by the OS registry. 

Table B-2: Sample classes in org.optimizationservices.oscommon.communicationinterface.  
 

Sample classes in the representationparser sub-package Brief description 
OSiLReader Read an OSiL instance and generate certain 

standard data structures and methods such as 
array/vector of objective coefficients, coefficient 
matrices, and calculation of nonlinear 
objective/constraint functions or derivatives.  

OSiLWriter  Write out an OSiL instance from standard data 
structures such as array/vector of objective 
coefficients, coefficient matrices, and nonlinear 
function expressions.  

OSaLReader, OSaLWriter, OSbLReader, OSbLWriter, …. Similar to the OSiLReader and OSilWriter. In the 
representationparser packages, each OSxL 
representation has two corresponding classes: 
OSxLReader and OSxLWriter.   

Table B-3: Sample classes in org.optimizationservices.oscommon.representationparser.  
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Table B-4: Sample classes in org.optimizationservices.oscommon.nonlinear.  

 
Table B-5: Sample classes in org.optimizationservices.oscommon.algebra.  
 

Sample classes in the util sub-package Brief description 
CommonUtil  Contains methods for performing common basic 

operations used by many classes in the 

Sample classes in the nonlinear sub-package Brief description 
ExpressionTree The OSExpressionTree class represents an 

expression tree for a nonlinear function (linear 
ones being special cases) and provide convenience 
methods to process the contained nonlinear 
function. In essence it contains the root node (of 
OSnLNode type) of an expression and hides all 
the internal nodes. It is the only public class that 
interfaces with any component (e.g. a solver) that 
needs to manipulate the nonlinear functions in an 
instance. For example, it is mainly used in the 
osilReader class to parse a nonlinear optimization 
instance. 

OSnLNode The OSnLNode class represents a node in an 
expression tree for a nonlinear function (linear 
ones being special cases) and provide convenience 
methods to process the node. It is an abstract (or 
generic) node from which we derive concrete 
operator nodes. 

OSnLNodeSin The OSnLNodeSin class represents a sin node in 
an expression tree. It extends the abstract 
OSnLNode class and implements its abstract 
methods such as calculateFunction(double[]). 

OSnLNodePI The OSnLNodePI class represents a PI constant 
node in an expression tree. It extends the abstract 
OSnLNode class and implements its abstract 
methods such as calculateFunction(double[]). 

OSnLNodeVar The OSnLNodeVar class represents a variable 
node in an expression tree. The variable can be 
treated as a unary operator with its index as a 
subscript operand of the "variable operator". If the 
variable index is a number, there is no operand 
node. The number is treated as the variables 
attribute. If the variable index is an integer-valued 
function or a look up from some data source, it is 
treated no different from a unary operator. It 
extends the abstract OSnLNode class and 
implements its abstract methods such as 
calculateFunction(double[]). ]). 

OSnLAbs, OSnLAnd, OSnLArccos, OSnLArccosh … Similar to OSnLNodeSin, OSnLNodePI and 
OSnLNodeVar. They are all concrete node classes 
that extend the abstract OSnLNode class and 
implements the required abstract methods.  

Sample classes in the algebra sub-package Brief description 
DoubleVector Vector class with double precision entries.  
DoubleSparseMatrix Sparse matrix class with double precision entries.  
BigDecimalDenseMatrix Dense matrix class with arbitrary precision 

entries.  
BigIntegerDenseMatrix, DoubleDenseMatrix … Various kinds of matrix and vector classes that 

provide basic matrix and vector operations such as 
multiplications, factorizations, etc.  
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Optimization Services (OS) framework. 
IOUtil Contains methods for performing common basic 

input-output (I/O) operations, such as file 
reading/writing, used by various components in 
the Optimization Services (OS) framework.  
 

MathUtil Contains methods for performing mathematics 
related operations used by many classes in the 
Optimization Services (OS) framework. 

ProcessUtil A process and runtime (or terminal environment) 
related utility class. For example it provides 
methods to run commands (e.g. DOS or UNIX 
commands from within the programming codes. 

WSUtil Contains methods for performing common web 
services related operations, such as soap 
construction/web services invocation, used by 
various components in the Optimization Services 
(OS) framework. 

XMLUtil Contains methods for performing common basic 
XML-related operations used by various classes in 
the Optimization Services (OS) framework. 

XPathUtil Contains methods for performing common basic 
XPath-related operations used by various classes 
in the Optimization Services (OS) framework. 

XQueryUtil  Contains methods for performing common basic 
XQuery-related operations used by various classes 
in the Optimization Services (OS) framework. 

XSLTUtil  Contains methods for performing common basic 
XSLT-related operations used by various classes 
in the Optimization Services (OS) framework. 

Table B-6: Sample classes in org.optimizationservices.oscommon.util.  
 

B.3 OSAgent Library 
The OSAgent library (project or jar) currently contains the 2 packages described in Table 

B-7.  
Package name Brief description 

org.optimizationservices.osagent.agent Various agent classes for communication to 
different Optimization Services. For example an 
OSSolverAgent is used to hook up to an OS 
solver.  

org.optimizationservices.osagent.parser  Parser classes that convert one standard instance 
to another.  

Table B-7: OSAgent packages.  
 

 Table B-8 through Table B-9 list some of the important classes in each of the above 2 

OSAgent sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the 

Javadoc and other documents on the OS Web site.  
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Table B-8: Sample classes in org.optimizationservices.osagent.agent.  
 

Sample classes in the parser sub-package Brief description 
OSaLToOSqL The class converts standard OSaL instance to 

standard OSqL instance. It is used if the 
OSFlowAgent involves automatically invoking 
and discover operation after it gets an OSaL 
analysis from an OSAnalyzer.  

Other standard instance conversion classes needed by the agents 
and various agent-customized parser classes needed in 
communications.  

 

Table B-9: Sample classes in org.optimizationservices.osagent.parser.  
 

B.4 OSSolver Library 
The OSSolver library (project or jar) currently contains the 5 packages described in Table 

B-10.  
Package name Brief description 

org.optimizationservices.ossolver.api  Contains sample solver services. These are the 
classes that implement the OShL (hook-up) and 
OSkL (knock) and are accessed on the OS 
network.  

org.optimizationservices.ossolver.localInterface  Local interfaces that contains standard in memory 
data structures that can be directly accessed by the 
solver engines.   

org.optimizationservices.ossolver.parser  Customized parsers that use the standard parsers 
from oscommon to convert instances to and from 
the solver-specific formats or data structures.  

org.optimizationservices.ossolver.solver  Sample solvers that solve various optimization 
problems.   

org.optimizationservices.ossolver.problem  Sample optimization problems using the standard 
data structures in the 
org.optimizationservices.oscommon.localInterfac
e package.   

Table B-10: OSSolver packages.  
 

Table B-11 through Table B-15 list some of the important classes in each of the above 4 

OSSolver sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the 

Javadoc and other documents on the OS Web site.  

Sample classes in the agent sub-package Brief description 
OSSolverAgent The class implements the OShL interface as 

specified by Optimization Services hook-up 
Language (OShL). It contains methods to help 
solver agents communicate with OS solvers. It 
hides all the SOAP protocol related technical 
details from an optimization user. 

OSAnalyzerAgent, OSSimulationAgent, OSRegistryAgent All similar to the OSSolver Agent.  
OSFlowAgent The class is invokes Optimization Services 

according to the process flow specified in an 
Optimization Services flow Language (OSfL). It 
may involve invoking separate agents listed 
above.  
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Sample classes in the api sub-package Brief description 
KnitroSolverService KnitroSolverService is an api that is public to the 

external world. It hides all the parsing, local interfacing, 
and solving processes. It implements the OShL and 
OSkL interfaces from OSCommon. It is called by an OS 
agent. The service solves continuous nonlinear 
optimization problems.  

LindoSolverService LindoSolverService is an api that is public to the 
external world. It hides all the parsing, local interfacing, 
and solving processes. It implements the OShL and 
OSkL interfaces from OSCommon. It is called by an OS 
agent. The service solves very general optimization 
problems. 

Table B-11: Sample classes in org.optimizationservices.ossolver.api.  
 

Sample classes in the localInterface sub-package Brief description 
OSiI This is an Optimization Services instance Interface. It 

contains the standard optimization problem data 
structures that are generated from the OSiL instance 
and can be directly accessed by a solver.  

OSoI This is an Optimization Services option Interface. It 
contains the standard optimization option data 
structures that are generated from the OSoL instance 
and can be directly accessed by a solver. 

OSrI This is an Optimization Services result Interface. It 
contains the standard optimization result data structures 
that are returned by a solver and then used to generate 
the OSrL result instance.  

Table B-12: Sample classes in org.optimizationservices.ossolver.localInterface.  
 
 

Sample classes in the parser sub-package Brief description 
LindoOSiLReader The LindoOSiLReader class uses the generic 

OSilReader to parse an OSiL instance into the Lindo’s 
Instruction List format that can be inputted into the 
Lindo solver. 

Table B-13: Sample classes in org.optimizationservices.ossolver.parser.  
 
 

Sample classes in the solver sub-package Brief description 
KnitroSolver Knitro optimization solver that solves continuous 

nonlinear problems.  
LindoSolver Lindo optimization solver that solves general nonlinear 

problems.  
Table B-14: Sample classes in org.optimizationservices.ossolver.solver.  
 

Sample classes in the problem sub-package Brief description 
OptProblem_Rosenbrock The Rosenbrock problem constructed using the 

standard data structures in the 
org.optimizationservices.oscommon.localInterface 
package  

Table B-15: Sample classes in org.optimizationservices.ossolver.problem.  
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B.5 OSModeler Library 
The OSModeler library (project or jar) currently contains the 4 packages described in 

Table B-1.  
Package name Brief description 

org.optimizationservices.osmodeler.api  Contains modeling language environment services that 
can be accessed publicly over the OS network.  

org.optimizationservices.osmodeler.gui  Contains modeling language Graphical User Interface, 
which is usually used locally on a desktop.  

org.optimizationservices.osmodeler.modeler  Contains the modeling language engines that compiles 
modeling languages into standard instances.  

org.optimizationservices.osmodeler.parser  Contains relevant tokenizers and parsers using by the 
modeling language engine compilation process.  

Table B-16: OSModeler packages.  
 

Table B-17 through Table B-20 list some of the important classes in each of the above 4 

OSModeler sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the 

Javadoc and other documents on the OS Web site.  
Sample classes in the api sub-package Brief description 

OSmLService It is a public OSmL Web service that can be accessed 
over the OS network. It takes OSmL models, generates 
standard instances and delegates communication agents 
to solve the optimization instances.  

Table B-17: Sample classes in org.optimizationservices.osmodeler.api.  
 

Sample classes in the gui sub-package Brief description 
OSmLGUI OSmLGUI provides the OSmL modeling language 

GUI.  
Table B-18: Sample classes in org.optimizationservices.osmodeler.gui.  
 
 

Sample classes in the modeler sub-package Brief description 
OSmLEngine The OSmLEngine compiles the XQuery based 

Optimization Services Modeling Language model and 
compiles the model into an Optimization Services 
instance Language (OSiL) low level representation. 
When the optimization result is returned in 
Optimization Services result Language (OSrL), the 
engine takes the role of an OSrL parser.   

Table B-19: Sample classes in org.optimizationservices.osmodeler.modeler.  
 

Sample classes in the parser sub-package Brief description 
OSmLPreparser It pre-parses an OSmL model into a pure XQuery 

Language.  
OSmLQueryResultToOSiL It parses the XQuery result intermediate XML instance 

generated by an XQuery engine and converts the 
intermediate XML instance into the standard OSiL 
instance.  

InfixParser It parses infix based expressions.  
Table B-20: Sample classes in org.optimizationservices.osmodeler.parser.  
 



 
 
 

314 

 
 
 

B.6 OSAnalyzer Library 
The OSAnalyzer library (project or jar) currently contains the 3 packages described in 

Table B-21.  
Package name Brief description 

org.optimizationservices.oscommon.api  Contains OS analyzer services that can be accessed 
publicly over the OS network. 

org.optimizationservices.oscommon.analyzer  Sample analyzers that analyze various optimization 
problems.   

org.optimizationservices.oscommon.parser  Customized parsers that use the standard parsers from 
oscommon to convert instances to and from the 
analyzer-specific formats or data structures.  

Table B-21: OSAnalyzer packages.  
 

Table B-22 through Table B-24 list some of the important classes in each of the above 3 

OSAnalyzer sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the 

Javadoc and other documents on the OS Web site.  
Sample classes in the api sub-package Brief description 

DrAMPLAnalyzerService DrAMPLAnalyzerService is an api that is public to the 
external world. It hides all the parsing, local 
interfacing, and analyzing processes. It implements the 
OShL and OSkL interfaces from OSCommon. It is 
called by an OS agent. The service analyzes an 
optimization instance and returns an OSaL analysis 
result.  

Table B-22: Sample classes in org.optimizationservices.osanalyzer.api.  
 

Sample classes in the analyzer sub-package Brief description 
DrAMPLAnalyzer Dr. AMPL analyzer that analyzes various optimization 

problems.  
Table B-23: Sample classes in org.optimizationservices.osanalyzer.analyzer.  
 
 

Sample classes in the parser sub-package Brief description 
DrAMPLOSiLReader The DrAMPLOSiLReader class uses the generic 

OSilReader to parse an OSiL instance into the Dr. 
AMPL’s format.  

Table B-24: Sample classes in org.optimizationservices.osanalyzer.parser.  
 

B.7 OSSimulation Library 
The OSSimulation library (project or jar) currently contains the 3 packages described in 

Table B-25.  
Package name Brief description 

org.optimizationservices.ossimulation.api  Contains OS simulation services that can be accessed 
publicly over the OS network 

org.optimizationservices. ossimulation.simulation  Sample simulation engines that run simple or complex 
simulations.    

org.optimizationservices. ossimulation.parser  Customized parsers that use the standard parsers from 
oscommon to convert instances to and from the 
simulation-specific formats or data structures. 
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simulation-specific formats or data structures. 

Table B-25: OSSimulation packages.  
 

Table B-26 through Table B-28 list some of the important classes in each of the above 3 

OSSimulation sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the 

Javadoc and other documents on the OS Web site.  
Sample classes in the api sub-package Brief description 

SampleSimulationService It is an api that is public to the external world. It hides 
all the parsing, local interfacing, and simulation 
processes. It implements the OScL and OSkL interfaces 
from OSCommon. It is called by an OS agent. The 
sample simulation service runs various sample 
simulations and returns an OSsL simulation result. 

Table B-26: Sample classes in org.optimizationservices.ossimulation.api.  
 

Sample classes in the simulation sub-package Brief description 
SampleSimulation It calculates various simple or complex functions and 

operations.  
Table B-27: Sample classes in org.optimizationservices.ossimulation.simulation.  
 
 

Sample classes in the parser sub-package Brief description 
SampleSimulationParser The class uses the generic OSsLReader and 

OSsLWriter to read or write an OSsL instance to or 
from the SampleSimulation’s format.  

Table B-28: Sample classes in org.optimizationservices.ossimulation.parser.  
 

B.8 OSRegistry Library 
The OSRegistry library (project or jar) currently contains the 5 packages described in 

Table B-29.  
Package name Brief description 

org.optimizationservices.oscommon.api  Contains the OS registry service that can be accessed 
publicly over the OS network 

org.optimizationservices.oscommon.parser  Customized parsers that use the standard parsers from 
oscommon to convert instances to and from the OS 
registry-specific formats or data structures. 

org.optimizationservices.oscommon.registry  The OS registry and provides join, discover, validate 
and other operations.     

org.optimizationservices.oscommon.util  Utility classes used by the OS registry.  
org.optimizationservices.oscommon.web OS Web site development related classes such as Java 

servlets.  
Table B-29: OSRegistry packages.  

 

Table B-30 through Table B-34 list some of the important classes in each of the above 5 

OSRegistry sub-packages. For detailed usage (fields, methods, etc.) of each class refer to the 

Javadoc and other documents on the OS Web site.  
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Sample classes in the api sub-package Brief description 
OSRegistryService It is an api that is public to the external world. This is 

what people sees as an OS registry service.  It hides all 
the parsing, local interfacing, and registry related 
processes. It implements the OSjL, OSdL and OSvL 
interfaces from OSCommon. It is called by an OS agent.  

Table B-30: Sample classes in org.optimizationservices.osregistry.api.  
 

Sample classes in the parser sub-package Brief description 
OSRegistryReader The class uses the generic OS registry related reader to 

read a registry related OSxL instance to the 
OSRegistry’s own format. 

OSRegistryWriter The class uses the generic OS registry related writer to 
write a registry related OSxL instance from the 
OSRegistry’s own format. 

Table B-31: Sample classes in org.optimizationservices.osregistry.parser.  
 

Sample classes in the registry sub-package Brief description 
OSRegistry The OS registry class that provides join, discover, 

validate and other operations.     
Table B-32: Sample classes in org.optimizationservices.osregistry.registry.  
 

Sample classes in the util sub-package Brief description 
OSRegistryCommonUtil Common utility classes that provide various convenient 

methods used by the OSRegistry.  
Table B-33: Sample classes in org.optimizationservices.osregistry.util.  
 

Sample classes in the web sub-package Brief description 
OSRegistryJoinServlet A java servlet class that is used with the OS join Web 

form. When the user clicks the submit button of the 
Web form, the servlet parses the form and generates an 
OSeL instance that is then sent to the OS registry 
database.  

Table B-34: Sample classes in org.optimizationservices.osregistry.web.  
 

B.9 Optimization Services Server  
We provide the OS server software that can be downloaded and installed on the OS 

service providers’ computers and host their Optimization Services. The OS server uses the 

Tomcat Web server [4] from Apache for HTTP and Java servlet handling. It uses Axis [5] again 

from Apache for Web services SOAP handling. The OS server then adds OS related libraries 

and classes as plug-ins for OSP handling (such as OSxL representations and communication). 

User manuals are provided on the OS Web site.  

  

B.10  www.optimizationservices.org and www.optimizationservices.net 
Figure B-4 shows the OptimizationServices.org Web site. Currently the 

OptimizationServices.net is mirrored after the .org Web site and provides exactly the same 

information. Later contents on the two Web sites may diverge on different emphases. But the 
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standards (schemas, WSDL documents, the OS registry) will always use the 

OptimizationServices.org address. OptimizationServices.net will provide auxiliary services that 

facilitate the use of Optimization Services. Various papers, presentations, user manuals, 

standards, software and other documents are published via the OS Web sites. For latest 

information always check the two Web sites:  

http://www.optimizationservices.org and http://www.optimizationservices.net 
 

 
 
Figure B-4: The OS Web site at http://www.optimizationservices.org (or 
http://www.optimizationservices.net) 


